Publications

2013
Granstedt AE, Brunton BW, Enquist LW. Imaging the transport dynamics of single alphaherpesvirus particles in intact peripheral nervous system explants from infected mice. MBio. 2013;4 (3) :e00358-13.Abstract
ABSTRACT Alphaherpesvirus particles travel long distances in the axons of neurons using host microtubule molecular motors. The transport dynamics of individual virions in neurons have been assessed in cultured neurons, but imaging studies of single particles in tissue from infected mice have not been reported. We developed a protocol to image explanted, infected peripheral nervous system (PNS) ganglia and associated innervated tissue from mice infected with pseudorabies virus (PRV). This ex vivo preparation allowed us to visualize and track individual virions over time as they moved from the salivary gland into submandibular ganglion neurons of the PNS. We imaged and tracked hundreds of virions from multiple mice at different time points. We quantitated the transport velocity, particle stalling, duty cycle, and directionality at various times after infection. Using a PRV recombinant that expressed monomeric red fluorescent protein (mRFP)-VP26 (red capsid) and green fluorescent protein (GFP)-Us9 (green membrane protein), we corroborated that anterograde transport in axons occurs after capsids are enveloped. We addressed the question of whether replication occurs initially in the salivary gland at the site of inoculation or subsequently in the neurons of peripheral innervating ganglia. Our data indicate that significant amplification of infection occurs in the peripheral ganglia after transport from the site of infection and that these newly made particles are transported back to the salivary gland. It is likely that this reseeding of the infected gland contributes to massive invasion of the innervating PNS ganglia. We suggest that this "round-trip" infection process contributes to the characteristic peripheral neuropathy of PRV infection. IMPORTANCE Much of our understanding of molecular mechanisms of alphaherpesvirus infection and spread in neurons comes from studying cultured primary neurons. These techniques enabled significant advances in our understanding of the viral and neuronal components needed for efficient replication and directional spread between cells. However, in vitro systems cannot recapitulate the environment of innervated tissue in vivo with associated defensive properties, such as innate immunity. Therefore, in this report, we describe a system to image the progression of infection by single virus particles in tissue harvested from infected animals. We explanted intact innervated tissue from infected mice and imaged fluorescent virus particles in infected axons of the specific ganglionic neurons. Our measurements of virion transport dynamics are consistent with published in vitro results. Importantly, this system enabled us to address a fundamental biological question about the amplification of a herpesvirus infection in a peripheral nervous system circuit.
Granstedt AE, Bosse JB, Thiberge SY, Enquist LW. In vivo imaging of alphaherpesvirus infection reveals synchronized activity dependent on axonal sorting of viral proteins. Proc Natl Acad Sci U S A. 2013;110 (37) :E3516-25.Abstract
A clinical hallmark of human alphaherpesvirus infections is peripheral pain or itching. Pseudorabies virus (PRV), a broad host range alphaherpesvirus, causes violent pruritus in many different animals, but the mechanism is unknown. Previous in vitro studies have shown that infected, cultured peripheral nervous system (PNS) neurons exhibited aberrant electrical activity after PRV infection due to the action of viral membrane fusion proteins, yet it is unclear if such activity occurs in infected PNS ganglia in living animals and if it correlates with disease symptoms. Using two-photon microscopy, we imaged autonomic ganglia in living mice infected with PRV strains expressing GCaMP3, a genetically encoded calcium indicator, and used the changes in calcium flux to monitor the activity of many neurons simultaneously with single-cell resolution. Infection with virulent PRV caused these PNS neurons to fire synchronously and cyclically in highly correlated patterns among infected neurons. This activity persisted even when we severed the presynaptic axons, showing that infection-induced firing is independent of input from presynaptic brainstem neurons. This activity was not observed after infections with an attenuated PRV recombinant used for circuit tracing or with PRV mutants lacking either viral glycoprotein B, required for membrane fusion, or viral membrane protein Us9, required for sorting virions and viral glycoproteins into axons. We propose that the viral fusion proteins produced by virulent PRV infection induce electrical coupling in unmyelinated axons in vivo. This action would then give rise to the synchronous and cyclical activity in the ganglia and contribute to the characteristic peripheral neuropathy.
