Electrohydrodynamic flow around a colloidal particle near an electrode with an oscillating potential


Ristenpart, W. D. ; Aksay, I. A. ; Saville, D. A. Electrohydrodynamic flow around a colloidal particle near an electrode with an oscillating potential. Journal of Fluid Mechanics 2007, 575, 83-109.

Date Published:


Type of Article:


ISBN Number:


Accession Number:



Electrohydrodynamic (EHD) flow around a charged spherical colloid near an electrode was studied theoretically and experimentally to understand the nature of long-range particle-particle attraction near electrodes. Numerical computations for finite double-layer thicknesses confirmed the validity of an asymptotic methodology for thin layers. Then the electric potential around the particle was computed analytically in the limit of zero Peclet number and thin double layers for oscillatory electric fields at frequencies where Faradaic reactions are negligible. Streamfunctions for the steady component of the EHD flow were determined with an electro-osmotic slip boundary condition on the electrode surface. Accordingly, it was established how the axisymmetric flow along the electrode is related to the dipole coefficient of the colloidal particle. Under certain conditions, the flow is directed toward the particle and decays as r(-4), in accord with observations of long-range particle aggregation. To test the theory, particle-tracking experiments were performed with fluorescent 300 nm particles around 50 mu m particles over a wide range of electric field strengths and frequencies. Treating the particle surface conductivity as a fitting parameter yields velocities in excellent agreement with the theoretical predictions. The observed frequency dependence, however, differs from the model predictions, suggesting that the effect of convection on the charge distribution is not negligible as assumed in the zero Peclet number limit.