Motivation

- Framework to study monetary and financial stability
- Interaction between monetary and macroprudential policy
- Connect theory of value and theory of money
- Intermediation (credit)
 - “Excessive” leverage and liquidity mismatch
- Inside money – as store of value
 - In downturns, intermediaries create less inside money
 - Endogenous money multiplier = f(capitalization of critical sector)
 - Demand for money rises with endogenous volatility
 - Value of money goes up – Disinflation spiral a la Fisher (1933)
 - Fire-sales of assets - Liquidity spiral
- Flight to safety
- Time-varying risk premium and endogenous volatility dynamics
Risk, Monetary & Macropru Policy

Risk

- Exogenous risk
 - Sector-specific
 - Idiosyncratic

- Endogenous risk
 - Shifts in wealth share
 - Variation in risk premia

Risk management

- Monetary policy as “risk transfer”
 - Affects (relative) asset prices reduces systemic risk

- Macroprudential policy
 - Affects/limits quantities/risk taking
Some literature

- Baseline model without intermediaries:
 - Money pays no dividend and is a bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only money</td>
<td>Samuelson</td>
<td>OLG Friction</td>
</tr>
</tbody>
</table>

- “Money view” (Friedman & Schwartz)
- “Credit view” (Tobin)

BGG, Kiyotaki & More, He & Krishnamurthy, BruSan2014, Drechsler, Savov & Schnabl

Friction OLG Incomplete Markets
OLG Friction

Only money Samuelson
Some literature

- Baseline model without intermediaries:
 - Money pays no dividend and is a bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLG Friction</td>
<td>OLG Friction</td>
<td></td>
</tr>
<tr>
<td>Only money</td>
<td>Samuelson</td>
<td></td>
</tr>
<tr>
<td>With capital</td>
<td>Diamond</td>
<td>(money) bubbles if</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dynamic inefficiency $r < g$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abel et al. vs. Geerolf</td>
</tr>
</tbody>
</table>
Some literature

- Baseline model without intermediaries:
 - Money pays no dividend and is a bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLG Friction</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Only money</th>
<th>Samuelson</th>
<th>Bewley</th>
</tr>
</thead>
<tbody>
<tr>
<td>With capital</td>
<td>Diamond</td>
<td>Ayagari</td>
</tr>
</tbody>
</table>
Some literature

- **Baseline model without intermediaries:**
 - Money pays no dividend and is a bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG Friction</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only money</td>
<td>Samuelson</td>
<td>Bewley</td>
</tr>
<tr>
<td>With capital</td>
<td>Diamond</td>
<td>Ayagari, “I Theory”</td>
</tr>
</tbody>
</table>
Some literature

- **Baseline model without intermediaries:**
 - Money pays no dividend and is a bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG Friction</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only money</td>
<td>Samuelson</td>
<td>Bewley</td>
</tr>
<tr>
<td>With capital</td>
<td>Diamond</td>
<td>Ayagari</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“I Theory”</td>
</tr>
</tbody>
</table>

- **Friction**

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG Friction</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only money</td>
<td>Samuelson</td>
<td>Bewley</td>
</tr>
<tr>
<td>With capital</td>
<td>Diamond</td>
<td>Ayagari</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“I Theory”</td>
</tr>
</tbody>
</table>

\[g = \text{capital gains rate on projects} \]

\[r = \text{risk-free rate in moneyless economy} \]

\[\text{expected return on projects} \]

\[\text{income/dividend yield} \]

\[\text{risk premium} \]
Some literature

- Baseline model without intermediaries:
 - Money pays no dividend and is a bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLG Friction</td>
<td>endowment risk</td>
<td>investment risk</td>
</tr>
<tr>
<td></td>
<td>borrowing constraint</td>
<td></td>
</tr>
<tr>
<td>Only money</td>
<td>Samuelson</td>
<td>Bewley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With capital</td>
<td>Diamond</td>
<td>Ayagari</td>
</tr>
<tr>
<td></td>
<td>“I Theory”</td>
<td></td>
</tr>
</tbody>
</table>

