Harris GM, Madigan NN, Lancaster KZ, Enquist LW, Windebank AJ, Schwartz J, Schwarzbauer JE. Nerve Guidance by a Decellularized Fibroblast Extracellular Matrix. Matrix Biol. 2016.Abstract
Spinal cord and peripheral nerve injuries require the regeneration of nerve fibers across the lesion site for successful recovery. Providing guidance cues and soluble factors to promote neurite outgrowth and cell survival can enhance repair. The extracellular matrix (ECM) plays a key role in tissue repair by controlling cell adhesion, motility, and growth. In this study, we explored the ability of a mesenchymal ECM to support neurite outgrowth from neurons in the superior cervical ganglia (SCG). Length and morphology of neurites extended on a decellularized fibroblast ECM were compared to those on substrates coated with laminin, a major ECM protein in neural tissue, or fibronectin, the main component of a mesenchymal ECM. Average radial neurite extension was equivalent on laminin and on the decellularized ECM, but contrasted with the shorter, curved neurites observed on the fibronectin substrate. Differences between neurites on fibronectin and on other substrates were confirmed by fast Fourier transform analyses. To control the direction of neurite outgrowth, we developed an ECM with linearly aligned fibril organization by orienting the fibroblasts that deposit the matrix on a polymeric surface micropatterned with a striped chemical interface. Neurites projected from SCGs appeared to reorient in the direction of the pattern. These results highlight the ability of a mesenchymal ECM to enhance neurite extension and to control the directional outgrowth of neurites. This micropatterned decellularized ECM architecture has potential as a regenerative microenvironment for nerve repair.
Song R, Koyuncu OO, Greco TM, Diner BA, Cristea IM, Enquist LW. Two Modes of the Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion. MBio. 2016;7 (1) :e02145-15.Abstract
UNLABELLED: Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at epithelial surfaces and continues into the peripheral nervous system (PNS). Inflammatory responses are induced at the infected peripheral site prior to invasion of the PNS. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which includes the interferons (IFNs). The fundamental question is how do PNS cell bodies respond to these distant, potentially damaging events experienced by axons. Using compartmented cultures that physically separate neuron axons from cell bodies, we found that pretreating isolated axons with beta interferon (IFN-β) or gamma interferon (IFN-γ) significantly diminished the number of herpes simplex virus 1 (HSV-1) and PRV particles moving in axons toward the cell bodies in a receptor-dependent manner. Exposing axons to IFN-β induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFN-γ induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated antiviral effects induced by IFN-γ, but not those induced by IFN-β. Proteomic analysis of IFN-β- or IFN-γ-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFN-γ, IFN-β induces a noncanonical, local antiviral response in axons. The activation of a local IFN response in axons represents a new paradigm for cytokine control of neuroinvasion. IMPORTANCE: Neurons are highly polarized cells with long axonal processes that connect to distant targets. PNS axons that innervate peripheral tissues are exposed to various situations that follow infection, inflammation, and damage of the tissue. After viral infection in the periphery, axons represent potential front-line barriers to PNS infection and damage. Indeed, most viral infections do not spread to the PNS, yet the mechanisms responsible are not well studied. We devised an experimental system to study how axons respond to inflammatory cytokines that would be produced by infected tissues. We found that axons respond differentially to type I and type II interferons. The response to type I interferon (IFN-β) is a rapid axon-only response. The response to type II interferon (IFN-γ) involves long-distance signaling to the PNS cell body. These responses to two interferons erect an efficient and rapid barrier to PNS infection.
