Publications

2018
Berger S, Pho H, Fleury-Curado T, Bevans-Fonti S, Younas H, Shin M-K, Jun JC, Anokye-Danso F, Ahima RS, Enquist LW, et al. Intranasal Leptin Relieves Sleep Disordered Breathing in Mice with Diet Induced Obesity. Am J Respir Crit Care Med. 2018.Abstract
RATIONALE: Leptin treats upper airway obstruction and alveolar hypoventilation in leptin deficient ob/ob mice. However, obese humans and mice with diet-induced obesity are resistant to leptin due to poor permeability of the blood-brain barrier. We propose that intranasal leptin will bypass leptin resistance and treat sleep disordered breathing in obesity. OBJECTIVES: To assess if intranasal leptin can treat obesity hypoventilation and upper airway obstruction during sleep in mice with diet-induced obesity. METHODS: Male C57BL/6J mice were fed with a high fat diet for 16 weeks. A single dose of leptin (0.4 mg/kg) or bovine serum albumin (vehicle) were administered intranasally or intraperitoneally followed by either sleep studies (n=10) or energy expenditure measurements (n=10). A subset of mice was treated with leptin daily for 14 days for metabolic outcomes (n=20). In a separate experiment, retrograde viral tracers were used to examine connections between leptin receptors and respiratory motoneurons. MEASUREMENTS AND MAIN RESULTS: Acute intranasal but not intraperitoneal leptin decreased the number of oxygen desaturation events in REM sleep, and increased ventilation in NREM and REM sleep, independently of metabolic effects. Chronic intranasal leptin decreased food intake and body weight, while intraperitoneal leptin had no effect. Intranasal leptin induced signal transducer and activator of transcription 3 phosphorylation in hypothalamic and medullary centers, whereas intraperitoneal leptin had no effect. Leptin receptor positive cells were synaptically connected to respiratory motoneurons. CONCLUSIONS: In mice with diet-induced obesity, intranasal leptin bypassed leptin resistance and significantly attenuated sleep-disordered breathing, independently of body weight.
Enquist LW, Dermody TS, DiMaio D. Introduction. Annu Rev Virol. 2018;5 (1) :i.
DiMaio D, Dermody TS, Enquist LW. Reductio ad Intellectum. Annu Rev Virol. 2018;5 (1) :ii-iv.
Laval K, Vernejoul JB, Van Cleemput J, Koyuncu OO, Enquist LW. Virulent PRV infection induces a specific and lethal systemic inflammatory response in mice. J Virol. 2018.Abstract
Pseudorabies virus (PRV) is an alphaherpesvirus that infects the peripheral nervous system (PNS). The natural host of PRV is the swine, but it can infect most mammals, including cattle, rodents and dogs. In these non-natural hosts, PRV always causes a severe acute and lethal neuropathy called the "mad itch", which is uncommon in swine. So far, the pathophysiological and immunological processes leading to the development of the neuropathic itch, and death of the animal are unclear.Using a footpad inoculation model, we established that mice inoculated with PRV-Becker (virulent strain) develop a severe pruritus in the foot and become moribund at 82 hours post-inoculation (hpi). We found necrosis and inflammation with a massive neutrophil infiltration only in the footpad and DRGs by H&E staining. PRV load was detected in the foot, PNS and CNS tissues by quantitative-RT-PCR. Infected mice had elevated plasma levels of pro-inflammatory cytokines (IL6 and G-CSF) and chemokines (Gro-1 and MCP-1). Significant IL6 and G-CSF levels were detected in several tissues at 82hpi. High plasma levels of C-reactive protein confirmed the acute inflammatory response to PRV-Becker infection. Moreover, mice inoculated with PRV-Bartha (attenuated, live vaccine strain), did not develop pruritus at 82hpi. PRV-Bartha also replicated in the PNS, infection spread further in the brain than PRV-Becker. PRV-Bartha infection did not induce the specific and lethal systemic inflammatory response seen with PRV-Becker. Overall, we demonstrated the importance of inflammation in the clinical outcome of PRV infection in mice and provide new insights into the process of PRV-induced neuroinflammation.Pseudorabies virus (PRV) is an alphaherpesvirus related to human pathogens such as herpes simplex virus type 1 (HSV-1) and varicella-zoster virus (VZV). The natural host of PRV is the swine but it can infect most mammals. In susceptible animals other than pigs, PRV infection always causes a characteristic lethal pruritus known as the "mad itch". The role of the immune response in the clinical outcome of PRV infection is still poorly understood. Here, we show that a systemic host inflammatory response is responsible for the severe pruritus and acute death of mice infected with virulent PRV-Becker but not attenuated strain PRV-Bartha. In addition, we identified IL-6 and G-CSF as two main cytokines that play crucial roles in the regulation of this process. Our findings give new insights into neuroinflammatory diseases and strengthen further the similarities between VZV and PRV infections at the level of innate immunity.
