Publications

2019
Tauber, J. A., et al.Characterization of the in-flight properties of the Planck telescope”. \aap 622 (2019): , 622, A55. Web.
Tauber, J. A., et al.Characterization of the in-flight properties of the Planck telescope”. \aap 622 (2019): , 622, A55. Web.
Collaboration, Planck, et al.Planck 2018 results. IX. Constraints on primordial non-Gaussianity”. arXiv e-prints (2019): , arXiv:1905.05697. Print.
Collaboration, Planck, et al.Planck 2018 results. V. CMB power spectra and likelihoods”. arXiv e-prints (2019): , arXiv:1907.12875. Print.
Collaboration, Planck, et al.Planck 2018 results. VII. Isotropy and Statistics of the CMB”. arXiv e-prints (2019): , arXiv:1906.02552. Print.
Romualdez, L. Javier, et al.Robust diffraction-limited NIR-to-NUV wide-field imaging from stratospheric balloon-borne platforms – SuperBIT science telescope commissioning flight & performance”. Rev. Sci. Inst. (2019): , arXiv:1911.11210. Print.
2018
Bergman, A. S., et al.280 GHz Focal Plane Unit Design and Characterization for the Spider-2 Suborbital Polarimeter”. Journal of Low Temperature Physics 193.5-6 (2018): , 193, 5-6, 1075-1084. Web.
Redmond, Susan, et al.Auto-tuned thermal control on stratospheric balloon experiments”. \procspie. 2018. 107005R. Web.
Redmond, Susan, et al.Auto-tuned thermal control on stratospheric balloon experiments”. \procspie. 2018. 107005R. Web.
Romualdez, L. Javier, et al.Overview, design, and flight results from SuperBIT: a high-resolution, wide-field, visible-to-near-UV balloon-borne astronomical telescope”. \procspie. 2018. 107020R. Web.
Collaboration, Planck, et al.Planck 2018 results. I. Overview and the cosmological legacy of Planck”. arXiv e-prints (2018): , arXiv:1807.06205. Print.
Collaboration, Planck, et al.Planck 2018 results. II. Low Frequency Instrument data processing”. arXiv e-prints (2018): , arXiv:1807.06206. Print.
Collaboration, Planck, et al.Planck 2018 results. III. High Frequency Instrument data processing and frequency maps”. arXiv e-prints (2018): , arXiv:1807.06207. Print.
Collaboration, Planck, et al.Planck 2018 results. VI. Cosmological parameters”. arXiv e-prints (2018): , arXiv:1807.06209. Print.
Collaboration, Planck, et al.Planck 2018 results. VIII. Gravitational lensing”. arXiv e-prints (2018): , arXiv:1807.06210. Print.
Collaboration, Planck, et al.Planck 2018 results. X. Constraints on inflation”. arXiv e-prints (2018): , arXiv:1807.06211. Print.
Collaboration, Planck, et al.Planck 2018 results. XI. Polarized dust foregrounds”. arXiv e-prints (2018): , arXiv:1801.04945. Print.
Collaboration, Planck, et al.Planck 2018 results. XII. Galactic astrophysics using polarized dust emission”. arXiv e-prints (2018): , arXiv:1807.06212. Print.
Collaboration, Planck, et al.Planck intermediate results. LIV. The Planck multi-frequency catalogue of non-thermal sources”. \aap 619 (2018): , 619, A94. Web.
Collaboration, Planck, et al.Planck intermediate results. XV. A study of anomalous microwave emission in Galactic clouds (Corrigendum)”. \aap 610 (2018): , 610, C1. Web.
Gualtieri, R., et al.SPIDER: CMB Polarimetry from the Edge of Space”. Journal of Low Temperature Physics 193.5-6 (2018): , 193, 5-6, 1112-1121. Web.
2016
Collaboration, Planck, et al.Planck 2015 results. I. Overview of products and scientific results”. \aap 594 (2016): , 594, A1. Web.
Collaboration, Planck, et al.Planck 2015 results. IX. Diffuse component separation: CMB maps”. \aap 594 (2016): , 594, A9. Web.
Collaboration, Planck, et al.Planck 2015 results. VII. High Frequency Instrument data processing: Time-ordered information and beams”. \aap 594 (2016): , 594, A7. Web.
Collaboration, Planck, et al.Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps”. \aap 594 (2016): , 594, A8. Web.
Collaboration, Planck, et al.Planck 2015 results. X. Diffuse component separation: Foreground maps”. \aap 594 (2016): , 594, A10. Web.
Collaboration, Planck, et al.Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters”. \aap 594 (2016): , 594, A11. Web.
Collaboration, Planck, et al.Planck 2015 results. XII. Full focal plane simulations”. \aap 594 (2016): , 594, A12. Web.
Collaboration, Planck, et al.Planck 2015 results. XIII. Cosmological parameters”. \aap 594 (2016): , 594, A13. Web.
Collaboration, Planck, et al.Planck 2015 results. XIV. Dark energy and modified gravity”. \aap 594 (2016): , 594, A14. Web.
Collaboration, Planck, et al.Planck 2015 results. XV. Gravitational lensing”. \aap 594 (2016): , 594, A15. Web.
Collaboration, Planck, et al.Planck 2015 results. XVI. Isotropy and statistics of the CMB”. \aap 594 (2016): , 594, A16. Web.
Collaboration, Planck, et al.Planck 2015 results. XVII. Constraints on primordial non-Gaussianity”. \aap 594 (2016): , 594, A17. Web.
Collaboration, Planck, et al.Planck 2015 results. XVIII. Background geometry and topology of the Universe”. \aap 594 (2016): , 594, A18. Web.
Collaboration, Planck, et al.Planck 2015 results. XX. Constraints on inflation”. \aap 594 (2016): , 594, A20. Web.
Collaboration, Planck, et al.Planck 2015 results. XXI. The integrated Sachs-Wolfe effect”. \aap 594 (2016): , 594, A21. Web.
Collaboration, Planck, et al.Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect”. \aap 594 (2016): , 594, A22. Web.
