Optimization over Structured Subsets of Positive Semidefinite Matrices via Column Generation

Citation:

A. A. Ahmadi, S. Dash, and G. Hall, “Optimization over Structured Subsets of Positive Semidefinite Matrices via Column Generation,” Discrete Optimization, Forthcoming.
Download Here353 KB

Abstract:


We develop algorithms for inner approximating the cone of positive semidefinite matrices via linear programming and second order cone programming. Starting with an initial linear algebraic approximation suggested recently by Ahmadi and Majumdar, we describe an iterative process through which our approximation is improved at every step. This is done using ideas from column generation in large-scale linear and integer programming. We then apply these techniques to approximate the sum of squares cone in a nonconvex polynomial optimization setting, and the copositive cone for a discrete optimization problem.

Last updated on 03/28/2016