Hogue IB, Card PJ, Rinaman L, Goraczniak HS, Enquist LW. Characterization of the neuroinvasive profile of a pseudorabies virus recombinant expressing the mTurquoise2 reporter in single and multiple injection experiments. J Neurosci Methods. 2018;308 :228-239.Abstract
BACKGROUND: Viral transneuronal tracing has become a well established technology used to define the synaptic architecture of polysynaptic neural networks. NEW METHOD: In this report we define the neuroinvasive profile and reporter expression of a new recombinant of the Bartha strain of pseudorabies virus (PRV). The new recombinant, PRV-290, expresses the mTurquoise2 fluorophor and is designed to complement other isogenic recombinants of Bartha that express different reporters of infection. Results & Comparison with Existing Methods: PRV-290 was injected either alone or in combination with isogenic recombinants of PRV that express enhanced green fluorescent protein (EGFP; PRV-152) or monomeric red fluorescent protein (mRFP; PRV-614). Circuits previously defined using PRV-152 and PRV-614 were used for the analysis. The data demonstrate that PRV-290 is a retrograde transneuronal tracer with temporal kinetics similar to those of its isogenic recombinants. Stable expression of the diffusible mTurquoise2 reporter filled infected neurons, with the extent and intensity of labeling increasing with advancing post inoculation survival. In multiple injection experiments, PRV-290 established productive infections in neurons also replicating PRV-152 and/or PRV-614. This novel demonstration of three recombinants infecting individual neurons represents an important advance in the technology. CONCLUSION: Collectively, these data demonstrate that PRV-290 is a valuable addition to the viral tracer toolbox for transneuronal tracing of neural circuitry.
MacGibeny MA, Koyuncu OO, Wirblich C, Schnell MJ, Enquist LW. Retrograde axonal transport of rabies virus is unaffected by interferon treatment but blocked by emetine locally in axons. PLOS Pathogens [Internet]. 2018;14 (7) :1-28. Publisher's VersionAbstract
Author summary Rabies virus (RABV) and alpha herpesviruses (αHV) (e.g. herpes simplex virus) evolved to enter the nervous system efficiently each time they infect a host. In most mammals, RABV reaches the brain, causing a fatal encephalitis. Whereas, αHV remain in the peripheral nervous system in a quiescent but reactivatable state. Despite distinct clinical outcomes, both RABV and αHV must invade axons and repurpose the axon transport machinery to travel long distances toward the neuronal cell bodies where virus replication occurs. How virus particles hijack the transport machinery and how axons respond to and regulate infection are questions of significant interest. We investigated how axonal RABV transport is regulated by exposing axons to interferons or protein synthesis inhibitors, both of which restrict transport of αHV particles. Unlike αHV infection, exposure of isolated axons to interferons has no effect on RABV neuroinvasion. However, RABV transport is blocked by axonal exposure to the translation elongation inhibitor, emetine, via a mechanism that does not depend on protein synthesis inhibition. The effect of emetine is not due to a global inhibition of axon transport because emetine does not limit axonal transport of cellular vesicles. Therefore, emetine may be a novel inhibitory modulator of RABV axonal transport.
Koyuncu OO, MacGibeny MA, Enquist LW. Latent versus productive infection: the alpha herpesvirus switch. Future Virol. 2018;13 (6) :431-443.Abstract
Alpha herpesviruses are common pathogens of mammals. They establish a productive infection in many cell types, but a life-long latent infection occurs in PNS neurons. A vast majority of the human population has latent HSV-1 infections. Currently, there is no cure to clear latent infections. Even though HSV-1 is among the best studied viral pathogens, regulation of latency and reactivation is not well understood due to several challenges including a lack of animal models that precisely recapitulate latency/reactivation episodes; a difficulty in modeling latency; and a limited understanding of neuronal biology. In this review, we discuss insights gained from latency models with a focus on the neuronal and viral factors that determine the mode of infection.