Kratchmarov R, Taylor MP, Enquist LW. Role of Us9 phosphorylation in axonal sorting and anterograde transport of pseudorabies virus. PLoS One. 2013;8 (3) :e58776.Abstract
Alphaherpes viruses, such as pseudorabies virus (PRV), undergo anterograde transport in neuronal axons to facilitate anterograde spread within hosts. Axonal sorting and anterograde transport of virions is dependent on the viral membrane protein Us9, which interacts with the host motor protein Kif1A to direct transport. Us9-Kif1A interactions are necessary but not sufficient for these processes, indicating that additional cofactors or post-translational modifications are needed. In this study, we characterized two conserved serine phosphorylation sites (S51 and S53) in the PRV Us9 protein that are necessary for anterograde spread in vivo. We assessed the subcellular localization of phospho-Us9 subspecies during infection of neurons and found that the phospho-form is detectable on the majority, but not all, of axonal vesicles containing Us9 protein. In biochemical assays, phospho-Us9 was enriched in lipid raft membrane microdomains, though Us9 phosphorylation did not require prior lipid raft association. During infections of chambered neuronal cultures, we observed only a modest reduction in anterograde spread capacity for diserine mutant Us9, and no defect for monoserine mutants. Conversely, mutation of the kinase recognition sequence residues adjacent to the phosphorylation sites completely abrogated anterograde spread. In live-cell imaging analyses, anterograde transport of virions was reduced during infection with a recombinant PRV strain expressing GFP-tagged diserine mutant Us9. Phosphorylation was not required for Us9-Kif1A interaction, suggesting that Us9-Kif1A binding is a distinct step from the activation and/or stabilization of the transport complex. Taken together, our findings indicate that, while not essential, Us9 phosphorylation enhances Us9-Kif1A-based transport of virions in axons to modulate the overall efficiency of long-distance anterograde spread of infection.
Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell Host Microbe. 2013;13 (4) :379-93.Abstract
Virus infections usually begin in peripheral tissues and can invade the mammalian nervous system (NS), spreading into the peripheral (PNS) and more rarely the central (CNS) nervous systems. The CNS is protected from most virus infections by effective immune responses and multilayer barriers. However, some viruses enter the NS with high efficiency via the bloodstream or by directly infecting nerves that innervate peripheral tissues, resulting in debilitating direct and immune-mediated pathology. Most viruses in the NS are opportunistic or accidental pathogens, but a few, most notably the alpha herpesviruses and rabies virus, have evolved to enter the NS efficiently and exploit neuronal cell biology. Remarkably, the alpha herpesviruses can establish quiescent infections in the PNS, with rare but often fatal CNS pathology. Here we review how viruses gain access to and spread in the well-protected CNS, with particular emphasis on alpha herpesviruses, which establish and maintain persistent NS infections.
2012
Taylor MP, Kobiler O, Enquist LW. Alphaherpesvirus axon-to-cell spread involves limited virion transmission. Proc Natl Acad Sci U S A. 2012;109 (42) :17046-51.Abstract
The spread of viral infection within a host can be restricted by bottlenecks that limit the size and diversity of the viral population. An essential process for alphaherpesvirus infection is spread from axons of peripheral nervous system neurons to cells in peripheral epithelia (anterograde-directed spread, ADS). ADS is necessary for the formation of vesicular lesions characteristic of reactivated herpesvirus infections; however, the number of virions transmitted is unknown. We have developed two methods to quantitate ADS events using a compartmentalized neuronal culture system. The first method uses HSV-1 and pseudorabies virus recombinants that express one of three different fluorescent proteins. The fluorescence profiles of cells infected with the virus mixtures are used to quantify the number of expressed viral genomes. Strikingly, although epithelial or neuronal cells express 3-10 viral genomes after infection by free virions, epithelial cells infected by HSV-1 or pseudorabies virus following ADS express fewer than two viral genomes. The second method uses live-cell fluorescence microscopy to track individual capsids involved in ADS. We observed that most ADS events involve a single capsid infecting a target epithelial cell. Together, these complementary analyses reveal that ADS events are restricted to small numbers of viral particles, most often a single virion, resulting in a single viral genome initiating infection.