- “Money view” (Friedman & Schwartz)
- “Credit view” (Tobin)
 - Bernanke, Gertler & Gilchrist, Kiyotaki & More, BruSan2014, He & Krishnamurty, Drechsler, Savov & Schnabl

\[
g = \text{capital gains rate on projects} \\
\text{expected return on projects income/dividend yield} \\
\text{risk premium} \\
r = \text{risk-free rate in moneyless economy}
\]
Outline of model

- Technologies a
 - Households have to
 - Specialize in one subsector for one period
 - Demand for money
 \[
 \frac{dk_t}{k_t} = \cdots dt + \sigma^a dZ^a_t + \tilde{\sigma} d\tilde{Z}^a_t
 \]

- Technologies b
 - Sector specific + idiosyncratic risk
 \[
 \frac{dk_t}{k_t} = \cdots dt + \sigma^b dZ^b_t + \tilde{\sigma} d\tilde{Z}^b_t
 \]
Add outside money

- Technologies a
 - Households have to
 - Specialize in one subsector for one period
 - Demand for money
 - Money – store of value
 - Fixed supply, unproductive
 - $g > r$ dynamic inefficiency
 - Bubbles/money increase efficiency

- Technologies b

Outside Money

Switch technology
Add outside money

- Technologies a

- Households have to
 - Specialize in one subsector for one period
 - Demand for money

- Money – store of value
 - Fixed supply, unproductive
 - $g > r$ dynamic inefficiency
 - Bubbles/money increase efficiency
Add intermediaries

Technologies a

- Risk can be partially sold off to intermediaries

Technologies b

- Risk is not contractable (Plagued with moral hazard problems)
Add intermediaries

Technologies α

- Add intermediaries
 - Net worth

Technologies β

- Outside Money

Intermediaries
 - Can hold outside equity & diversify within sector A
 - Monitoring
Add intermediaries

- Technologies a
 - Intermediaries
 - Can hold outside equity & diversify within sector A
 - Monitoring
Add intermediaries

- Technologies α
 - Inside Money
 - Outside Money
 - Inside equity
 - Risky Claim
 - Risky Claim
 - Risky Claim
 - Net worth
 - Inside Money (deposits)
 - Pass through

- Technologies β
 - Inside Money
 - Outside Money
 - Inside equity
 - Risky Claim
 - Risky Claim
 - Risky Claim
 - Net worth
 - Inside Money (deposits)
 - Pass through

- Intermediaries
 - Can hold outside equity & diversify within sector A
 - Monitoring
 - Create inside money
 - Maturity/liquidity transformation
Shock impairs assets: 1st of 4 steps

- Technologies a
 - Money
 - Inside equity
 - Risky Claim
 - Outside Money
 - Risky Claim
 - ... (repeated)
 - Inside Money (deposits)

- Technologies b
 - Money
 - Inside equity
 - Risky Claim
 - Outside Money
 - Losses
Shrink balance sheet: 2nd of 4 steps

- Technologies a

- Technologies b

Switch
Liquidity spiral: asset price drop: 3rd of 4

- Technologies a

 Switch

- Technologies b

Deleveraging

Outside Money

Inside Money (deposits)

Net worth

Losses

Money

Risky Claim

Inside equity

Risky Claim

Risky Claim

...
Disinflationary spiral: 4th of 4 steps

- Technologies \textit{a}
- Technologies \textit{b}
... after an adverse shock

- Intermediaries are hit and shrink their balance sheets inducing
 - Asset side liquidity spiral financial stability
 - Liability side disinflation spiral price stability

- Response of intermediaries to adverse shock leads to endogenous risk
 - Amplification
 - Persistence

- Other sectors can also be undercapitalized
 - Japan 1980: corporate sector
 - US 2000s: household sector
Policy

- Monetary Policy
 - Introduce long-term bond
 - Central bank’s actions change money supply/transfer risk
 - Interest rate cuts in downturns raise the value of long-term bonds
 - Change relative price between long-term bond and short-term money
 - Risk transfer (ex-post redistribution)