Hogue IB, Jean J, Esteves AD, Tanneti NS, Scherer J, Enquist LW. Functional Carboxy-Terminal Fluorescent Protein Fusion to Pseudorabies Virus Small Capsid Protein VP26. J Virol. 2018;92 (1).Abstract
Fluorescent protein fusions to herpesvirus capsids have proven to be a valuable method to study virus particle transport in living cells. Fluorescent protein fusions to the amino terminus of small capsid protein VP26 are the most widely used method to visualize pseudorabies virus (PRV) and herpes simplex virus (HSV) particles in living cells. However, these fusion proteins do not incorporate to full occupancy and have modest effects on virus replication and pathogenesis. Recent cryoelectron microscopy studies have revealed that herpesvirus small capsid proteins bind to capsids via their amino terminus, whereas the carboxy terminus is unstructured and therefore may better tolerate fluorescent protein fusions. Here, we describe a new recombinant PRV expressing a carboxy-terminal VP26-mCherry fusion. Compared to previously characterized viruses expressing amino-terminal fusions, this virus expresses more VP26 fusion protein in infected cells and incorporates more VP26 fusion protein into virus particles, and individual virus particles exhibit brighter red fluorescence. We performed single-particle tracking of fluorescent virus particles in primary neurons to measure anterograde and retrograde axonal transport, demonstrating the usefulness of this novel VP26-mCherry fusion for the study of viral intracellular transport.IMPORTANCE Alphaherpesviruses are among the very few viruses that are adapted to invade the mammalian nervous system. Intracellular transport of virus particles in neurons is important, as this process underlies both mild peripheral nervous system infection and severe spread to the central nervous system. VP26, the small capsid protein of HSV and PRV, was one of the first herpesvirus proteins to be fused to a fluorescent protein. Since then, these capsid-tagged virus mutants have become a powerful tool to visualize and track individual virus particles. Improved capsid tags will facilitate fluorescence microscopy studies of virus particle intracellular transport, as a brighter particle will improve localization accuracy of individual particles and allow for shorter exposure times, reducing phototoxicity and improving the time resolution of particle tracking in live cells.
2017
Koyuncu OO, MacGibeny MA, Hogue IB, Enquist LW. Compartmented neuronal cultures reveal two distinct mechanisms for alpha herpesvirus escape from genome silencing. PLoS Pathog. 2017;13 (10) :e1006608.Abstract
Alpha herpesvirus genomes encode the capacity to establish quiescent infections (i.e. latency) in the peripheral nervous system for the life of their hosts. Multiple times during latency, viral genomes can reactivate to start a productive infection, enabling spread of progeny virions to other hosts. Replication of alpha herpesviruses is well studied in cultured cells and many aspects of productive replication have been identified. However, many questions remain concerning how a productive or a quiescent infection is established. While infections in vivo often result in latency, infections of dissociated neuronal cultures in vitro result in a productive infection unless lytic viral replication is suppressed by DNA polymerase inhibitors or interferon. Using primary peripheral nervous system neurons cultured in modified Campenot tri-chambers, we previously reported that reactivateable, quiescent infections by pseudorabies virus (PRV) can be established in the absence of any inhibitor. Such infections were established in cell bodies only when physically isolated axons were infected at a very low multiplicity of infection (MOI). In this report, we developed a complementation assay in compartmented neuronal cultures to investigate host and viral factors in cell bodies that prevent establishment of quiescent infection and promote productive replication of axonally delivered genomes (i.e. escape from silencing). Stimulating protein kinase A (PKA) signaling pathways in isolated cell bodies, or superinfecting cell bodies with either UV-inactivated PRV or viral light particles (LP) promoted escape from genome silencing and prevented establishment of quiescent infection but with different molecular mechanisms. Activation of PKA in cell bodies triggers a slow escape from silencing in a cJun N-terminal kinase (JNK) dependent manner. However, escape from silencing is induced rapidly by infection with UVPRV or LP in a PKA- and JNK-independent manner. We suggest that viral tegument proteins delivered to cell bodies engage multiple signaling pathways that block silencing of viral genomes delivered by low MOI axonal infection.
