Publications

2018
Jin, Lingtao, et al.The PLAG1-GDH1 Axis Promotes Anoikis Resistance and Tumor Metastasis through CamKK2-AMPK Signaling in LKB1-Deficient Lung Cancer”. Mol Cell 69.1 (2018): , 69, 1, 87-99.e7. Web.Abstract
Loss of LKB1 is associated with increased metastasis and poor prognosis in lung cancer, but the development of targeted agents is in its infancy. Here we report that a glutaminolytic enzyme, glutamate dehydrogenase 1 (GDH1), upregulated upon detachment via pleomorphic adenoma gene 1 (PLAG1), provides anti-anoikis and pro-metastatic signals in LKB1-deficient lung cancer. Mechanistically, the GDH1 product α-KG activates CamKK2 by enhancing its substrate AMPK binding, which contributes to energy production that confers anoikis resistance. The effect of GDH1 on AMPK is evident in LKB1-deficient lung cancer, where AMPK activation predominantly depends on CamKK2. Targeting GDH1 with R162 attenuated tumor metastasis in patient-derived xenograft model and correlation studies in lung cancer patients further validated the clinical relevance of our finding. Our study provides insight into the molecular mechanism by which GDH1-mediated metabolic reprogramming of glutaminolysis mediates lung cancer metastasis and offers a therapeutic strategy for patients with LKB1-deficient lung cancer.
2017
Oslund, Rob C, et al.Bisphosphoglycerate mutase controls serine pathway flux via 3-phosphoglycerate”. Nat Chem Biol 13.10 (2017): , 13, 10, 1081-1087. Web.Abstract
Lower glycolysis involves a series of reversible reactions, which interconvert intermediates that also feed anabolic pathways. 3-phosphoglycerate (3-PG) is an abundant lower glycolytic intermediate that feeds serine biosynthesis via the enzyme phosphoglycerate dehydrogenase, which is genomically amplified in several cancers. Phosphoglycerate mutase 1 (PGAM1) catalyzes the isomerization of 3-PG into the downstream glycolytic intermediate 2-phosphoglycerate (2-PG). PGAM1 needs to be histidine phosphorylated to become catalytically active. We show that the primary PGAM1 histidine phosphate donor is 2,3-bisphosphoglycerate (2,3-BPG), which is made from the glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) by bisphosphoglycerate mutase (BPGM). When BPGM is knocked out, 1,3-BPG can directly phosphorylate PGAM1. In this case, PGAM1 phosphorylation and activity are decreased, but nevertheless sufficient to maintain normal glycolytic flux and cellular growth rate. 3-PG, however, accumulates, leading to increased serine synthesis. Thus, one biological function of BPGM is controlling glycolytic intermediate levels and thereby serine biosynthetic flux.
Peng, Jia, and Yibin Kang. “The Bony Side of Endothelial Cells in Prostate Cancer”. Dev Cell 41.5 (2017): , 41, 5, 451-452. Web.Abstract
Prostate cancer bone metastases are primarily osteoblastic, but the source of bone-forming cells in these lesions remains poorly defined. In this issue of Developmental Cell, Lin et al. (2017) demonstrate that tumor-associated endothelial cells can give rise to osteoblasts in prostate cancer through endothelial-to-osteoblast (EC-to-OSB) conversion.
Alečković, Maša, et al.Identification of Nidogen 1 as a lung metastasis protein through secretome analysis”. Genes Dev 31.14 (2017): , 31, 14, 1439-1455. Web.Abstract
Secreted proteins play crucial roles in mediating tumor-stroma interactions during metastasis of cancer to different target organs. To comprehensively profile secreted proteins involved in lung metastasis, we applied quantitative mass spectrometry-based proteomics and identified 392 breast cancer-derived and 302 melanoma-derived proteins secreted from highly lung metastatic cells. The cancer-specific lung metastasis secretome signatures (LMSSs) displayed significant prognostic value in multiple cancer clinical data sets. Moreover, we observed a significant overlap of enriched pathways between the LMSSs of breast cancer and melanoma despite an overall small overlap of specific proteins, suggesting that common biological processes are executed by different proteins to enable the two cancer types to metastasize to the lung. Among the novel candidate lung metastasis proteins, Nidogen 1 (NID1) was confirmed to promote lung metastasis of breast cancer and melanoma, and its expression is correlated with poor clinical outcomes. In vitro functional analysis further revealed multiple prometastatic functions of NID1, including enhancing cancer cell migration and invasion, promoting adhesion to the endothelium and disrupting its integrity, and improving vascular tube formation capacity. As a secreted prometastatic protein, NID1 may be developed as a new biomarker for disease progression and therapeutic target in breast cancer and melanoma.