- Macro-prudential policy
 1. Leverage upper bounds
 2. Affect agents portfolio choice directly
Formal model: capital & output

Technologies

Physical capital K_t
- Capital share

Output goods

Aggregate good (CES)
- Consumed or invested
- Numeraire

Price of goods

- Model setup in paper is more general: $Y_t = A(\psi_t)K_t$

<table>
<thead>
<tr>
<th>Technologies</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical capital K_t</td>
<td>ψ</td>
<td>$1 - \psi$</td>
</tr>
<tr>
<td>Output goods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate good (CES)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Consumed or invested</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Numeraire</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Formulas

- Physical capital K_t
 - Capital share

- Output goods
 - Imperfect substitutes
 - CES

- Price of goods
 - Imperfect substitutes

- Comprehensive

\[
Y_t^a = Ak_t^a \quad \text{Imperfect substitutes} \quad Y_t^b = Ak_t^b
\]

\[
Y_t = \left(\frac{1}{2}(Y_t^a)^{(s-1)/s} + \frac{1}{2}(Y_t^b)^{(s-1)/s} \right)^{s/(s-1)}
\]

\[
P_t^a = \frac{1}{2}(Y_t^a)^{1/s} \quad P_t^b = \frac{1}{2}(Y_t^b)^{1/s}
\]
Formal model: risk

- When k_t is employed in sector a by agent j

\[dk_t = (\Phi(i_t) - \delta)k_t \, dt + \sigma^a k_t \, dZ^a_t + \sigma^j k_t \, d\tilde{Z}^a_t \]

- $\Phi(i_t)$ is increasing and concave, e.g. $\log\left(\frac{\kappa i_t + 1}{\kappa}\right)$
- All dZ are independent of each other

- Intermediaries can diversify within sector A
 - Face no idiosyncratic risk

- Households cannot become intermediaries or vice versa
Financing constraints

Technologies

<table>
<thead>
<tr>
<th>Equity issuance</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Special case</td>
<td>Inside equity $\chi_t \geq \chi$</td>
<td>Inside equity only</td>
</tr>
<tr>
<td>$\chi = 0%$ (no inside equity)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Households’ risk

- dZ^a & $d\tilde{Z}^a$
 - sector & idiosyncratic

Intermediaries’ risk

- dZ^a
 - can diversify idiosyncratic risk

- dZ^b & $d\tilde{Z}^b$
 - sector & idiosyncratic
Formal model: preferences

- All agents have logarithmic utility with discount rate ρ

\[
E \left[\int_0^{\infty} e^{-\rho t} \log c_t \, dt \right]
\]

- Implies
 - Consumption = ρ * net worth
 - Equilibrium Sharpe ratio \propto Covariance with net worth
Asset returns on money

- **Money**: fixed supply in baseline model, total value p_tK_t
 - Return = capital gains (no dividend/interest in baseline model)
 - If $dp_t/p_t = \mu_t^p \ dt + \sigma_t^p \ dZ_t,$
 - $dK_t/K_t = (\Phi(\iota_t) - \delta) dt + \psi_t \sigma^a dZ^a_t + (1 - \psi_t) \sigma^b dZ^b_t$

\[
dr_t^M = \left(\Phi(\iota_t) - \delta + \mu_t^p + (\sigma_t^p)^T \sigma_t^K \right) dt + (\sigma_t^p + \sigma_t^K) dZ_t
\]

- $\pi_t = \frac{p_t}{q_t + p_t}$ fraction of wealth in form of money
Equilibrium is a map

Histories of shocks \(\{Z_\tau, 0 \leq \tau \leq t\} \) \(\rightarrow \) prices \(q_t, p_t \), allocation

\[
\begin{align*}
\psi_t, \psi^b_t, \psi^a_t, (\eta^b_t, \eta^a_t), (c_t, c^a_t, c^b_t)
\end{align*}
\]