Enquist LW, Scherer J. Alphaherpesviruses: parasites of theperipheral nervous system. Future Virology [Internet]. 2017;12 (10) :555-559. Publisher's Version
Enquist LW, Dermody TS, DiMaio D. Introduction. Annu Rev Virol. 2017;4 (1) :i-ii.
Pomeranz LE, Ekstrand MI, Latcha KN, Smith GA, Enquist LW, Friedman JM. Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry. J Neurosci. 2017;37 (15) :4128-4144.Abstract
The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits.SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits.
Enquist LW, Leib DA. Intrinsic and Innate Defenses of Neurons: Détente with the Herpesviruses. J Virol. 2017;91 (1).Abstract
Neuroinvasive herpesviruses have evolved to efficiently infect and establish latency in neurons. The nervous system has limited capability to regenerate, so immune responses therein are carefully regulated to be nondestructive, with dependence on atypical intrinsic and innate defenses. In this article we review studies of some of these noncanonical defense pathways and how herpesvirus gene products counter them, highlighting the contributions that primary neuronal in vitro models have made to our understanding of this field.
2016
Enquist LW, Dermody TS, DiMaio D. Introduction. Annu Rev Virol. 2016;3 (1) :v.
Johnson BN, Lancaster KZ, Hogue IB, Meng F, Kong YL, Enquist LW, McAlpine MC. 3D printed nervous system on a chip. Lab Chip. 2016;16 (8) :1393-400.Abstract
Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology.
Rosario W, Singh I, Wautlet A, Patterson C, Flak J, Becker TC, Ali A, Tamarina N, Philipson LH, Enquist LW, et al. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions. Diabetes. 2016;65 (9) :2711-23.Abstract
The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia.
Bosse JB, Enquist LW. The diffusive way out: Herpesviruses remodel the host nucleus, enabling capsids to access the inner nuclear membrane. Nucleus. 2016;7 (1) :13-9.Abstract
Herpesviruses are large DNA viruses that utilize the host nucleus for genome replication as well as capsid assembly. After maturation, these 125 nm large capsid assemblies must cross the nucleoplasm to engage the nuclear envelope and bud into the cytoplasm. Here we summarize our recent findings how this motility is facilitated. We suggest that herpesvirus induced nuclear remodeling allows capsids to move by diffusion in the nucleus and not by motor-dependent transport.
Scherer J, Yaffe ZA, Vershinin M, Enquist LW. Dual-color Herpesvirus Capsids Discriminate Inoculum from Progeny and Reveal Axonal Transport Dynamics. J Virol. 2016.Abstract
Alpha herpesviruses, such as herpes simplex virus and pseudorabies virus (PRV), are neuroinvasive dsDNA viruses that establish life-long latency in peripheral nervous system (PNS) neurons of their native hosts. Following reactivation, the infection can spread back to the initial mucosal site of infection or, in rare cases, to the central nervous system with usually serious outcomes. During entry and egress, viral capsids depend on microtubule-based molecular motors for efficient and fast transport. In axons of PNS neurons, cytoplasmic dynein provides force for retrograde movements towards the soma, and kinesins move cargo in the opposite, anterograde direction. The dynamic properties of virus particles in cells can be imaged by fluorescent protein fusions to the small capsid protein VP26, which are incorporated into capsids. However, single-color fluorescent protein tags fail to distinguish virus inoculum from progeny. Therefore, we established a dual-color system by growing a recombinant PRV expressing a red fluorescent VP26 fusion (PRV180) on a stable cell line expressing a green VP26 fusion (PK15-mNG-VP26). The resulting dual-color virus preparation (PRV180G) contains capsids tagged with both red and green fluorescent proteins, and 97% of particles contain detectable levels of mNG-VP26. After replication in neuronal cells, all PRV180G progeny exclusively contain mRFP-VP26 tagged capsids. We used PRV180G for an analysis of axonal capsid transport dynamics in PNS neurons. Fast dual-color total internal reflection fluorescence (TIRF) microscopy, single particle tracking and motility analyses reveal robust, bidirectional capsid motility mediated by cytoplasmic dynein and kinesin during entry, whereas egressing progeny particles are exclusively transported by kinesins. IMPORTANCE: Alpha herpesviruses are neuroinvasive viruses that infect the peripheral nervous system (PNS) of infected hosts as an integral part of their life cycle. Establishment of a quiescent or latent infection in PNS neurons is a hallmark of most alpha herpesviruses. Spread of infection to the central nervous system is surprisingly rare in natural hosts, but can be fatal. Pseudorabies virus (PRV) is a broad host range, swine alpha herpesvirus that enters neuronal cells and utilizes intracellular transport processes to establish infection and to spread between cells. By using a virus preparation with fluorescent viral capsids that change color depending on the stage of the infectious cycle, we find that, during entry, axons of PNS neurons support robust, bidirectional capsid motility, similar to cellular cargo, towards the cell body. In contrast, progeny particles appear to be transported unidirectionally by kinesin motors towards distal egress sites.