Wojaczynski GJ, Engel EA, Steren KE, Enquist LW, Patrick Card J. The neuroinvasive profiles of H129 (herpes simplex virus type 1) recombinants with putative anterograde-only transneuronal spread properties. Brain Struct Funct. 2015;220 (3) :1395-420.Abstract
The use of viruses as transneuronal tracers has become an increasingly powerful technique for defining the synaptic organization of neural networks. Although a number of recombinant alpha herpesviruses are known to spread selectively in the retrograde direction through neural circuits only one strain, the H129 strain of herpes simplex virus type 1, is reported to selectively spread in the anterograde direction. However, it is unclear from the literature whether there is an absolute block or an attenuation of retrograde spread of H129. Here, we demonstrate efficient anterograde spread, and temporally delayed retrograde spread, of H129 and three novel recombinants. In vitro studies revealed no differences in anterograde and retrograde spread of parental H129 and its recombinants through superior cervical ganglion neurons. In vivo injections of rat striatum revealed a clear bias of anterograde spread, although evidence of deficient retrograde transport was also present. Evidence of temporally delayed retrograde transneuronal spread of H129 in the retina was observed following injection of the lateral geniculate nucleus. The data also demonstrated that three novel recombinants efficiently express unique fluorescent reporters and have the capacity to infect the same neurons in dual infection paradigms. From these experiments we conclude that H129 and its recombinants not only efficiently infect neurons through anterograde transneuronal passage, but also are capable of temporally delayed retrograde transneuronal spread. In addition, the capacity to produce dual infection of projection targets following anterograde transneuronal passage provides an important addition to viral transneuronal tracing technology.
Taylor MP, Enquist LW. Axonal spread of neuroinvasive viral infections. Trends Microbiol. 2015;23 (5) :283-8.Abstract
Neuroinvasive viral infections invade the nervous system, often eliciting serious disease and death. Members of four viral families are both neuroinvasive and capable of transmitting progeny virions or virion components within the long neuronal extensions known as axons. Axons provide physical structures that enable viral infection to spread within the host while avoiding extracellular immune responses. Technological advances in the analysis of in vivo neural circuits, neuronal culturing, and live imaging of fluorescent fusion proteins have enabled an unprecedented view into the steps of virion assembly, transport, and egress involved in axonal spread. In this review we summarize the literature supporting anterograde (axon to cell) spread of viral infection, describe the various strategies of virion transport, and discuss the effects of spread on populations of neuroinvasive viruses.
Carpenter JE, Clayton AC, Halling KC, Bonthius DJ, Buckingham EM, Jackson W, Dotzler SM, Card PJ, Enquist LW, Grose C. Defensive Perimeter in the Central Nervous System: Predominance of Astrocytes and Astrogliosis during Recovery from Varicella-Zoster Virus Encephalitis. J Virol. 2015;90 (1) :379-91.Abstract
UNLABELLED: Varicella-zoster virus (VZV) is a highly neurotropic virus that can cause infections in both the peripheral nervous system and the central nervous system. Several studies of VZV reactivation in the peripheral nervous system (herpes zoster) have been published, while exceedingly few investigations have been carried out in a human brain. Notably, there is no animal model for VZV infection of the central nervous system. In this report, we characterized the cellular environment in the temporal lobe of a human subject who recovered from focal VZV encephalitis. The approach included not only VZV DNA/RNA analyses but also a delineation of infected cell types (neurons, microglia, oligodendrocytes, and astrocytes). The average VZV genome copy number per cell was 5. Several VZV regulatory and structural gene transcripts and products were detected. When colocalization studies were performed to determine which cell types harbored the viral proteins, the majority of infected cells were astrocytes, including aggregates of astrocytes. Evidence of syncytium formation within the aggregates included the continuity of cytoplasm positive for the VZV glycoprotein H (gH) fusion-complex protein within a cellular profile with as many as 80 distinct nuclei. As with other causes of brain injury, these results suggested that astrocytes likely formed a defensive perimeter around foci of VZV infection (astrogliosis). Because of the rarity of brain samples from living humans with VZV encephalitis, we compared our VZV results with those found in a rat encephalitis model following infection with the closely related pseudorabies virus and observed similar perimeters of gliosis. IMPORTANCE: Investigations of VZV-infected human brain from living immunocompetent human subjects are exceedingly rare. Therefore, much of our knowledge of VZV neuropathogenesis is gained from studies of VZV-infected brains obtained at autopsy from immunocompromised patients. These are not optimal samples with which to investigate a response by a human host to VZV infection. In this report, we examined both flash-frozen and paraffin-embedded formalin-fixed brain tissue of an otherwise healthy young male with focal VZV encephalitis, most likely acquired from VZV reactivation in the trigeminal ganglion. Of note, the cellular response to VZV infection mimicked the response to other causes of trauma to the brain, namely, an ingress of astrocytes and astrogliosis around an infectious focus. Many of the astrocytes themselves were infected; astrocytes aggregated in clusters. We postulate that astrogliosis represents a successful defense mechanism by an immunocompetent human host to eliminate VZV reactivation within neurons.