Celià-Terrassa, Toni, et al.Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR axis”. Nat Cell Biol 19.6 (2017): , 19, 6, 711-723. Web.Abstract
Tumour-initiating cells, or cancer stem cells (CSCs), possess stem-cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem-cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ERbreast tumours, functionally promotes tumour initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signalling.
Yang, Mu, et al.Short-term and long-term clinical outcomes of uncommon types of invasive breast cancer”. Histopathology 71.6 (2017): , 71, 6, 874-886. Web.Abstract
AIMS: Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are predominant and well-documented types of invasive breast cancer (IBC). We investigated the clinical outcomes of other types of IBC (i.e. uncommon IBC), which collectively account for Σ20% of all IBC cases, as these are largely unknown. METHODS AND RESULTS: We identified all IBC cases diagnosed in 2004-2006 (n = 159 293) and 2010-2011 (n = 118 822) from the Surveillance, Epidemiology and End Results (SEER) database. Uncommon IBCs included mixed IDC and ILC (MDLC), IDC mixed with other types of carcinoma, ILC mixed with other types of carcinoma, and other-type breast cancers (OCs). We estimated overall survival (OS) and cancer-specific survival in multivariate regression models. As compared with IDC, MDLC was associated with an increased OS [adjusted hazard ratio (aHR) = 0.92, P < 0.001 at Σ10 years of follow-up; aHR = 0.88, P = 0.01 at Σ4 years of follow-up], whereas OCs were associated with a decreased OS (aHR = 1.06, P = 0.005 at Σ10 years of follow-up; aHR = 1.23, P < 0.001 at Σ4 years of follow-up). Women with other uncommon IBCs had an OS similar to those with IDC. Heterogeneity in survival was observed for some subtypes of OC, with better OS for women with MDLC and tubular carcinoma. Radiotherapy extended OS for all types of IBC in older women (≥50 years). For younger women (<50 years), radiotherapy improved OS in women with IDC, but not in those with ILC or uncommon IBC. Radiotherapy did not change cancer-specific survival of younger women with any IBC. CONCLUSIONS: Uncommon IBCs have distinct patterns of prognosis and survival. The effectiveness of radiotherapy in women with uncommon IBC may differ by age. The underlying mechanisms warrant further studies.
Lu, Yi, et al.Twa1/Gid8 is a β-catenin nuclear retention factor in Wnt signaling and colorectal tumorigenesis”. Cell Res 27.12 (2017): , 27, 12, 1422-1440. Web.Abstract
Hyperactivation of Wnt/β-catenin signaling is one of the major causes of human colorectal cancer (CRC). A hallmark of Wnt signaling is the nuclear accumulation of β-catenin. Although β-catenin nuclear import and export have been widely investigated, the underlying mechanism of β-catenin's nuclear retention remains largely unknown. Here, we report that Twa1/Gid8 is a key nuclear retention factor for β-catenin during Wnt signaling and colorectal carcinogenesis. In the absence of Wnt, Twa1 exists together with β-catenin in the Axin complex and undergoes ubiquitination and degradation. Upon Wnt signaling, Twa1 translocates into the nucleus, where it binds and retains β-catenin. Depletion of Twa1 attenuates Wnt-stimulated gene expression, dorsal development of zebrafish embryos and xenograft tumor growth of CRC cells. Moreover, nuclear Twa1 is significantly upregulated in human CRC tissues, correlating with the nuclear accumulation of β-catenin and poor prognosis. Thus, our results identify Twa1 as a previously undescribed regulator of the Wnt pathway for promoting colorectal tumorigenesis by facilitating β-catenin nuclear retention.
Ye, Xin, et al.Upholding a role for EMT in breast cancer metastasis”. Nature 547.7661 (2017): , 547, 7661, E1-E3. Web.
Aiello, Nicole M, et al.Upholding a role for EMT in pancreatic cancer metastasis”. Nature 547.7661 (2017): , 547, 7661, E7-E8. Web.
Zheng, Hanqiu, et al.Therapeutic Antibody Targeting Tumor- and Osteoblastic Niche-Derived Jagged1 Sensitizes Bone Metastasis to Chemotherapy”. Cancer Cell 32.6 (2017): , 32, 6, 731-747.e6. Web.Abstract
Bone metastasis is a major health threat to breast cancer patients. Tumor-derived Jagged1 represents a central node in mediating tumor-stromal interactions that promote osteolytic bone metastasis. Here, we report the development of a highly effective fully human monoclonal antibody against Jagged1 (clone 15D11). In addition to its inhibitory effect on bone metastasis of Jagged1-expressing tumor cells, 15D11 dramatically sensitizes bone metastasis to chemotherapy, which induces Jagged1 expression in osteoblasts to provide a survival niche for cancer cells. We further confirm the bone metastasis-promoting function of osteoblast-derived Jagged1 using osteoblast-specific Jagged1 transgenic mouse model. These findings establish 15D11 as a potential therapeutic agent for the prevention or treatment of bone metastasis.
