Co-Benefits

2021
Peng^, Liqun, Feiqi Liu^, Mi Zhou^, Mingwei Li#, Qiang Zhang, and Denise L. Mauzerall+. “Alternative-energy-vehicles deployment delivers climate, air quality, and health co-benefits when coupled with decarbonizing power generation in China.” One Earth 4 (2021).Abstract
We estimate the co-benefits of AEV utilization for air quality, health, and climate, and evaluate the economic benefits of AEV penetration with various levels of decarbonized electricity in China. We find that air quality and GHG mitigation co-benefits through alternative energy vehicle deployment increases as the power sector decarbonized. Co­benefits are maximized via high penetration of AEV deployment powered with ambitious and rapid power sector decarbonization.
Full Article PDF
2018
Yang^, Junnan, Xiaoyuan Li^, Wei Peng^, Fabian Wagner, and Denise L. Mauzerall+. “Climate, air quality and human health benefits of various solar photovoltaic deployment scenarios in China in 2030.” Environmental Research Letters 13, no. 6 (2018).Abstract
Solar photovoltaic (PV) electricity generation can greatly reduce both air pollutant and greenhouse gas emissions compared to fossil fuel electricity generation. The Chinese government plans to greatly scale up solar PV installation between now and 2030. However, different PV development pathways will influence the range of air quality and climate benefits. Benefits depend on how much electricity generated from PV is integrated into power grids and the type of power plant displaced. Using a coal-intensive power sector projection as the base case, we estimate the climate, air quality, and related human health benefits of various 2030 PV deployment scenarios. We use the 2030 government goal of 400 GW installed capacity but vary the location of PV installation and the extent of inter-provincial PV electricity transmission. We find that deploying distributed PV in the east with inter-provincial transmission maximizes potential CO2 reductions and air quality-related health benefits (4.2% and 1.2% decrease in national total CO2 emissions and air pollution-related premature deaths compared to the base case, respectively). Deployment in the east with inter-provincial transmission results in the largest benefits because it maximizes displacement of the dirtiest coal-fired power plants and minimizes PV curtailment, which is more likely to occur without inter-provincial transmission. We further find that the maximum co-benefits achieved with deploying PV in the east and enabling inter-provincial transmission are robust under various maximum PV penetration levels in both provincial and regional grids. We find large potential benefits of policies that encourage distributed PV deployment and facilitate inter-provincial PV electricity transmission in China.
Full Text PDF
Peng^, Wei, Junnan Yang^, Xi Lu, and Denise L. Mauzerall+. “Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China.” Applied Energy (2018).Abstract
Electrification with decarbonized electricity is a central strategy for carbon mitigation. End-use electrification can also reduce air pollutant emissions from the demand sectors, which brings public health co-benefits. Here we focus on electrification strategies for China, a country committed to both reducing air pollution and peaking carbon emissions before 2030. Considering both coal-intensive and decarbonized power system scenarios for 2030, we assess the air quality, health and climate co-benefits of various end-use electrification scenarios for the vehicle and residential sectors relative to a non-electrified coal-intensive business-as-usual scenario (BAU). Based on an integrated assessment using the regional air pollution model WRF-Chem and epidemiological concentration–response relationships, we find that coal-intensive electrification (75% coal) does not reduce carbon emissions, but can bring significant air quality and health benefits (41,000–57,000 avoided deaths in China annually). In comparison, switching to a half decarbonized power supply (∼50% coal) for electrification of the transport and/or residential sectors leads to a 14–16% reduction in carbon emissions compared to BAU, as well as greater air quality and health co-benefits (55,000–69,000 avoided deaths in China annually) than coal intensive electrification. Furthermore, depending on which end-use sector is electrified, we find different regional distributions of air quality and health benefits. While electrifying the transport sector improves air quality throughout eastern China, electrifying the residential sector brings most benefits to the North China Plain region in winter where coal-based heating contributes substantially to air pollution.