Hogue IB, Bosse JB, Engel EA, Scherer J, Hu J-R, del Rio T, Enquist LW. Fluorescent Protein Approaches in Alpha Herpesvirus Research. Viruses. 2015;7 (11) :5933-61.Abstract
In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer.
Engel EA, Song R, Koyuncu OO, Enquist LW. Investigating the biology of alpha herpesviruses with MS-based proteomics. Proteomics. 2015;15 (12) :1943-56.Abstract
Viruses are intracellular parasites that can only replicate and spread in cells of susceptible hosts. Alpha herpesviruses (α-HVs) contain double-stranded DNA genomes of at least 120 kb, encoding for 70 or more genes. The viral genome is contained in an icosahedral capsid that is surrounded by a proteinaceous tegument layer and a lipid envelope. Infection starts in epithelial cells and spreads to the peripheral nervous system. In the natural host, α-HVs establish a chronic latent infection that can be reactivated and rarely spread to the CNS. In the nonnatural host, viral infection will in most cases spread to the CNS with often fatal outcome. The host response plays a crucial role in the outcome of viral infection. α-HVs do not encode all the genes required for viral replication and spread. They need a variety of host gene products including RNA polymerase, ribosomes, dynein, and kinesin. As a result, the infected cell is dramatically different from the uninfected cell revealing a complex and dynamic interplay of viral and host components required to complete the virus life cycle. In this review, we describe the pivotal contribution of MS-based proteomics studies over the past 15 years to understand the complicated life cycle and pathogenesis of four α-HV species from the alphaherpesvirinae subfamily: Herpes simplex virus-1, varicella zoster virus, pseudorabies virus and bovine herpes virus-1. We describe the viral proteome dynamics during host infection and the host proteomic response to counteract such pathogens.
Koyuncu OO, Song R, Greco TM, Cristea IM, Enquist LW. The number of alphaherpesvirus particles infecting axons and the axonal protein repertoire determines the outcome of neuronal infection. MBio. 2015;6 (2).Abstract
UNLABELLED: Infection by alphaherpesviruses invariably results in invasion of the peripheral nervous system (PNS) and establishment of either a latent or productive infection. Infection begins with long-distance retrograde transport of viral capsids and tegument proteins in axons toward the neuronal nuclei. Initial steps of axonal entry, retrograde transport, and replication in neuronal nuclei are poorly understood. To better understand how the mode of infection in the PNS is determined, we utilized a compartmented neuron culturing system where distal axons of PNS neurons are physically separated from cell bodies. We infected isolated axons with fluorescent-protein-tagged pseudorabies virus (PRV) particles and monitored viral entry and transport in axons and replication in cell bodies during low and high multiplicities of infection (MOIs of 0.01 to 100). We found a threshold for efficient retrograde transport in axons between MOIs of 1 and 10 and a threshold for productive infection in the neuronal cell bodies between MOIs of 1 and 0.1. Below an MOI of 0.1, the viral genomes that moved to neuronal nuclei were silenced. These genomes can be reactivated after superinfection by a nonreplicating virus, but not by a replicating virus. We further showed that viral particles at high-MOI infections compete for axonal proteins and that this competition determines the number of viral particles reaching the nuclei. Using mass spectrometry, we identified axonal proteins that are differentially regulated by PRV infection. Our results demonstrate the impact of the multiplicity of infection and the axonal milieu on the establishment of neuronal infection initiated from axons. IMPORTANCE: Alphaherpesvirus genomes may remain silent in peripheral nervous system (PNS) neurons for the lives of their hosts. These genomes occasionally reactivate to produce infectious virus that can reinfect peripheral tissues and spread to other hosts. Here, we use a neuronal culture system to investigate the outcome of axonal infection using different numbers of viral particles and coinfection assays. We found that the dynamics of viral entry, transport, and replication change dramatically depending on the number of virus particles that infect axons. We demonstrate that viral genomes are silenced when the infecting particle number is low and that these genomes can be reactivated by superinfection with UV-inactivated virus, but not with replicating virus. We further show that viral invasion rapidly changes the profiles of axonal proteins and that some of these axonal proteins are rate limiting for efficient infection. Our study provides new insights into the establishment of silent versus productive alphaherpesvirus infections in the PNS.
