Tianero, Ma. Diarey, Jared N. Balaich, and Mohamed S. Donia. “Localized production of defence chemicals by intracellular symbionts of Haliclona sponges”. Nature Microbiology (2019). Web. WebAbstract
Marine sponges often house small-molecule-producing symbionts extracellularly in their mesohyl, providing the host with a means of chemical defence against predation and microbial infection. Here, we report an intriguing case of chemically mediated symbiosis between the renieramycin-containing sponge Haliclona sp. and its herein discovered renieramycin-producing symbiont Candidatus Endohaliclona renieramycinifaciens. Remarkably, Ca. E. renieramycinifaciens has undergone extreme genome reduction where it has lost almost all necessary elements for free living while maintaining a complex, multi-copy plasmid-encoded biosynthetic gene cluster for renieramycin biosynthesis. In return, the sponge houses Ca. E. renieramycinifaciens in previously uncharacterized cellular reservoirs (chemobacteriocytes), where it can acquire nutrients from the host and avoid bacterial competition. This relationship is highly specific to a single clade of Haliclona sponges. Our study reveals intracellular symbionts as an understudied source for defence chemicals in the oldest-living metazoans and paves the way towards discovering similar systems in other marine sponges.
Guo, Chun-Jun, et al.Discovery of Reactive Microbiota-Derived Metabolites that Inhibit Host Proteases.”. Cell 168.3 (2017): , 168, 3, 517-526.e18. Web.Abstract
The gut microbiota modulate host biology in numerous ways, but little is known about the molecular mediators of these interactions. Previously, we found a widely distributed family of nonribosomal peptide synthetase gene clusters in gut bacteria. Here, by expressing a subset of these clusters in Escherichia coli or Bacillus subtilis, we show that they encode pyrazinones and dihydropyrazinones. At least one of the 47 clusters is present in 88% of the National Institutes of Health Human Microbiome Project (NIH HMP) stool samples, and they are transcribed under conditions of host colonization. We present evidence that the active form of these molecules is the initially released peptide aldehyde, which bears potent protease inhibitory activity and selectively targets a subset of cathepsins in human cell proteomes. Our findings show that an approach combining bioinformatics, synthetic biology, and heterologous gene cluster expression can rapidly expand our knowledge of the metabolic potential of the microbiota while avoiding the challenges of cultivating fastidious commensals.
Schulze, Christopher J, et al.Genome-Directed Lead Discovery: Biosynthesis, Structure Elucidation, and Biological Evaluation of Two Families of Polyene Macrolactams against Trypanosoma brucei.”. ACS Chem Biol 10.10 (2015): , 10, 10, 2373-81. Web.Abstract
Marine natural products are an important source of lead compounds against many pathogenic targets. Herein, we report the discovery of lobosamides A-C from a marine actinobacterium, Micromonospora sp., representing three new members of a small but growing family of bacterially produced polyene macrolactams. The lobosamides display growth inhibitory activity against the protozoan parasite Trypanosoma brucei (lobosamide A IC50 = 0.8 μM), the causative agent of human African trypanosomiasis (HAT). The biosynthetic gene cluster of the lobosamides was sequenced and suggests a conserved cluster organization among the 26-membered macrolactams. While determination of the relative and absolute configurations of many members of this family is lacking, the absolute configurations of the lobosamides were deduced using a combination of chemical modification, detailed spectroscopic analysis, and bioinformatics. We implemented a "molecules-to-genes-to-molecules" approach to determine the prevalence of similar clusters in other bacteria, which led to the discovery of two additional macrolactams, mirilactams A and B from Actinosynnema mirum. These additional analogs have allowed us to identify specific structure-activity relationships that contribute to the antitrypanosomal activity of this class. This approach illustrates the power of combining chemical analysis and genomics in the discovery and characterization of natural products as new lead compounds for neglected disease targets.