Esposito, Mark, Theresa Guise, and Yibin Kang. “The Biology of Bone Metastasis”. Cold Spring Harb Perspect Med (2017). Web.Abstract
Bone metastasis, or the development of secondary tumors within the bone of cancer patients, is a debilitating and incurable disease. Despite its morbidity, the biology of bone metastasis represents one of the most complex and intriguing of all oncogenic processes. This complexity derives from the intricately organized bone microenvironment in which the various stages of hematopoiesis, osteogenesis, and osteolysis are jointly regulated but spatially restricted. Disseminated tumor cells (DTCs) from various common malignancies such as breast, prostate, lung, and kidney cancers or myeloma are uniquely primed to subvert these endogenous bone stromal elements to grow into pathological osteolytic or osteoblastic lesions. This colonization process can be separated into three key steps: seeding, dormancy, and outgrowth. Targeting the processes of dormancy and initial outgrowth offers the most therapeutic promise. Here, we discuss the concepts of the bone metastasis niche, from controlling tumor-cell survival to growth into clinically detectable disease.
Sánchez-Cid, Lourdes, et al.MicroRNA-200, associated with metastatic breast cancer, promotes traits of mammary luminal progenitor cells”. Oncotarget 848 (2017): , 8, 48, 83384-83406. Web.Abstract
MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization. MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formedby cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells.
Liu, Daniel D, and Yibin Kang. “Ets2 anchors the prometastatic function of mutant p53 in osteosarcoma”. Genes Dev 31.18 (2017): , 31, 18, 1823-1824. Web.Abstract
Mutations in the tumor suppressor p53 occur in a majority of human cancers. Some gain-of-function (GOF) p53 mutations endow tumor cells with increased metastatic ability, although our understanding of the underlying mechanism remains incomplete. In this issue of, Pourebrahim and colleagues (pp. 1847-1857) develop a new mouse model of osteosarcoma in which a GOF mutant p53 allele is expressed specifically in osteoblasts, while the tumor microenvironment remains wild type for p53, allowing for the study of cell-autonomous functions. In this model, the role of GOF mutant p53 in promoting lung metastasis is shown to be critically dependent on the transcription factor Ets2 and is accompanied by the elevated expression of a cluster of small nucleolar RNAs (snoRNAs).
Li, Zhuo, and Yibin Kang. “Lipid Metabolism Fuels Cancer's Spread.”. Cell Metab 25.2 (2017): , 25, 2, 228-230. Web.Abstract
The ability to prospectively identify metastasis-initiating cells is essential for developing new anti-metastasis therapeutics. In a recent issue of Nature, Pascual et al. (2017) demonstrate that the fatty acid receptor CD36 marks a subpopulation of cancer cells with unique metastasis-initiating potential, highlighting a key role of lipid metabolism in metastatic colonization.
Zhuo, Wei, and Yibin Kang. “Lnc-ing ROR1-HER3 and Hippo signalling in metastasis.”. Nat Cell Biol 19.2 (2017): , 19, 2, 81-83. Web.Abstract
Long noncoding RNAs (lncRNAs) are increasingly recognized for their role in cancer progression. The previously uncharacterized lncRNA MAYA is now shown to promote bone metastasis by bridging ROR1-HER3 and Hippo-YAP pathways. Neuregulin-induced HER3 phosphorylation by ROR1 recruits a MAYA-containing protein complex to methylate Hippo/MST1 and activate YAP target genes that are essential for bone metastasis.
Celià-Terrassa, Toni, and Yibin Kang. “Mouse genomic screen reveals novel host regulator of metastasis”. Genome Biol 18.1 (2017): , 18, 1, 31. Web.Abstract
Tumor cells have to overcome challenges in the host tissue microenvironment to metastasize successfully to distant organs. In a recent Nature study, a genome-wide functional screen demonstrated that deficiency of the sphingosine-1-phoshate (S1P) transporter gene Spns2 in endothelium increased immune-mediated cell killing by T cells and natural killer (NK) cells, thereby suppressing metastatic colonization.
Peinado, Héctor, et al.Pre-metastatic niches: organ-specific homes for metastases.”. Nat Rev Cancer 17.5 (2017): , 17, 5, 302-317. Web.Abstract
It is well established that organs of future metastasis are not passive receivers of circulating tumour cells, but are instead selectively and actively modified by the primary tumour before metastatic spread has even occurred. Sowing the 'seeds' of metastasis requires the action of tumour-secreted factors and tumour-shed extracellular vesicles that enable the 'soil' at distant metastatic sites to encourage the outgrowth of incoming cancer cells. In this Review, we summarize the main processes and new mechanisms involved in the formation of the pre-metastatic niche.