Bosse JB, Tanneti NS, Hogue IB, Enquist LW. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons. PLoS One. 2015;10 (11) :e0143547.Abstract
Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs), however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution.
Bosse JB, Hogue IB, Feric M, Thiberge SY, Sodeik B, Brangwynne CP, Enquist LW. Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion. Proc Natl Acad Sci U S A. 2015;112 (42) :E5725-33.Abstract
The nuclear chromatin structure confines the movement of large macromolecular complexes to interchromatin corrals. Herpesvirus capsids of approximately 125 nm assemble in the nucleoplasm and must reach the nuclear membranes for egress. Previous studies concluded that nuclear herpesvirus capsid motility is active, directed, and based on nuclear filamentous actin, suggesting that large nuclear complexes need metabolic energy to escape nuclear entrapment. However, this hypothesis has recently been challenged. Commonly used microscopy techniques do not allow the imaging of rapid nuclear particle motility with sufficient spatiotemporal resolution. Here, we use a rotating, oblique light sheet, which we dubbed a ring-sheet, to image and track viral capsids with high temporal and spatial resolution. We do not find any evidence for directed transport. Instead, infection with different herpesviruses induced an enlargement of interchromatin domains and allowed particles to diffuse unrestricted over longer distances, thereby facilitating nuclear egress for a larger fraction of capsids.
Hagen C, Dent KC, Zeev-Ben-Mordehai T, Grange M, Bosse JB, Whittle C, Klupp BG, Siebert AC, Vasishtan D, Bäuerlein FJB, et al. Structural Basis of Vesicle Formation at the Inner Nuclear Membrane. Cell. 2015;163 (7) :1692-701.Abstract
Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM.
Johnson BN, Lancaster KZ, Zhen G, He J, Gupta MK, Kong YL, Engel EA, Krick KD, Ju A, Meng F, et al. 3D Printed Anatomical Nerve Regeneration Pathways. Adv Funct Mater. 2015;25 (39) :6205-6217.Abstract
An imaging-coupled 3D printing methodology for the design, optimization, and fabrication of a customized nerve repair technology for complex injuries is presented. The custom scaffolds are deterministically fabricated via a microextrusion printing principle which enables the simultaneous incorporation of anatomical geometries, biomimetic physical cues, and spatially controlled biochemical gradients in a one-pot 3D manufacturing approach.
Wu BW, Engel EA, Enquist LW. Characterization of a replication-incompetent pseudorabies virus mutant lacking the sole immediate early gene IE180. MBio. 2014;5 (6) :e01850.Abstract
UNLABELLED: The alphaherpesvirus pseudorabies virus (PRV) encodes a single immediate early gene called IE180. The IE180 protein is a potent transcriptional activator of viral genes involved in DNA replication and RNA transcription. A PRV mutant with both copies of IE180 deleted was constructed 20 years ago (S. Yamada and M. Shimizu, Virology 199:366-375, 1994, doi:10.1006/viro.1994.1134), but propagation of the mutant depended on complementing cell lines that expressed the toxic IE180 protein constitutively. Recently, Oyibo et al. constructed a novel set of PRV IE180 mutants and a stable cell line with inducible IE180 expression (H. Oyibo, P. Znamenskiy, H. V. Oviedo, L. W. Enquist, A. Zador, Front. Neuroanat. 8:86, 2014, doi:10.3389/fnana.2014.00086), which we characterized further here. These mutants failed to replicate new viral genomes, synthesize immediate early, early, or late viral proteins, and assemble infectious virions. The PRV IE180-null mutant did not form plaques in epithelial cell monolayers and could not spread from primary infected neurons to second-order neurons in culture. PRV IE180-null mutants lacked the property of superinfection exclusion. When PRV IE180-null mutants infected cells first, subsequent superinfecting viruses were not blocked in cell entry and formed replication compartments in epithelial cells, fibroblasts, and neurons. Cells infected with PRV IE180-null mutants survived as long as uninfected cells in culture while expressing a fluorescent reporter gene. Transcomplementation with IE180 in epithelial cells restored all mutant phenotypes to wild type. The conditional expression of PRV IE180 protein enables the propagation of replication-incompetent PRV IE180-null mutants and will facilitate construction of long-term single-cell-infecting PRV mutants for precise neural circuit tracing and high-capacity gene delivery vectors. IMPORTANCE: Pseudorabies virus (PRV) is widely used for neural tracing in animal models. The virus replicates and spreads between synaptically connected neurons. Current tracing strains of PRV are cytotoxic and kill infected cells. Infected cells exclude superinfection with a second virus, limiting multiple virus infections in circuit tracing. By removing the only immediate early gene of PRV (called IE180), the mutant virus will not replicate or spread in epithelial cells, fibroblasts, or neurons. The wild-type phenotype can be restored by transcomplementation of infected cells with IE180. The PRV IE180-null mutant can express fluorescent reporters for weeks in cells with no toxicity; infected cells survive as long as uninfected cells. Infection with the mutant virus allows superinfection of the same cell with a second virus that can enter and replicate. The PRV IE180-null mutant will permit conditional long-term tracing in animals and is a high-capacity vector for gene delivery.