Wealth distribution

\[
\eta_t = \frac{N_t}{(p_t + q_t)K_t} \in (0,1)
\]

A’s and intermediaries’ wealth share

- All agents maximize utility
 - choose portfolio, consumption, technology
- All markets clear \((\psi_t + \psi^b_t + \psi^a_t = 1, \text{etc.}) \)

At “steady state” \(\eta^* : \mu^\eta_t = 0 \)
Equilibrium conditions of general model

1. Log utility: Consumption = ρ × net worth
 - Clearing of goods market: \(Y_t - \iota_t K_t = \rho (p_t + q_t) K_t \)

2. Log utility: \(E[\text{excess return}] \propto \text{covariance net worth} \)
 - I-net worth: \(dN_t/N_t = x_t dr_t^I + (1 - x_t) dr_t^M - \rho dt \)
 with portfolio share \(x_t = \frac{\psi_t q_t}{\eta_t(p_t + q_t)} \)
 - I-net worth risk:
 \[
 \sigma_t^N = x_t \left(\sigma_t^a 1^a + \sigma_t^q - \sigma_t^p - \sigma_t^K \right) + \sigma_t^K + \sigma_t^p
 \]
 \(\equiv v_t \)
 - Required return:
 \[
 \frac{E[dr_t^a - dr_t^M]}{dt} - \lambda_t = (v_t)^T \sigma_t^N
 \]
Numerical example

\[\rho = 5\%, a = .5, \sigma^a = \sigma^b = .3, \sigma^j = .9, s = .8, \Phi(t) = \frac{\log[\kappa t + 1]}{\kappa}, \kappa = 2, \chi = 0 \]

Prices

of money and physical capital

\[\pi = \frac{p}{p+q} \]
Numerical example

\[\rho = 5\%, a = .5, \sigma^a = \sigma^b = .3, \sigma^j = .9, s = .8, \Phi(\ell) = \frac{\log[\kappa \ell + 1]}{\kappa}, \kappa = 2, \chi = 0 \]

- Prices
 of money and physical capital

\[\pi = \frac{p}{p+q} \]
Numerical example

\[\rho = 5\%, \ a = 0.5, \sigma^a = \sigma^b = 0.3, \sigma^j = 0.9, \ s = 0.8, \ \Phi(t) = \frac{\log[k\iota + 1]}{\kappa}, \kappa = 2, \chi = 0 \]

- **Prices**
 - Prices of money and physical capital
 - \(\pi = \frac{p}{p+q} \)

- **Allocation shares**
 - Allocation shares of physical capital across sectors
 - \(1 - \psi_t, \) households producing good a (inside equity)
 - \(\psi_t(1 - \chi_t), \) intermediaries holding outside equity of households
Numerical example: dynamics of η

\[
\eta \sigma_t^\eta = \frac{x_t \eta}{1 + \left(\frac{\psi - \eta}{\eta} \right) \frac{\pi'(\eta)}{\pi/\eta}} (\sigma^a 1^a - \sigma^K_t)
\]

- **Steady state drift**
- **volatility**
- **drift**
- **leverage elasticity amplification**
Endogenous risk - amplification

- Let $\pi = \frac{p}{p+q} = \frac{1}{1+q/p}$ “money wealth share”
- Levering up to add capital intermediaries face risk

\[v_t = \left(1 - \frac{\pi'(\eta)}{\pi(\eta)(1-\pi(\eta))}\right)\left(\sigma^a 1^a - \sigma_K\right) \]
Welfare analysis

- Challenge: Heterogeneous agents with idiosyncratic risks
- Inefficiencies in
 - Production
 - Investment
 - Risk sharing
Overview

- No monetary economics
 - Fixed outside money supply
 - Amplification/endogenous risk through
 - Liquidity spiral asset side of intermediaries’ balance sheet
 - Disinflationary spiral liability side

- Monetary policy
 - Wealth shifts by affecting relative price between
 - Long-term bond
 - Short-term money
 - Risk transfers – reduce endogenous aggregate risk