Kramer T, Enquist LW. Alphaherpesvirus infection disrupts mitochondrial transport in neurons. Cell Host Microbe. 2012;11 (5) :504-14.Abstract
Mitochondria are dynamic organelles that are essential for cellular metabolism but can be functionally disrupted during pathogen infection. In neurons, mitochondria are transported on microtubules via the molecular motors kinesin-1 and dynein and recruited to energy-requiring regions such as synapses. Previous studies showed that proteins from pseudorabies virus (PRV), an alphaherpesvirus, localize to mitochondria and affect mitochondrial function. We show that PRV and herpes simplex virus type 1 (HSV-1) infection of rodent superior cervical ganglion (SCG) neurons disrupts mitochondrial motility and morphology. During PRV infection, glycoprotein B (gB)-dependent fusion events result in electrical coupling of neurons and increased action potential firing rates. Consequently, intracellular [Ca(2+)] increases and alters mitochondrial dynamics through a mechanism involving the Ca(2+)-sensitive cellular protein Miro and reduced recruitment of kinesin-1 to mitochondria. This disruption in mitochondrial dynamics is required for efficient growth and spread of PRV, indicating that altered mitochondrial transport enhances alphaherpesvirus pathogenesis and infection.
Kramer T, Greco TM, Taylor MP, Ambrosini AE, Cristea IM, Enquist LW. Kinesin-3 mediates axonal sorting and directional transport of alphaherpesvirus particles in neurons. Cell Host Microbe. 2012;12 (6) :806-14.Abstract
During infection of the nervous system, alphaherpesviruses-including pseudorabies virus (PRV)-use retrograde axonal transport to travel toward the neuronal cell body and anterograde transport to traffic back to the cell periphery upon reactivation from latency. The PRV protein Us9 plays an essential but unknown role in anterograde viral spread. To determine Us9 function, we identified viral and host proteins that interact with Us9 and explored the role of KIF1A, a microtubule-dependent kinesin-3 motor involved in axonal sorting and transport. Viral particles are cotransported with KIF1A in axons of primary rat superior cervical ganglion neurons, and overexpression or disruption of KIF1A function, respectively, increases and reduces anterograde capsid transport. Us9 and KIF1A interact early during infection with the aid of additional viral protein(s) but exhibit diminished binding at later stages, when capsids typically stall in axons. Thus, alphaherpesviruses repurpose the axonal transport and sorting pathway to spread within their hosts.
2011
Kramer T, Greco TM, Enquist LW, Cristea IM. Proteomic characterization of pseudorabies virus extracellular virions. J Virol. 2011;85 (13) :6427-41.Abstract
Pseudorabies virus (PRV), a member of the Alphaherpesvirinae, has a complex multilayered extracellular virion that is structurally conserved among other herpesviruses. PRV virions contain a double-stranded DNA genome within a proteinaceous capsid surrounded by the tegument, a layer of viral and cellular proteins. The envelope layer, which encloses the capsid and tegument, contains viral transmembrane proteins anchored in a phospholipid bilayer. The viral and host proteins contained within virions execute important functions during viral spread and pathogenesis, but a detailed understanding of the composition of PRV virions has been lacking. In this report, we present the first comprehensive proteomic characterization of purified PRV virions by mass spectrometry using two complementary approaches. To exclude proteins present in the extracellular medium that may nonspecifically associate with virions, we also analyzed virions treated with proteinase K and samples prepared from mock-infected cells. Overall, we identified 47 viral proteins associated with PRV virions, 40 of which were previously localized to the capsid, tegument, and envelope layers using traditional biochemical approaches. Additionally, we identified seven viral proteins that were previously undetected in virions, including pUL8, pUL20, pUL32, pUL40 (RR2), pUL42, pUL50 (dUTPase), and Rsp40/ICP22. Furthermore, although we did not enrich for posttranslational modifications, we detected phosphorylation of four virion proteins: pUL26, pUL36, pUL46, and pUL48. Finally, we identified 48 host proteins associated with PRV virions, many of which have known functions in important cellular pathways such as intracellular signaling, mRNA translation and processing, cytoskeletal dynamics, and membrane organization. This analysis extends previous work aimed at determining the composition of herpesvirus virions and provides novel insights critical for understanding the mechanisms underlying PRV entry, assembly, egress, spread, and pathogenesis.