Oyibo HK, Znamenskiy P, Oviedo HV, Enquist LW, Zador AM. Long-term Cre-mediated retrograde tagging of neurons using a novel recombinant pseudorabies virus. Front Neuroanat. 2014;8 :86.Abstract
Brain regions contain diverse populations of neurons that project to different long-range targets. The study of these subpopulations in circuit function and behavior requires a toolkit to characterize and manipulate their activity in vivo. We have developed a novel set of reagents based on Pseudorabies Virus (PRV) for efficient and long-term genetic tagging of neurons based on their projection targets. By deleting IE180, the master transcriptional regulator in the PRV genome, we have produced a mutant virus capable of infection and transgene expression in neurons but unable to replicate in or spread from those neurons. IE180-null mutants showed no cytotoxicity, and infected neurons exhibited normal physiological function more than 45 days after infection, indicating the utility of these engineered viruses for chronic experiments. To enable rapid and convenient construction of novel IE180-null recombinants, we engineered a bacterial artificial chromosome (BAC) shuttle-vector system for moving new constructs into the PRV IE180-null genome. Using this system we generated an IE180-null recombinant virus expressing the site-specific recombinase Cre. This Cre-expressing virus (PRV-hSyn-Cre) efficiently and robustly infects neurons in vivo and activates transgene expression from Cre-dependent vectors in local and retrograde projecting populations of neurons in the mouse. We also generated an assortment of recombinant viruses expressing fluorescent proteins (mCherry, EGFP, ECFP). These viruses exhibit long-term labeling of neurons in vitro but transient labeling in vivo. Together these novel IE180-null PRV reagents expand the toolkit for targeted gene expression in the brain, facilitating functional dissection of neuronal circuits in vivo.
Bosse JB, Virding S, Thiberge SY, Scherer J, Wodrich H, Ruzsics Z, Koszinowski UH, Enquist LW. Nuclear herpesvirus capsid motility is not dependent on F-actin. MBio. 2014;5 (5) :e01909-14.Abstract
A considerable part of the herpesvirus life cycle takes place in the host nucleus. While much progress has been made to understand the molecular processes required for virus replication in the nucleus, much less is known about the temporal and spatial dynamics of these events. Previous studies have suggested that nuclear capsid motility is directed and dependent on actin filaments (F-actin), possibly using a myosin-based, ATP-dependent mechanism. However, the conclusions from these studies were indirect. They either relied on the effects of F-actin depolymerizing drugs to deduce an F-actin dependency or they visualized nuclear F-actin but failed to show a direct link to capsid motility. Moreover, no direct link between nuclear capsid motility and a molecular motor has been established. In this report, we reinvestigate the involvement of F-actin in nuclear herpesvirus capsid transport. We show for representative members of all three herpesvirus subfamilies that nuclear capsid motility is not dependent on nuclear F-actin and that herpesvirus infection does not induce nuclear F-actin in primary fibroblasts. Moreover, in these cells, three F-actin-inhibiting drugs failed to effect capsid motility. Only latrunculin A treatment stalled nuclear capsids but did so by an unexpected effect: the drug induced actin rods in the nucleus. Immobile capsids accumulated around actin rods, and immunoprecipitation experiments suggested that capsid motility stopped because latrunculin-induced actin rods nonspecifically bind nuclear capsids. Interestingly, capsid motility was unaffected in cells that do not induce actin rods. Based on these data, we conclude that herpesvirus nuclear capsid motility is not dependent on F-actin. Importance: Herpesviruses are large DNA viruses whose replication is dependent on the host nucleus. However, we do not understand how key nuclear processes, including capsid assembly, genome replication, capsid packaging, and nuclear egress, are dynamically connected in space and time. Fluorescence live-cell microscopy revealed that nuclear capsids are highly mobile early in infection. Two studies suggested that this motility might be due to active myosin-based transport of capsids on nuclear F-actin. However, direct evidence for such motor-based transport is lacking. We revisited this phenomenon and found no evidence that nuclear capsid motility depended on F-actin. Our results reopen the question of how nuclear herpesvirus capsids move in the host nucleus.