Shirvani-Dastgerdi, Elham, et al.Selection of the highly replicative and partially multidrug resistant rtS78T HBV polymerase mutation during TDF-ETV combination therapy.”. J Hepatol (2017). Web.Abstract
BACKGROUND & AIMS: Patients chronically infected with the hepatitis B virus (HBV) and receiving long-term treatment with nucleoside or nucleotide analogues are at risk of selecting HBV strains with complex mutational patterns. We herein report two cases of HBV-infected patients with insufficient viral suppression, despite dual antiviral therapy with entecavir (ETV) and tenofovir (TDF). One patient died from aggressive hepatocellular carcinoma (HCC). METHODS: Serum samples from the two patients at different time points were analyzed using ultra-deep pyrosequencing analysis. HBV mutations were identified and transiently transfected into hepatoma cells in vitro using replication-competent HBV vectors, and functionally analyzed. We assessed replication efficacy, resistance to antivirals and potential impact on HBV secretion (viral particles, exosomes). RESULTS: Sequencing analyses revealed the selection of the rtS78T HBV polymerase mutation in both cases that simultaneously creates a premature stop codon at sC69 and thereby deletes almost the entire small HBV surface protein. One of the patients had an additional 261bp deletion in the preS1/S2 region. Functional analyses of the mutations in vitro revealed that the rtS78T/sC69∗ mutation, but not the preS1/S2 deletion, significantly enhanced viral replication and conferred reduced susceptibility to ETV and TDF. The sC69∗ mutation caused truncation of HBs protein, leading to impaired detection by commercial HBsAg assay, without causing intracellular HBsAg retention or affecting HBV secretion. CONCLUSIONS: The rtS78T/sC69∗ HBV mutation, associated with enhanced replication and insufficient response to antiviral treatment, may favor long-term persistence of these isolates. In addition to the increased production of HBV transcripts and the sustained secretion of viral particles in the absence of antigenic domains of S protein, this HBV mutation may predispose patients to carcinogenic effects. LAY SUMMARY: Long-term treatment with antiviral drugs carries the risk of selecting mutations in the hepatitis B virus (HBV). We herein report two cases of patients with insufficient response to dual tenofovir and entecavir therapy. Molecular analyses identified a distinct mutation, rtS78T/sC69∗, that abolishes HBsAg detection, enhances replication, sustains exosome-mediated virion secretion and decreases susceptibility to antivirals, thereby representing a potentially high-risk mutation for HBV-infected individuals.
Zheng, Hanqiu, Wenyang Li, and Yibin Kang. “Tumor-Stroma Interactions in Bone Metastasis: Molecular Mechanisms and Therapeutic Implications.”. Cold Spring Harb Symp Quant Biol (2017). Web.Abstract
Metastasis and associated complications are the major cause of death for cancer patients. The incidence of bone metastasis is among the highest in cancers arising from breast, prostate, and lung. Common skeletal-related events caused by bone metastasis include aberrant bone remodeling (osteolytic, osteoblastic, and mixed), bone pain, fracture, spinal cord compression, and life-threatening hypercalcemia. It is now known that interactions between tumor cells and bone stroma lie at the core of major steps of bone-metastasis progression. Approved pharmaceutical drugs for the treatment of bone metastasis, including bisphosphonate and denosumab, were designed to target bone stromal cell components. In recent years, research in our laboratory and others has revealed intricate tumor-stroma interactions as the driving force behind osteolytic bone-metastasis development, providing a set of new candidates for future drug development. Moreover, recent studies also indicate existence of distinct bone niches in supporting hematopoietic stem cell renewal and differentiation. These niche components are likely utilized by metastatic cancer cells for seeding, progression, and therapy resistance of bone metastasis. Future studies in this direction may discover additional therapeutic targets for bone-metastasis treatment.
2016
Kang, Yibin. “Imaging TGFβ Signaling in Mouse Models of Cancer Metastasis.”. Methods Mol Biol 1344 (2016): , 1344, 219-32. Web.Abstract
Metastatic spread of cancer cells from the primary tumors to distant vital organs, such as lung, liver, brain, and bone, is responsible for the majority of cancer-related deaths. Development of metastatic lesions is critically dependent on the interaction of tumor cells with the stromal microenvironment. As a multifunctional paracrine signaling factor that is abundantly produced by both tumor and stromal cells, TGFβ has been well established as an important mediator of tumor-stromal interaction during cancer metastasis. Imaging the in vivo dynamic of TGFβ signaling activity during cancer metastasis is critical for understanding the pathogenesis of the disease, and for the development of effective anti-metastasis treatments. In this chapter, I describe several xenograft methods to introduce human breast cancer cells into nude mice in order to generate spontaneous and experimental metastases, as well as the luciferase-based bioluminescence imaging method for quantitative imaging analysis of TGFβ signaling in tumor cells during metastasis.

Pages