Collaboration, Planck, et al.Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation”. \aap 594 (2016): , 594, A23. Web.
Collaboration, Planck, et al.Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts”. \aap 594 (2016): , 594, A24. Web.
Collaboration, Planck, et al.Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds”. \aap 594 (2016): , 594, A25. Web.
Collaboration, Planck, et al.Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources”. \aap 594 (2016): , 594, A26. Web.
Collaboration, Planck, et al.Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources”. \aap 594 (2016): , 594, A27. Web.
Collaboration, Planck, et al.Planck 2015 results. XXVIII. The Planck Catalogue of Galactic cold clumps”. \aap 594 (2016): , 594, A28. Web.
Collaboration, Planck, et al.Planck intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters”. ArXiv e-prints (2016): n. pag. Print.
Collaboration, Planck, et al.Planck intermediate results. LII. Planet flux densities”. ArXiv e-prints (2016): n. pag. Print.
Collaboration, Planck, et al.Planck intermediate results. XL. The Sunyaev-Zeldovich signal from the Virgo cluster”. \aap 596 (2016): , 596, A101. Web.
Collaboration, Planck, et al.Planck intermediate results. XLI. A map of lensing-induced B-modes”. \aap 596 (2016): , 596, A102. Web.
Collaboration, Planck, et al.Planck intermediate results. XLII. Large-scale Galactic magnetic fields”. \aap 596 (2016): , 596, A103. Web.
Collaboration, Planck, et al.Planck intermediate results. XLIII. Spectral energy distribution of dust in clusters of galaxies”. \aap 596 (2016): , 596, A104. Web.
Collaboration, Planck, et al.Planck intermediate results. XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap”. \aap 596 (2016): , 596, A105. Web.
Collaboration, Planck, et al.Planck intermediate results. XLIX. Parity-violation constraints from polarization data”. \aap 596 (2016): , 596, A110. Web.
Collaboration, Planck, et al.Planck intermediate results. XLV. Radio spectra of northern extragalactic radio sources”. \aap 596 (2016): , 596, A106. Web.
Collaboration, Planck, et al.Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth”. \aap 596 (2016): , 596, A107. Web.
Collaboration, Planck, et al.Planck intermediate results. XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies”. \aap 596 (2016): , 596, A109. Web.
Collaboration, Planck, et al.Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations”. \aap 586 (2016): , 586, A132. Web.
Collaboration, Planck, et al.Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes”. \aap 586 (2016): , 586, A133. Web.
Collaboration, Planck, et al.Planck intermediate results. XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust”. \aap 586 (2016): , 586, A135. Web.
Collaboration, Planck, et al.Planck intermediate results. XXXIII. Signature of the magnetic field geometry of interstellar filaments in dust polarization maps”. \aap 586 (2016): , 586, A136. Web.
Collaboration, Planck, et al.Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds”. \aap 586 (2016): , 586, A138. Web.
Collaboration, Planck, et al.Planck intermediate results. XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect”. \aap 586 (2016): , 586, A140. Web.
Collaboration, Planck, et al.Planck intermediate results. XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium”. \aap 586 (2016): , 586, A141. Web.
2015
Collaboration, BICEP2, et al.Antenna-coupled TES Bolometers Used in BICEP2, Keck Array, and Spider”. \apj 812 (2015): , 812, 176. Web.
Collaboration, Planck, et al.Planck 2013 results. XXXII. The updated Planck catalogue of Sunyaev-Zeldovich sources”. \aap 581 (2015): , 581, A14. Web.
Collaboration, Planck, et al.Planck intermediate results. XXV. The Andromeda galaxy as seen by Planck”. \aap 582 (2015): , 582, A28. Web.
Collaboration, Planck, et al.Planck intermediate results. XXVI. Optical identification and redshifts of Planck clusters with the RTT150 telescope”. \aap 582 (2015): , 582, A29. Web.
Collaboration, Planck, et al.Planck intermediate results. XXVIII. Interstellar gas and dust in the Chamaeleon clouds as seen by Fermi LAT and Planck”. \aap 582 (2015): , 582, A31. Web.
Gudmundsson, J. E., et al.The thermal design, characterization, and performance of the SPIDER long-duration balloon cryostat”. Cryogenics 72 (2015): , 72, 65-76. Web.
for the Collaboration, Gudmundsson Spider JE. “The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat”. arXiv 1506.06953v2 (2015). Web. Publisher's VersionAbstract

We describe the Spider ight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic

long-duration balloon ight. The cryostat, one of the largest to have own on a stratospheric payload, uses liquid 4He

to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high ow impedance connection

between the main liquid helium tank and a smaller superuid tank, allowing the latter to operate at 1.6 K as long as

there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle 3He adsorption refrigerator that further cools

the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool

radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day ight in the

2014{2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during ight.

2000
et al Jones, W.C. “A three-stage Helium sorption refrigerator for cooling of Infrared detectors to 280 mK,”. Cryogenics 40(11).685 (2000). Print.