Hogue IB, Bosse JB, Hu J-R, Thiberge SY, Enquist LW. Cellular mechanisms of alpha herpesvirus egress: live cell fluorescence microscopy of pseudorabies virus exocytosis. PLoS Pathog. 2014;10 (12) :e1004535.Abstract
Egress of newly assembled herpesvirus particles from infected cells is a highly dynamic process involving the host secretory pathway working in concert with viral components. To elucidate the location, dynamics, and molecular mechanisms of alpha herpesvirus egress, we developed a live-cell fluorescence microscopy method to visualize the final transport and exocytosis of pseudorabies virus (PRV) particles in non-polarized epithelial cells. This method is based on total internal reflection fluorescence (TIRF) microscopy to selectively image fluorescent virus particles near the plasma membrane, and takes advantage of a virus-encoded pH-sensitive probe to visualize the precise moment and location of particle exocytosis. We performed single-particle tracking and mean squared displacement analysis to characterize particle motion, and imaged a panel of cellular proteins to identify those spatially and dynamically associated with viral exocytosis. Based on our data, individual virus particles travel to the plasma membrane inside small, acidified secretory vesicles. Rab GTPases, Rab6a, Rab8a, and Rab11a, key regulators of the plasma membrane-directed secretory pathway, are present on the virus secretory vesicle. These vesicles undergo fast, directional transport directly to the site of exocytosis, which is most frequently near patches of LL5β, part of a complex that anchors microtubules to the plasma membrane. Vesicles are tightly docked at the site of exocytosis for several seconds, and membrane fusion occurs, displacing the virion a small distance across the plasma membrane. After exocytosis, particles remain tightly confined on the outer cell surface. Based on recent reports in the cell biological and alpha herpesvirus literature, combined with our spatial and dynamic data on viral egress, we propose an integrated model that links together the intracellular transport pathways and exocytosis mechanisms that mediate alpha herpesvirus egress.
Koyuncu OO, Perlman DH, Enquist LW. Efficient retrograde transport of pseudorabies virus within neurons requires local protein synthesis in axons. Cell Host Microbe. 2013;13 (1) :54-66.Abstract
After replicating in epithelial cells, alphaherpesviruses such as pseudorabies virus (PRV) invade axons of peripheral nervous system neurons and undergo retrograde transport toward the distant cell bodies. Although several viral proteins engage molecular motors to facilitate transport, the initial steps and neuronal responses to infection are poorly understood. Using compartmented neuron cultures to physically separate axon infection from cell bodies, we found that PRV infection induces local protein synthesis in axons, including proteins involved in cytoskeletal remodeling, intracellular trafficking, signaling, and metabolism. This rapid translation of axonal mRNAs is required for efficient PRV retrograde transport and infection of cell bodies. Furthermore, induction of axonal damage, which also induces local protein synthesis, prior to infection reduces virion trafficking, suggesting that host damage signals and virus particles compete for retrograde transport. Thus, similar to axonal damage, virus infection induces local protein translation in axons, and viruses likely exploit this response for invasion.