Donia, Mohamed S, and Michael A Fischbach. “HUMAN MICROBIOTA. Small molecules from the human microbiota.”. Science 349.6246 (2015): , 349, 6246, 1254766. Web.Abstract
Developments in the use of genomics to guide natural product discovery and a recent emphasis on understanding the molecular mechanisms of microbiota-host interactions have converged on the discovery of small molecules from the human microbiome. Here, we review what is known about small molecules produced by the human microbiota. Numerous molecules representing each of the major metabolite classes have been found that have a variety of biological activities, including immune modulation and antibiosis. We discuss technologies that will affect how microbiota-derived molecules are discovered in the future and consider the challenges inherent in finding specific molecules that are critical for driving microbe-host and microbe-microbe interactions and understanding their biological relevance.
Medema, Marnix H, et al.Minimum Information about a Biosynthetic Gene cluster.”. Nat Chem Biol 11.9 (2015): , 11, 9, 625-31. Web.
Taketani, Mao, et al.A Phase-Variable Surface Layer from the Gut Symbiont Bacteroides thetaiotaomicron.”. MBio 65 (2015): , 6, 5, e01339-15. Web.Abstract
UNLABELLED: The capsule from Bacteroides, a common gut symbiont, has long been a model system for studying the molecular mechanisms of host-symbiont interactions. The Bacteroides capsule is thought to consist of an array of phase-variable polysaccharides that give rise to subpopulations with distinct cell surface structures. Here, we report the serendipitous discovery of a previously unknown surface structure in Bacteroides thetaiotaomicron: a surface layer composed of a protein of unknown function, BT1927. BT1927, which is expressed in a phase-variable manner by ~1:1,000 cells in a wild-type culture, forms a hexagonally tessellated surface layer. The BT1927-expressing subpopulation is profoundly resistant to complement-mediated killing, due in part to the BT1927-mediated blockade of C3b deposition. Our results show that the Bacteroides surface structure is capable of a far greater degree of structural variation than previously known, and they suggest that structural variation within a Bacteroides species is important for productive gut colonization. IMPORTANCE: Many bacterial species elaborate a capsule, a structure that resides outside the cell wall and mediates microbe-microbe and microbe-host interactions. Species of Bacteroides, the most abundant genus in the human gut, produce a capsule that consists of an array of polysaccharides, some of which are known to mediate interactions with the host immune system. Here, we report the discovery of a previously unknown surface structure in Bacteroides thetaiotaomicron. We show that this protein-based structure is expressed by a subset of cells in a population and protects Bacteroides from killing by complement, a component of the innate immune system. This novel surface layer protein is conserved across many species of the genus Bacteroides, suggesting an important role in colonization and host immune modulation.
Donia, Mohamed S. “A Toolbox for Microbiome Engineering.”. Cell Syst 11 (2015): , 1, 1, 21-3. Web.Abstract
Genetic tools to engineer a prominent member of the human gut microbiome represent initial steps toward cell-based diagnostics and therapeutics.
Williams, Brianna B, et al.Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine.”. Cell Host Microbe 16.4 (2014): , 16, 4, 495-503. Web.Abstract
Several recent studies describe the influence of the gut microbiota on host brain and behavior. However, the mechanisms responsible for microbiota-nervous system interactions are largely unknown. Using a combination of genetics, biochemistry, and crystallography, we identify and characterize two phylogenetically distinct enzymes found in the human microbiome that decarboxylate tryptophan to form the β-arylamine neurotransmitter tryptamine. Although this enzymatic activity is exceedingly rare among bacteria more broadly, analysis of the Human Microbiome Project data demonstrate that at least 10% of the human population harbors at least one bacterium encoding a tryptophan decarboxylase in their gut community. Our results uncover a previously unrecognized enzymatic activity that can give rise to host-modulatory compounds and suggests a potential direct mechanism by which gut microbiota can influence host physiology, including behavior.