- Macroprudential policy
Money view

- Restore money supply
 - Helicopter drop to savers
Money view

- Restore money supply
 - Helicopter drop to savers

Diagram:
- Government
 - Outside money
 - Reserves

- Banks
 - Reserves
 - Inside money
 - Equity

- Savers
Money view

- Restore money supply
- Switches off Deflationary spiral
 - Intermediaries are better capitalized
 - Slightly more credit but credit is not restored
Credit view

- Restore “healthy” credit
 - Not zombie banks
 - Not vampire banks

- Recapitalization
 - Gift to solvent banks
Credit view

- Restore “healthy” credit
 - Not zombie banks
 - Not vampire banks

- Recapitalization
 - Gift to solvent banks

- Switches off
 - Disinflationary spiral
 - Liquidity spiral
 - Credit is restored, as banks are recapitalized

- Next, realistic monetary policy
Risk transfers through interest rate policy/OMO

- Introduce long-term (perpetual) bond
 - No default ... held by intermediaries in equilibrium

 \[\text{Value } b_t K_t \]

 Perpetual bonds:
 - pay in money (at unit rate)
 - endogenous price \(B_t \) (in money)

 \[\text{Money} \quad \text{Capital} \]

 \[\text{Value } p_t K_t \]

 \[\text{Value } q_t K_t \]

 - Value of long-term bond is endogenous

 \[dB_t / B_t = \mu_t^B \, dt + \sigma_t^B \, dZ_t \]

- Monetary policy

 - Short-term interest rate \(r_t \) & outstanding value \(b_t K_t \)
 - Example:

 \[\frac{b_t B'(\eta)}{p_t B(\eta)} = \alpha_t \frac{\pi'(\eta)}{\pi(1-\pi)} \]
Monetary policy and endogenous risk

- Intermediaries’ risk (borrow to scale up)

\[
\eta \sigma_t^\eta = \frac{x_t \eta}{1 + \left(\frac{\psi - \eta}{\eta} \frac{\pi'(\eta)}{\pi/\eta} + \frac{\psi - \eta}{\eta} + \frac{\pi}{\eta} (1 - \psi)\right) \frac{b_t B'(\eta)}{p_t B(\eta)/\eta}} (\sigma_A 1^a - \sigma_t^K)
\]

amplification mitigation fundamental risk

- Example:

\[
\frac{b_t B'(\eta)}{p_t B(\eta)} = \alpha_t \frac{\pi'(\eta)}{\pi(1-\pi)}
\]

- Intuition:
 with right monetary policy bond price \(B(\eta) \) rises as \(\eta \) drops “stealth recapitalization”
 - Can reduce liquidity and disinflationary spiral
Numerical example with monetary policy

\[\rho = 5\%, a = 0.5, \sigma_A = \sigma_B = 0.3, \sigma_i = \sigma_j = 0.9, \epsilon = 0.8, \Phi(\iota) = \frac{\log[\kappa \iota + 1]}{\kappa}, \kappa = 2 \]

- Prices
- Allocation shares
Numerical example with monetary policy

\[\rho = 5\%, a = .5, \sigma_A = \sigma_B = .3, \sigma_i = \sigma_j = .9, \epsilon = .8, \Phi(\iota) = \frac{\log[\kappa \iota + 1]}{\kappa}, \kappa = 2 \]

\[\eta \sigma_t^\eta = \frac{x_t \eta}{1 + \left(\frac{\psi - \eta}{\eta} \right) \frac{\pi'(\eta)}{\pi/\eta} - \left(\frac{\psi - \eta}{\eta} + \frac{\pi}{\eta} (1 - \psi) \right) \frac{b_t}{p_t} \frac{B'(\eta)}{B(\eta)/\eta} (\sigma_A 1^a - \sigma_t^K) } \]

Recall

\[\frac{b_t B'(\eta)}{p_t B(\eta)} = \alpha_t \frac{\pi'(\eta)}{\pi(1 - \pi)} \]
Monetary policy ... in the limit