Kramer T, Enquist LW. Directional spread of alphaherpesviruses in the nervous system. Viruses. 2013;5 (2) :678-707.Abstract
Alphaherpesviruses are pathogens that invade the nervous systems of their mammalian hosts. Directional spread of infection in the nervous system is a key component of the viral lifecycle and is critical for the onset of alphaherpesvirus-related diseases. Many alphaherpesvirus infections originate at peripheral sites, such as epithelial tissues, and then enter neurons of the peripheral nervous system (PNS), where lifelong latency is established. Following reactivation from latency and assembly of new viral particles, the infection typically spreads back out towards the periphery. These spread events result in the characteristic lesions (cold sores) commonly associated with herpes simplex virus (HSV) and herpes zoster (shingles) associated with varicella zoster virus (VZV). Occasionally, the infection spreads transsynaptically from the PNS into higher order neurons of the central nervous system (CNS). Spread of infection into the CNS, while rarer in natural hosts, often results in severe consequences, including death. In this review, we discuss the viral and cellular mechanisms that govern directional spread of infection in the nervous system. We focus on the molecular events that mediate long distance directional transport of viral particles in neurons during entry and egress.
Sun XR, Badura A, Pacheco DA, Lynch LA, Schneider ER, Taylor MP, Hogue IB, Enquist LW, Murthy M, Wang SS-H. Fast GCaMPs for improved tracking of neuronal activity. Nat Commun. 2013;4 :2170.Abstract
The use of genetically encodable calcium indicator proteins to monitor neuronal activity is hampered by slow response times and a narrow Ca(2+)-sensitive range. Here we identify three performance-limiting features of GCaMP3, a popular genetically encodable calcium indicator protein. First, we find that affinity is regulated by the calmodulin domain's Ca(2+)-chelating residues. Second, we find that off-responses to Ca(2+) are rate-limited by dissociation of the RS20 domain from calmodulin's hydrophobic pocket. Third, we find that on-responses are limited by fast binding to the N-lobe at high Ca(2+) and by slow binding to the C-lobe at lower Ca(2+). We develop Fast-GCaMPs, which have up to 20-fold accelerated off-responses and show that they have a 200-fold range of K(D), allowing coexpression of multiple variants to span an expanded range of Ca(2+) concentrations. Finally, we show that Fast-GCaMPs track natural song in Drosophila auditory neurons and generate rapid responses in mammalian neurons, supporting the utility of our approach.
Kratchmarov R, Kramer T, Greco TM, Taylor MP, Ch'ng TH, Cristea IM, Enquist LW. Glycoproteins gE and gI are required for efficient KIF1A-dependent anterograde axonal transport of alphaherpesvirus particles in neurons. J Virol. 2013;87 (17) :9431-40.Abstract
Alphaherpesviruses, including pseudorabies virus (PRV), spread directionally within the nervous systems of their mammalian hosts. Three viral membrane proteins are required for efficient anterograde-directed spread of infection in neurons, including Us9 and a heterodimer composed of the glycoproteins gE and gI. We previously demonstrated that the kinesin-3 motor KIF1A mediates anterograde-directed transport of viral particles in axons of cultured peripheral nervous system (PNS) neurons. The PRV Us9 protein copurifies with KIF1A, recruiting the motor to transport vesicles, but at least one unidentified additional viral protein is necessary for this interaction. Here we show that gE/gI are required for efficient anterograde transport of viral particles in axons by mediating the interaction between Us9 and KIF1A. In the absence of gE/gI, viral particles containing green fluorescent protein (GFP)-tagged Us9 are assembled in the cell body but are not sorted efficiently into axons. Importantly, we found that gE/gI are necessary for efficient copurification of KIF1A with Us9, especially at early times after infection. We also constructed a PRV recombinant that expresses a functional gE-GFP fusion protein and used affinity purification coupled with mass spectrometry to identify gE-interacting proteins. Several viral and host proteins were found to associate with gE-GFP. Importantly, both gI and Us9, but not KIF1A, copurified with gE-GFP. We propose that gE/gI are required for efficient KIF1A-mediated anterograde transport of viral particles because they indirectly facilitate or stabilize the interaction between Us9 and KIF1A.