Hogue IB, Scherer J, Enquist LW. Exocytosis of Alphaherpesvirus Virions, Light Particles, and Glycoproteins Uses Constitutive Secretory Mechanisms. MBio. 2016;7 (3).Abstract
UNLABELLED: Many molecular and cell biological details of the alphaherpesvirus assembly and egress pathway remain unclear. Recently we developed a live-cell fluorescence microscopy assay of pseudorabies virus (PRV) exocytosis, based on total internal reflection fluorescence (TIRF) microscopy and a virus-encoded pH-sensitive fluorescent probe. Here, we use this assay to distinguish three classes of viral exocytosis in a nonpolarized cell type: (i) trafficking of viral glycoproteins to the plasma membrane, (ii) exocytosis of viral light particles, and (iii) exocytosis of virions. We find that viral glycoproteins traffic to the cell surface in association with constitutive secretory Rab GTPases and exhibit free diffusion into the plasma membrane after exocytosis. Similarly, both virions and light particles use these same constitutive secretory mechanisms for egress from infected cells. Furthermore, we show that viral light particles are distinct from cellular exosomes. Together, these observations shed light on viral glycoprotein trafficking steps that precede virus particle assembly and reinforce the idea that virions and light particles share a biogenesis and trafficking pathway. IMPORTANCE: The alphaherpesviruses, including the important human pathogens herpes simplex virus 1 (HSV-1), HSV-2, and varicella-zoster virus (VZV), are among the few viruses that have evolved to exploit the mammalian nervous system. These viruses typically cause mild recurrent herpetic or zosteriform lesions but can also cause debilitating herpes encephalitis, more frequently in very young, old, immunocompromised, or nonnatural hosts. Importantly, many of the molecular and cellular mechanisms of viral assembly and egress remain unclear. This study addresses the trafficking of viral glycoproteins to the plasma membrane, exocytosis of light particles, and exocytosis of virions. Trafficking of glycoproteins affects immune evasion and pathogenesis and may precede virus particle assembly. The release of light particles may also contribute to immune evasion and pathogenesis. Finally, exocytosis of virions is important to understand, as this final step in the virus replication cycle produces infectious extracellular particles capable of spreading to the next round of host cells.
Christensen MH, Jensen SB, Miettinen JJ, Luecke S, Prabakaran T, Reinert LS, Mettenleiter T, Chen ZJ, Knipe DM, Sandri-Goldin RM, et al. HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression. EMBO J. 2016;35 (13) :1385-99.Abstract
Herpes simplex virus (HSV) 1 stimulates type I IFN expression through the cGAS-STING-TBK1 signaling axis. Macrophages have recently been proposed to be an essential source of IFN during viral infection. However, it is not known how HSV-1 inhibits IFN expression in this cell type. Here, we show that HSV-1 inhibits type I IFN induction through the cGAS-STING-TBK1 pathway in human macrophages, in a manner dependent on the conserved herpesvirus protein ICP27. This viral protein was expressed de novo in macrophages with early nuclear localization followed by later translocation to the cytoplasm where ICP27 prevented activation of IRF3. ICP27 interacted with TBK1 and STING in a manner that was dependent on TBK1 activity and the RGG motif in ICP27. Thus, HSV-1 inhibits expression of type I IFN in human macrophages through ICP27-dependent targeting of the TBK1-activated STING signalsome.

Pages