Kwan, Jason C, et al.Host control of symbiont natural product chemistry in cryptic populations of the tunicate Lissoclinum patella.”. PLoS One 95 (2014): , 9, 5, e95850. Web.Abstract
Natural products (secondary metabolites) found in marine invertebrates are often thought to be produced by resident symbiotic bacteria, and these products appear to play a major role in the symbiotic interaction of bacteria and their hosts. In these animals, there is extensive variation, both in chemistry and in the symbiotic bacteria that produce them. Here, we sought to answer the question of what factors underlie chemical variation in the ocean. As a model, we investigated the colonial tunicate Lissoclinum patella because of its rich and varied chemistry and its broad geographic range. We sequenced mitochondrial cytochrome c oxidase 1 (COXI) genes, and found that animals classified as L. patella fall into three phylogenetic groups that may encompass several cryptic species. The presence of individual natural products followed the phylogenetic relationship of the host animals, even though the compounds are produced by symbiotic bacteria that do not follow host phylogeny. In sum, we show that cryptic populations of animals underlie the observed chemical diversity, suggesting that the host controls selection for particular secondary metabolite pathways. These results imply novel approaches to obtain chemical diversity from the oceans, and also demonstrate that the diversity of marine natural products may be greatly impacted by cryptic local extinctions.
Donia, Mohamed S, et al.A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics.”. Cell 158.6 (2014): , 158, 6, 1402-14. Web.Abstract
In complex biological systems, small molecules often mediate microbe-microbe and microbe-host interactions. Using a systematic approach, we identified 3,118 small-molecule biosynthetic gene clusters (BGCs) in genomes of human-associated bacteria and studied their representation in 752 metagenomic samples from the NIH Human Microbiome Project. Remarkably, we discovered that BGCs for a class of antibiotics in clinical trials, thiopeptides, are widely distributed in genomes and metagenomes of the human microbiota. We purified and solved the structure of a thiopeptide antibiotic, lactocillin, from a prominent member of the vaginal microbiota. We demonstrate that lactocillin has potent antibacterial activity against a range of Gram-positive vaginal pathogens, and we show that lactocillin and other thiopeptide BGCs are expressed in vivo by analyzing human metatranscriptomic sequencing data. Our findings illustrate the widespread distribution of small-molecule-encoding BGCs in the human microbiome, and they demonstrate the bacterial production of drug-like molecules in humans. PAPERCLIP:
Donia, Mohamed S, and Michael A Fischbach. “Dyeing to learn more about the gut microbiota.”. Cell Host Microbe 13.2 (2013): , 13, 2, 119-20. Web.Abstract
The switch from culture-based enumeration to deep sequencing has enabled microbial community composition to be profiled en masse. In a new article, Maurice et al. (2013) report the use of fluorescence-activated cell sorting (FACS) to perform a high-throughput analysis of gut microbiota community function.
Marcobal, A, et al.A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice.”. ISME J 710 (2013): , 7, 10, 1933-43. Web.Abstract
Defining the functional status of host-associated microbial ecosystems has proven challenging owing to the vast number of predicted genes within the microbiome and relatively poor understanding of community dynamics and community-host interaction. Metabolomic approaches, in which a large number of small molecule metabolites can be defined in a biological sample, offer a promising avenue to 'fingerprint' microbiota functional status. Here, we examined the effects of the human gut microbiota on the fecal and urinary metabolome of a humanized (HUM) mouse using an optimized ultra performance liquid chromatography-mass spectrometry-based method. Differences between HUM and conventional mouse urine and fecal metabolomic profiles support host-specific aspects of the microbiota's metabolomic contribution, consistent with distinct microbial compositions. Comparison of microbiota composition and metabolome of mice humanized with different human donors revealed that the vast majority of metabolomic features observed in donor samples are produced in the corresponding HUM mice, and individual-specific features suggest 'personalized' aspects of functionality can be reconstituted in mice. Feeding the mice a defined, custom diet resulted in modification of the metabolite signatures, illustrating that host diet provides an avenue for altering gut microbiota functionality, which in turn can be monitored via metabolomics. Using a defined model microbiota consisting of one or two species, we show that simplified communities can drive major changes in the host metabolomic profile. Our results demonstrate that metabolomics constitutes a powerful avenue for functional characterization of the intestinal microbiota and its interaction with the host.
