The Economic and Environmental Consequences of Implementing Nitrogen-Efficient Technologies and Management Practices in Agriculture

Citation:

Zhang, Xin, Denise L. Mauzerall+, Eric A. Davidson, David R. Kanter, and Ruohong Cai. “The Economic and Environmental Consequences of Implementing Nitrogen-Efficient Technologies and Management Practices in Agriculture.” Journal of Environmental Quality 44, no. 2 (2015): 312-324.
Full Article PDF3.61 MB

Abstract:

Technologies and management practices (TMPs) that reduce the application of nitrogen (N) fertilizer while maintaining crop yields can improve N use efciency (NUE) and are important tools for meeting the dual challenges of increasing food production and reducing N pollution. However, because farmers operate to maximize their profts, incentives to implement TMPs are limited, and TMP implementation will not always reduce N pollution. Therefore, we have developed the NUE Economic and Environmental impact analytical framework (NUE3 ) to examine the economic and environmental consequences of implementing TMPs in agriculture, with a specifc focus on farmer profts, N fertilizer consumption, N losses, and cropland demand. Our analytical analyses show that impact of TMPs on farmers’ economic decision-making and the environment is afected by how TMPs change the yield ceiling and the N fertilization rate at the ceiling and by how the prices of TMPs, fertilizer, and crops vary. Technologies and management practices that increase the yield ceiling appear to create a greater economic incentive for farmers than TMPs that do not but may result in higher N application rates and excess N losses. Nevertheless, the negative environmental impacts of certain TMPs could be avoided if their price stays within a range determined by TMP yield response, fertilizer price, and crop price. We use a case study on corn production in the midwestern United States to demonstrate how NUE3 can be applied to farmers’ economic decision-making and policy analysis. Our NUE3 framework provides an important tool for policymakers to understand how combinations of fertilizer, crop, and TMP prices afect the possibility of achieving win-win outcomes for farmers and the environment.

Last updated on 03/18/2022