Taylor MP, Koyuncu OO, Enquist LW. Subversion of the actin cytoskeleton during viral infection. Nat Rev Microbiol. 2011;9 (6) :427-39.Abstract
Viral infection converts the normal functions of a cell to optimize viral replication and virion production. One striking observation of this conversion is the reconfiguration and reorganization of cellular actin, affecting every stage of the viral life cycle, from entry through assembly to egress. The extent and degree of cytoskeletal reorganization varies among different viral infections, suggesting the evolution of myriad viral strategies. In this Review, we describe how the interaction of viral proteins with the cell modulates the structure and function of the actin cytoskeleton to initiate, sustain and spread infections. The molecular biology of such interactions continues to engage virologists in their quest to understand viral replication and informs cell biologists about the role of the cytoskeleton in the uninfected cell.
2010
Granstedt AE, Kuhn B, Wang SS-H, Enquist LW. Calcium imaging of neuronal circuits in vivo using a circuit-tracing pseudorabies virus. Cold Spring Harb Protoc. 2010;2010 (4) :pdb.prot5410.Abstract
Pseudorabies virus (PRV) is a neuroinvasive virus of the herpes family that has a broad host range but does not infect higher-order primates. PRV characteristically travels along chains of synaptically connected neurons and has been used extensively for elucidating neural circuits in the peripheral and central nervous system in vivo. The recombinant virus PRV369 is an attenuated retrograde tracer that encodes G-CaMP2, a fluorescent calcium sensor protein that is stable at physiological pH and mammalian temperature. This protocol describes the use of PRV369 to express G-CaMP2 in a neuronal circuit and to monitor its activity in a living animal, specifically in the submandibular ganglia (SMG), the peripheral parasympathetic ganglia that innervate the salivary glands. The procedure describes the delivery of PRV369 to the glands and shows how SMG neurons can then be imaged post-inoculation to explore connectivity and activity.
Szpara ML, Kobiler O, Enquist LW. A common neuronal response to alphaherpesvirus infection. J Neuroimmune Pharmacol. 2010;5 (3) :418-27.Abstract
Alphaherpesviruses are a subfamily of the Herpesviridae that can invade the nervous system and establish either lytic or latent infections. The establishment of latent infection can occur only in neurons, indicating a unique virus-host interaction in these cells. Here, we compare results from seven microarray studies that focused on the host response of either neural tissue or isolated neurons to alphaherpesvirus infection. These studies utilized either herpes simplex virus type 1 or pseudorabies virus as the infectious agent. From these data, we have found common host responses spanning a variety of infection models in different species, with different herpesvirus strains, and during all phases of infection including lytic, latent, and reactivation. The repeated observation of transcriptional effects on these genes and gene families indicates their likely importance in host defenses or the viral infectious process. We discuss the possible role of these different genes and genes families in alphaherpesvirus infection.