Kwan, Jason C, et al.Genome streamlining and chemical defense in a coral reef symbiosis.”. Proc Natl Acad Sci U S A 109.50 (2012): , 109, 50, 20655-60. Web.Abstract
Secondary metabolites are ubiquitous in bacteria, but by definition, they are thought to be nonessential. Highly toxic secondary metabolites such as patellazoles have been isolated from marine tunicates, where their exceptional potency and abundance implies a role in chemical defense, but their biological source is unknown. Here, we describe the association of the tunicate Lissoclinum patella with a symbiotic α-proteobacterium, Candidatus Endolissoclinum faulkneri, and present chemical and biological evidence that the bacterium synthesizes patellazoles. We sequenced and assembled the complete Ca. E. faulkneri genome, directly from metagenomic DNA obtained from the tunicate, where it accounted for 0.6% of sequence data. We show that the large patellazoles biosynthetic pathway is maintained, whereas the remainder of the genome is undergoing extensive streamlining to eliminate unneeded genes. The preservation of this pathway in streamlined bacteria demonstrates that secondary metabolism is an essential component of the symbiotic interaction.
Schmidt, Eric W, et al.Origin and variation of tunicate secondary metabolites.”. J Nat Prod 75.2 (2012): , 75, 2, 295-304. Web.Abstract
Ascidians (tunicates) are rich sources of structurally elegant, pharmaceutically potent secondary metabolites and, more recently, potential biofuels. It has been demonstrated that some of these compounds are made by symbiotic bacteria and not by the animals themselves, and for a few other compounds evidence exists supporting a symbiotic origin. In didemnid ascidians, compounds are highly variable even in apparently identical animals. Recently, we have explained this variation at the genomic and metagenomic levels and have applied the basic scientific findings to drug discovery and development. This review discusses what is currently known about the origin and variation of symbiotically derived metabolites in ascidians, focusing on the family Didemnidae, where most research has occurred. Applications of our basic studies are also described.
Tianero, Ma Diarey B, et al.Ribosomal route to small-molecule diversity.”. J Am Chem Soc 134.1 (2012): , 134, 1, 418-25. Web.Abstract
The cyanobactin ribosomal peptide (RP) natural product pathway was manipulated to incorporate multiple tandem mutations and non-proteinogenic amino acids, using eight heterologous components simultaneously expressed in Escherichia coli . These studies reveal the potential of RPs for the rational synthesis of complex, new small molecules over multiple-step biosynthetic pathways using simple genetic engineering.
Donia, Mohamed S, et al.Accessing the hidden majority of marine natural products through metagenomics.”. Chembiochem 12.8 (2011): , 12, 8, 1230-6. Web.Abstract
Tiny marine animals represent an untapped reservoir for undiscovered, bioactive natural products. However, their small size and extreme chemical variability preclude traditional chemical approaches to discovering new bioactive compounds. Here, we use a metagenomic method to directly discover and rapidly access cyanobactin class natural products from these variable samples, and provide proof-of-concept for genome-based discovery and supply of marine natural products. We also address practical optimization of complex, multistep ribosomal peptide pathways in heterologous hosts, which is still very challenging. The resulting methods and concepts will be applicable to ribosomal peptide and other biosynthetic pathways.
Donia, Mohamed S, et al.Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis.”. Proc Natl Acad Sci U S A 108.51 (2011): , 108, 51, E1423-32. Web.Abstract
The relationship between tunicates and the uncultivated cyanobacterium Prochloron didemni has long provided a model symbiosis. P. didemni is required for survival of animals such as Lissoclinum patella and also makes secondary metabolites of pharmaceutical interest. Here, we present the metagenomes, chemistry, and microbiomes of four related L. patella tunicate samples from a wide geographical range of the tropical Pacific. The remarkably similar P. didemni genomes are the most complex so far assembled from uncultivated organisms. Although P. didemni has not been stably cultivated and comprises a single strain in each sample, a complete set of metabolic genes indicates that the bacteria are likely capable of reproducing outside the host. The sequences reveal notable peculiarities of the photosynthetic apparatus and explain the basis of nutrient exchange underlying the symbiosis. P. didemni likely profoundly influences the lipid composition of the animals by synthesizing sterols and an unusual lipid with biofuel potential. In addition, L. patella also harbors a great variety of other bacterial groups that contribute nutritional and secondary metabolic products to the symbiosis. These bacteria possess an enormous genetic potential to synthesize new secondary metabolites. For example, an antitumor candidate molecule, patellazole, is not encoded in the genome of Prochloron and was linked to other bacteria from the microbiome. This study unveils the complex L. patella microbiome and its impact on primary and secondary metabolism, revealing a remarkable versatility in creating and exchanging small molecules.