- full risk sharing of all aggregate risk

\[\eta \sigma_t^\eta = \frac{x_t \eta}{1 + \left(\frac{\psi - \eta}{\eta}\right)\pi'(\eta) - \left(\frac{\psi - \eta}{\eta} + \frac{\pi(1 - \psi)}{\eta}\right)\frac{b_t}{p_t B(\eta)} B'(\eta)} (\sigma_A 1^a - \sigma_t^K) \]

- \(\eta\) is deterministic and converges over time towards 0
Monetary policy in the limit

- Welfare is lower, despite aggregate risk sharing

[Graph showing welfare levels with and without policy, illustrating perfect aggregate risk sharing.]
Overview

- **No monetary economics**
 - Fixed outside money supply
 - Amplification/endogenous risk through
 - Liquidity spiral asset side of intermediaries’ balance sheet
 - Disinflationary spiral liability side

- **Monetary policy**
 - Wealth shifts by affecting relative price between
 - Long-term bond
 - Short-term money
 - Risk transfers – reduce endogenous aggregate risk

- **Macroprudential policy**
 - Leverage limit only
 - Directly affect portfolio positions
MacroPru: Leverage bound only

- Intermediaries’ leverage bound
 - Still countercyclical

- Prices q and p
 - p is above .5 now
 - Inflation in downturns
 - Stabilizes I’s balance sheet
MacroPru: Leverage bound only + MoPo

- Intermediaries are prevented to lever up
MacroPru policy

- Regulator can control
 - Portfolio choice ψ, x
 - Investment decision $\nu(q)$
 - Consumption decision c

- cannot control

of intermediaries and households
MacroPru policy

- Regulator can control
 - Portfolio choice $\psi s, xs$
- cannot control
 - Investment decision $i(q)$
 - Consumption decision c

 of intermediaries and households

- De-facto controls q and p within some range
- De-factor controls wealth share η
 - Force agents to hold certain assets and generate capital gains

- In sum, regulator maximizes sum of agents value function
 - Choosing ψ^b, q, η
Numerical example: MacroPru

- Force higher ψ^b production of good b
- Force higher value of money p (form of financial repression??) (despite no hedging risk profile)
Welfare comparison

Remarks:
- Without policy Pareto inefficiency for low η
- Full aggregate risk sharing → low welfare

- Solid: Value functions
- Dashed: Utility flow
Conclusion

- Unified macro model to analyze
 - Financial stability - Liquidity spiral
 - Monetary stability - Fisher disinflation spiral

- Exogenous risk &
 - Sector specific
 - Idiosyncratic

- Endogenous risk
 - Time varying risk premia – flight to safety
 - Capitalization of intermediaries is key state variable

- Monetary policy rule
 - Risk transfer to undercapitalized critical sectors
 - Income/wealth effects are crucial instead of substitution effect
 - Reduces endogenous risk – better aggregate risk sharing
 - Self-defeating in equilibrium (due to idiosyncratic risk)

- Macro-prudential policies
 - Leverage constraints + MoPo to achieve superior welfare optimum
<table>
<thead>
<tr>
<th>New Keynesian</th>
<th>I Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key friction</td>
<td>Price stickiness & ZLB</td>
</tr>
<tr>
<td>Role of money</td>
<td>Unit of account</td>
</tr>
<tr>
<td>Driver</td>
<td>Demand driven as firms are obliged to meet demand at sticky price</td>
</tr>
<tr>
<td>Monetary policy</td>
<td>Optimal price setting over time</td>
</tr>
<tr>
<td>- implementation</td>
<td>Affect HH’s intertemporal trade-off</td>
</tr>
<tr>
<td>- First order effects</td>
<td>Nominal interest rate impact real interest rate due to price stickiness</td>
</tr>
<tr>
<td>Time consistency</td>
<td>Wage stickiness Price stickiness + monopolistic competition</td>
</tr>
<tr>
<td>Yield curve</td>
<td>Expectation hypothesis only</td>
</tr>
</tbody>
</table>