Kobiler O, Lipman Y, Therkelsen K, Daubechies I, Enquist LW. Herpesviruses carrying a Brainbow cassette reveal replication and expression of limited numbers of incoming genomes. Nat Commun. 2010;1 :146.Abstract
Whether all the infectious herpesvirus particles entering a cell are able to replicate and/or express their genomes is not known. Here, we developed a general method to determine the number of viral genomes expressed in an infected cell. We constructed and analysed fluorophore expression from a recombinant pseudorabies virus (PRV263) carrying a Brainbow cassette (Cre-conditional expression of different fluorophores). Using three isogenic strains derived from PRV263, each expressing a single fluorophore, we analysed the colour composition of cells infected with these three viruses at different multiplicities. We estimate that fewer than seven incoming genomes are expressed per cell. In addition, those templates that are expressed are the genomes selected for replication and packaging into virions. This finite limit on the number of viral genomes that can be expressed is an intrinsic property of the infected cell and may be influenced by viral and cellular factors.
2009
Curanović D, Ch'ng TH, Szpara M, Enquist L. Compartmented neuron cultures for directional infection by alpha herpesviruses. Curr Protoc Cell Biol. 2009;Chapter 26 :Unit 26.4.Abstract
Compartmented neuronal cultures allow experimenters to establish separate fluid environments for neuronal axons and the soma from which they emanate. Physical isolation of cell bodies and axons is achieved by culturing neurons in tri-chambered Teflon rings. Dissociated ganglia are plated in one end compartment of the trichamber, and axonal growth is guided underneath watertight silicone grease barriers into a separate compartment. Since the axons and cell bodies are located in different compartments, they can be infected and assayed separately. We describe the assembly and use of compartmented neuronal cultures for in vitro study of directional infection of neurons by alpha herpesviruses. Selective application of viral inoculum to only one compartment ensures that the remainder of the neuron is not contaminated by input inoculum. This allows for quantification of viral spread, and unambiguous interpretation of immunofluorescence and electron microscopy images.
Lyman MG, Enquist LW. Herpesvirus interactions with the host cytoskeleton. J Virol. 2009;83 (5) :2058-66.
Curanovic D, Enquist LW. Virion-incorporated glycoprotein B mediates transneuronal spread of pseudorabies virus. J Virol. 2009;83 (16) :7796-804.Abstract
Transneuronal spread of pseudorabies virus (PRV) is a multistep process that requires several virally encoded proteins. Previous studies have shown that PRV glycoprotein B (gB), a component of the viral fusion machinery, is required for the transmission of infection to postsynaptic, second-order neurons. We sought to identify the gB-mediated step in viral transmission. We determined that gB is not required for the sorting of virions into axons of infected neurons, anterograde transport, or the release of virions from the axon. trans or cis expression of gB on the cell surface was not sufficient for transneuronal spread of the virus; instead, efficient incorporation of gB into virions was required. Additionally, neuron-to-cell spread of PRV most likely does not proceed through syncytial connections. We conclude that, upon gB-independent release of virions at the site of neuron-cell contacts, the virion-incorporated gB/gH/gL fusion complex mediates entry into the axonally contacted cell by fusion of the closely apposed membranes.
Granstedt AE, Szpara ML, Kuhn B, Wang SS-H, Enquist LW. Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus. PLoS One. 2009;4 (9) :e6923.Abstract
The study of coordinated activity in neuronal circuits has been challenging without a method to simultaneously report activity and connectivity. Here we present the first use of pseudorabies virus (PRV), which spreads through synaptically connected neurons, to express a fluorescent calcium indicator protein and monitor neuronal activity in a living animal. Fluorescence signals were proportional to action potential number and could reliably detect single action potentials in vitro. With two-photon imaging in vivo, we observed both spontaneous and stimulated activity in neurons of infected murine peripheral autonomic submandibular ganglia (SMG). We optically recorded the SMG response in the salivary circuit to direct electrical stimulation of the presynaptic axons and to physiologically relevant sensory stimulation of the oral cavity. During a time window of 48 hours after inoculation, few spontaneous transients occurred. By 72 hours, we identified more frequent and prolonged spontaneous calcium transients, suggestive of neuronal or tissue responses to infection that influence calcium signaling. Our work establishes in vivo investigation of physiological neuronal circuit activity and subsequent effects of infection with single cell resolution.