McIntosh, John A, et al.Enzymatic basis of ribosomal peptide prenylation in cyanobacteria.”. J Am Chem Soc 133.34 (2011): , 133, 34, 13698-705. Web.Abstract
The enzymatic basis of ribosomal peptide natural product prenylation has not been reported. Here, we characterize a prenyltransferase, LynF, from the TruF enzyme family. LynF is the first characterized representative of the TruF protein family, which is responsible for both reverse- and forward-O-prenylation of tyrosine, serine, and threonine in cyclic peptides known as cyanobactins. We show that LynF reverse O-prenylates tyrosine in macrocyclic peptides. Based upon these results, we propose that the TruF family prenylates mature cyclic peptides, from which the leader sequence and other enzyme recognition elements have been excised. This differs from the common model of ribosomal peptide biosynthesis, in which a leader sequence is required to direct post-translational modifications. In addition, we find that reverse O-prenylated tyrosine derivatives undergo a facile Claisen rearrangement at 'physiological' temperature in aqueous buffers, leading to forward C-prenylated products. Although the Claisen rearrangement route to natural products has been chemically anticipated for at least 40 years, it has not been demonstrated as a route to prenylated natural products. Here, we show that the Claisen rearrangement drives phenolic C-prenylation in at least one case, suggesting that this route should be reconsidered as a mechanism for the biosynthesis of prenylated phenolic compounds.
Donia, Mohamed S, and Eric W Schmidt. “Linking chemistry and genetics in the growing cyanobactin natural products family.”. Chem Biol 18.4 (2011): , 18, 4, 508-19. Web.Abstract
Ribosomal peptide natural products are ubiquitous, yet relatively few tools exist to predict structures and clone new pathways. Cyanobactin ribosomal peptides are found in ~30% of all cyanobacteria, but the connection between gene sequence and structure was not defined, limiting the rapid identification of new compounds and pathways. Here, we report discovery of four orphan cyanobactin gene clusters by genome mining and an additional pathway by targeted cloning, which represented a tyrosine O-prenylating biosynthetic pathway. Genome mining enabled discovery of five cyanobactins, including peptide natural products from Spirulina supplements. A phylogenetic model defined four cyanobactin genotypes, which explain the synthesis of multiple cyanobactin structural classes and help direct pathway cloning and structure prediction efforts. These strategies were applied to DNA isolated from a mixed cyanobacterial bloom containing cyanobactins.
Donia, Mohamed S, et al.Variation in tropical reef symbiont metagenomes defined by secondary metabolism.”. PLoS One 63 (2011): , 6, 3, e17897. Web.Abstract
The complex evolution of secondary metabolism is important in biology, drug development, and synthetic biology. To examine this problem at a fine scale, we compared the genomes and chemistry of 24 strains of uncultivated cyanobacteria, Prochloron didemni, that live symbiotically with tropical ascidians and that produce natural products isolated from the animals. Although several animal species were obtained along a >5500 km transect of the Pacific Ocean, P. didemni strains are >97% identical across much of their genomes, with only a few exceptions concentrated in secondary metabolism. Secondary metabolic gene clusters were sporadically present or absent in identical genomic locations with no consistent pattern of co-occurrence. Discrete mutations were observed, leading to new chemicals that we isolated from animals. Functional cassettes encoding diverse chemicals are exchanged among a single population of symbiotic P. didemni that spans the tropical Pacific, providing the host animals with a varying arsenal of secondary metabolites.