Publications by Year: 2013

Aksay, I. A. ; Buyukdincer, B. ; Javaherian, N. ; Lettow, J. S. ; Pino, G. ; Redmond, K. ; Yildirim, I. O. Reinforced polymeric articles, 2013.Abstract
Polymeric article reinforced with a reinforcing component. The reinforcing component includes a composition made from at least one polymer and graphene sheets.
Liu, J. ; Aksay, I. A. ; Choi, D. ; Wang, D. ; Yang, Z. Nanocomposite of graphene and metal oxide materials, 2013.Abstract
Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.
Liu, J. ; Aksay, I. A. ; Choi, D. ; Kou, R. ; Nie, Z. ; Wang, D. ; Yang, Z. Self assembled multi-layer nanocomposite of graphene and metal oxide materials, 2013.Abstract
Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.
Hsieh, A. G. ; Punckt, C. ; Korkut, S. ; Aksay, I. A. Adsorption of Sodium Dodecyl Sulfate on Functionalized Graphene Measured by Conductometric Titration. Journal of Physical Chemistry B 2013, 117, 7950-7958.Abstract
We report on the adsorption of sodium dodecyl sulfate (SDS) onto functionalized graphene sheets (FGSs) in an aqueous system, measured at broad SDS and FGS concentration ranges by conductometric surfactant titration. At dilute SDS concentrations (<12 mu M in bulk solution), there is evidence of a counterion exchange between hydronium ions (from the dissociation of acidic chemical functionalities on FGS) and sodium ions coadsorbing with dodecyl sulfate monomers onto FGSs. We find that, for FGS with a carbon-to-oxygen ratio of similar to 18, monolayer adsorption of SDS on FGS reaches full surface coverage by similar to 12 mu M SDS. Additionally, the critical surface aggregation concentration (csac) for surface micelle formation on FGS is measured to be similar to 1.5 mM SDS The transition from monolayer adsorption to surface micelle formation appears to occur at a similar SDS concentration on FGSs as on graphite, suggesting there is little difference in the surfactant adsorption behavior on both materials. We estimate that the FGS surface area available for SDS adsorption is similar to 600 m(2)/g which is significantly less than expected for FGSs in suspension and indicates the presence of regions on FGS on which SDS adsorption does not occur.
Jan, L. ; Punckt, C. ; Aksay, I. A. Cementation of Colloidal Particles on Electrodes in a Galvanic Microreactor. ACS Applied Materials & Interfaces 2013, 5 6346-6353.Abstract
We have studied the processes leading to the cementation of colloidal particles during their autonomous assembly on corroding copper electrodes within a Cu-Au galvanic rnicroreactor. We determined the onset of particle immobilization through particle tracking, monitored the dissolution of copper as well as the deposition of insoluble products of the corrosion reactions in situ, and showed that particle immobilization initiated after reaction products (RPs) began to deposit on the electrode substrate. We further demonstrated that the time and the extent of RP precipitation and thus the strength of the particle-substrate bond could be tuned by varying the amount of copper in the system and the microreactor pH. The ability to cement colloidal particles at locations undergoing corrosion illustrates that the studied colloidal assembly approach holds potential for applications in dynamic material property adaptation.
Jan, L. ; Punckt, C. ; Khusid, B. ; Aksay, I. A. Directed Motion of Colloidal Particles in a Galvanic Microreactor. Langmuir 2013, 29, 2498-2505.Abstract
The mechanisms leading to the deposition of colloidal particles in a copper-gold galvanic microreactor are investigated. Using in situ current density measurements and particle velocimetry, we establish correlations between the spatial arrangement and the geometry of the electrodes, current density distribution, and particle aggregation behavior. Ionic transport phenomena are responsible for the occurrence of strongly localized high current density at the edges and corners of the copper electrodes at large electrode separation, leading to a preferential aggregation of colloidal particles at the electrode edges. Preferential aggregation appears to be the result of a combination of electrophoretic effects and changes in bulk electrolyte flow patterns. We demonstrate that electrolyte flow is most likely driven by electrochemical potential gradients of reaction products formed during the inhomogeneous copper dissolution.
Hsieh, A. G. ; Korkut, S. ; Punckt, C. ; Aksay, I. A. Dispersion Stability of Functionalized Graphene in Aqueous Sodium Dodecyl Sulfate Solutions. Langmuir 2013, 29, 14831-14838.Abstract
The colloidal stability of functionalized graphene sheets (FGSs) in aqueous sodium dodecyl sulfate (SDS) solutions of different concentrations was studied by optical microscopy and ultraviolet visible light absorption after first dispersing the FGSs ultrasonically. In up to similar to 10 mu M SDS solutions, FGSs reaggregated within a few minutes, forming ramified structures in the absence of SDS and increasingly compact structures as the amount of SDS increased. Above similar to 10 mu M, the rate of reaggregation decreased with increasing SDS concentration; above similar to 40 mu M, the suspensions were colloidally stable for over a year. The concentration of similar to 40 mu M SDS lies 2 orders of magnitude below the critical surface aggregation concentration of similar to 1.8 mM SDS on FGSs but above the concentration (similar to 18 mu M) at which SDS begins to form a monolayer on FGSs. Neither surface micelle nor dense monolayer coverage is therefore required to obtain stable aqueous FGS dispersions. We support our experimental results by calculating the van der Waals and electrostatic interaction energies between FGSs as a function of SDS concentration and show that the experimentally observed transition from an unstable to a stable dispersion correlates with a transition from negative to positive interaction energies between FGSs in the aggregated state. Furthermore, our calculations support experimental evidence that aggregates tend to develop a compact structure over time.