McCarthy KM, Tank DW, Enquist LW. Pseudorabies virus infection alters neuronal activity and connectivity in vitro. PLoS Pathog. 2009;5 (10) :e1000640.Abstract
Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural function seen in PRV-infected animals.
2008
Lyman MG, Curanovic D, Enquist LW. Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PLoS Pathog. 2008;4 (5) :e1000065.Abstract
The pseudorabies virus (PRV) Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF). In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs). Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system.
2006
Feierbach B, Piccinotti S, Bisher M, Denk W, Enquist LW. Alpha-herpesvirus infection induces the formation of nuclear actin filaments. PLoS Pathog. 2006;2 (8) :e85.Abstract
Herpesviruses are large double-stranded DNA viruses that replicate in the nuclei of infected cells. Spatial control of viral replication and assembly in the host nucleus is achieved by the establishment of nuclear compartments that serve to concentrate viral and host factors. How these compartments are established and maintained remains poorly understood. Pseudorabies virus (PRV) is an alpha-herpesvirus often used to study herpesvirus invasion and spread in the nervous system. Here, we report that PRV and herpes simplex virus type 1 infection of neurons results in formation of actin filaments in the nucleus. Filamentous actin is not found in the nucleus of uninfected cells. Nuclear actin filaments appear physically associated with the viral capsids, as shown by serial block-face scanning electron micropscopy and confocal microscopy. Using a green fluorescent protein-tagged viral capsid protein (VP26), we show that nuclear actin filaments form prior to capsid assembly and are required for the efficient formation of viral capsid assembly sites. We find that actin polymerization dynamics (e.g., treadmilling) are not necessary for the formation of these sites. Green fluorescent protein-VP26 foci co-localize with the actin motor myosin V, suggesting that viral capsids travel along nuclear actin filaments using myosin-based directed transport. Viral transcription, but not viral DNA replication, is required for actin filament formation. The finding that infection, by either PRV or herpes simplex virus type 1, results in formation of nuclear actin filaments in neurons, and that PRV infection of an epithelial cell line results in a similar phenotype is evidence that F-actin plays a conserved role in herpesvirus assembly. Our results suggest a mechanism by which assembly domains are organized within infected cells and provide insight into how the viral infectious cycle and host actin cytoskeleton are integrated to promote the infection process.
Paulus C, Sollars PJ, Pickard GE, Enquist LW. Transcriptome signature of virulent and attenuated pseudorabies virus-infected rodent brain. J Virol. 2006;80 (4) :1773-86.Abstract
Mammalian alphaherpesviruses normally establish latent infections in ganglia of the peripheral nervous system in their natural hosts. Occasionally, however, these viruses spread to the central nervous system (CNS), where they cause damaging, often fatal, infections. Attenuated alphaherpesvirus derivatives have been used extensively as neuronal circuit tracers in a variety of animal models. Their circuit-specific spread provides a unique paradigm to study the local and global CNS response to infection. Thus, we systematically analyzed the host gene expression profile after acute pseudorabies virus (PRV) infection of the CNS using Affymetrix GeneChip technology. Rats were injected intraocularly with one of three selected virulent and attenuated PRV strains. Relative levels of cellular transcripts were quantified from hypothalamic and cerebellar tissues at various times postinfection. The number of cellular genes responding to infection correlated with the extent of virus dissemination and relative virulence of the PRV strains. A total of 245 out of 8,799 probe sets, corresponding to 182 unique cellular genes, displayed increased expression ranging from 2- to more than 100-fold higher than in uninfected tissue. Over 60% thereof were categorized as immune, proinflammatory, and other cellular defense genes. Additionally, a large fraction of infection-induced transcripts represented cellular stress responses, including glucocorticoid- and redox-related pathways. This is the first comprehensive in vivo analysis of the global transcriptional response of the mammalian CNS to acute alphaherpesvirus infection. The differentially regulated genes reported here are likely to include potential diagnostic and therapeutic targets for viral encephalitides and other neurodegenerative or neuroinflammatory diseases.

Pages