Punckt, C. ; Muckel, F. ; Wolff, S. ; Aksay, I. A. ; Chavarin, C. A. ; Bacher, G. ; Mertin, W. The effect of degree of reduction on the electrical properties of functionalized graphene sheets. Applied Physics Letters 2013, 102.Abstract
We study the effect of carbon to oxygen ratio (C/O) on the electrical resistance of functionalized graphene sheets prepared by thermal exfoliation and reduction of graphite oxide at various temperatures. Using a 2-probe technique in conjunction with Kelvin probe force microscopy, we observe a transition from high-resistance (>400 k Omega/sq) nonlinear current/voltage characteristics at low C/O to low-resistance (<10 k Omega/sq) linear behavior at high C/O, indicating a transition from hopping to diffusive electron transport. Simultaneously, the metal-graphene contacts change from high-resistance Schottky-type behavior to nearly non-invasive metal-metal contact characteristics. (C) 2013 American Institute of Physics. []
Punckt, C. ; Pope, M. A. ; Aksay, I. A. On the Electrochemical Response of Porous Functionalized Graphene Electrodes. Journal of Physical Chemistry C 2013, 117, 16076-16086.Abstract
Electrodes used in electroanalysis, which are based on carbonaceous nanomaterials such as carbon nanotubes or graphene, often exhibit large degrees of porosity. By systematically varying the morphology of functionalized graphene electrodes from nearly flat to highly porous, we demonstrate experimentally that minute amounts of electrode porosity have surprisingly significant effects on the apparent reaction kinetics as determined by cyclic voltammetry, both in the reversible and the irreversible regime. We quantify electrode porosity using a coulometric approach and, with the help of numerical simulations, determine the correlation between electrode pore volume and apparent electrode kinetics. We show that in the reversible and quasi-reversible regime, the voltamperometric response constitutes a superposition of thin film diffusion-related effects within the porous electrode and of the standard flat electrode response. For irreversible kinetics, however, we show that diffusive coupling between the electrode and the electrolyte can, under suitably chosen conditions, result in effective electrocatalytic behavior. Confirming past theoretical work by Compton and others, our experiments demonstrate that for a comparison of electroanalytical data obtained with different electrode materials it is not sufficient to only consider differences in the materials' chemical structure but equally important to take into account differences in electrode morphology.
Liu, Y. F. M. ; Punckt, C. ; Pope, M. A. ; Gelperin, A. ; Aksay, I. A. Electrochemical Sensing of Nitric Oxide with Functionalized Graphene Electrodes. ACS Applied Materials & Interfaces 2013, 5 12624-12630.Abstract
The intrinsic electrocatalytic properties of functionalized graphene sheets (FGSs) in nitric oxide (NO) sensing are determined by cyclic voltammetry with FGS monolayer electrodes. The degrees of reduction and defectiveness of the FGSs are varied by employing different heat treatments during their fabrication. FGSs with intermediate degrees of reduction and high Raman I-D to I-G peak ratios exhibit an NO oxidation peak potential of 794 mV (vs 1 M Ag/AgCl), closely matching values obtained with a platinized Pt control (791 mV) as well as recent results from the literature on porous or biofunctionalized electrodes. We show that the peak potential obtained with FGS electrodes can be further reduced to 764 mV by incorporation of electrode porosity using a drop-casting approach, indicating a stronger apparent electrocatalytic effect on porous FGS electrodes as compared to platinized Pt. Taking into consideration effects of electrode Morphology, we thereby demonstrate that FGSs are intrinsically as catalytic toward NO oxidation as platinum. The lowered peak potential of porous FGS electrodes is accompanied by a significant increase in peak current, which we attribute either to pore depletion effects or an amplification effect due to subsequent electrooxidation reactions. Our results suggest that the development of sensor electrodes with higher sensitivity and lower detection limits should be feasible with FGSs.
Pope, M. A. ; Korkut, S. ; Punckt, C. ; Aksay, I. A. Supercapacitor Electrodes Produced through Evaporative Consolidation of Graphene Oxide-Water-Ionic Liquid Gels. Journal of the Electrochemical Society 2013, 160, A1653-A1660.Abstract
We use colloidal gels of graphene oxide in a water-ethanol-ionic liquid solution to assemble graphene-ionic liquid laminated structures for use as electrodes in electrochemical double layer capacitors. Our process involves evaporation of water and ethanol yielding a graphene oxide/ionic liquid composite, followed by thermal reduction of the graphene oxide to electrically conducting functionalized graphene. This yields an electrode in which the ionic liquid serves not only as the working electrolyte but also as a spacer to separate the graphene sheets and to increase their electrolyte-accessible surface area. Using this approach, we achieve an outstanding energy density of 17.5 Wh/kg at a gravimetric capacitance of 156 F/g and 3 V operating voltage, due to a high effective density of the active electrode material of 0.46 g/cm(2). By increasing the ionic liquid content and the degree of thermal reduction, we obtain electrodes that retain >90% of their capacitance at a scan rate of 500 mV/s, illustrating that we can tailor the electrodes toward higher power density if energy density is not the primary goal. The elimination of the electrolyte infiltration step from manufacturing makes,this bottom-up assembly approach scalable and well-suited for combinations of potentially any graphene material with ionic liquid electrolytes. (C) 2013 The Electrochemical Society. All rights reserved.