Full Article PDF
Peng, Wei, Fabian Wagner, M. V. Ramana, Haibo Zhai, Mitchell J. Small, Carole Dalin, Xin Zhang, and Denise L. Mauzerall+. “Managing China's coal power plants to address multiple environmental objectives.” Nature Sustainability 1 (2018): 693-701.Abstract
China needs to manage its coal-dominated power system to curb carbon emissions, as well as to address local environmental priorities such as air pollution and water stress. Here we examine three province-level scenarios for 2030 that represent various electricity demand and low-carbon infrastructure development pathways. For each scenario, we optimize coal power generation strategies to minimize the sum of national total coal power generation cost, inter-regional transmission cost and air pollution and water costs. We consider existing environmental regulations on coal power plants, as well as varying prices for air pollutant emissions and water to monetize the environmental costs. Comparing 2030 to 2015, we find lower CO2 emissions only in the scenarios with substantial renewable generation or low projected electricity demand. Meanwhile, in all three 2030 scenarios, we observe lower air pollution and water impacts than were recorded in 2015 when current regulations and prices for air pollutant emissions and water are imposed on coal power plants. Increasing the price of air pollutant emissions or water alone can lead to a tradeoff between these two objectives, mainly driven by differences between air pollution-oriented and water-oriented transmission system designs that influence where coal power plants will be built and retired.
Full Article PDF
2017
Peng, Wei, Junnan Yang, Fabian Wagner, and Denise L. Mauzerall+. “Substantial air quality and climate co-benefits achievable now with sectoral mitigation strategies in China.” Science of the Total Environment 598 (2017): 1076-1084.Abstract
China is the world's top carbon emitter and suffers from severe air pollution. We examine near-term air quality and CO2 co-benefits of various current sector-based policies in China. Using a 2015 base case, we evaluate the potential benefits of four sectoral mitigation strategies. All scenarios include a 20% increase in conventional air pollution controls as well as the following sector-specific fuel switching or technology upgrade strategies. Power sector (POW): 80% replacement of small coal power plants with larger more efficient ones; Industry sector (IND): 10% improvement in energy efficiency; Transport sector (TRA): replacement of high emitters with average vehicle fleet emissions; and Residential sector (RES): replacement of 20% of coal-based stoves with stoves using liquefied petroleum gas (LPG). Conducting an integrated assessment using the regional air pollution model WRFChem, we find that the IND scenario reduces national air-pollution-related deaths the most of the four scenarios examined (27,000, 24,000, 13,000 and 23,000 deaths reduced annually in IND, POW, TRA and RES, respectively). In addition, the IND scenario reduces CO2 emissions more than 8 times as much as any other scenario (440, 53, 0 and 52 Mt CO2 reduced in IND, POW, TRA and RES, respectively). We also examine the benefits of an industrial efficiency improvement of just 5%. We find the resulting air quality and health benefits are still among the largest of the sectoral scenarios, while the carbon mitigation benefits remain more than 3 times larger than any other scenario. Our analysis hence highlights the importance of even modest industrial energy efficiency improvements and air pollution control technology upgrades for air quality, health and climate benefits in China.
Full Article PDF
Peng, Wei, Jiahai Yuan, Yu Zhao, Meiyun Lin, Qiang Zhang, David G Victor, and Denise L Mauzerall+. “Air quality and climate benefits of long-distance electricity transmission in China.” Environmental Research Letters 12, no. 6 (2017).Abstract
China is the world’s top carbon emitter and suffers from severe air pollution. It has recently made commitments to improve air quality and to peak its CO2 emissions by 2030. We examine one strategy that can potentially address both issues—utilizing long-distance electricity transmission to bring renewable power to the polluted eastern provinces. Based on an integrated assessment using state-of-the-science atmospheric modeling and recent epidemiological evidence, we find that transmitting a hybrid of renewable (60%) and coal power (40%) (Hybrid-by-wire) reduces 16% more national air-pollution-associated deaths and decreases three times more carbon emissions than transmitting only coal-based electricity. Moreover, although we find that transmitting coal power (Coal-by-Wire, CbW) is slightly more effective at reducing air pollution impacts than replacing old coal power plants with newer cleaner ones in the east (Coal-by-Rail, CbR) (CbW achieves a 6% greater reduction in national total air-pollution-related mortalities than CbR), both coal scenarios have approximately the same carbon emissions. We thus demonstrate that coordinating transmission planning with renewable energy deployment is critical to maximize both local air quality benefits and global climate benefits.
Full Article PDF
Qin, Yue, Fabian Wagner, Noah Scovronick, Wei Peng, Junnan Yang, Tong Zhu, Kirk R. Smith, and Denise L. Mauzerall+. “Air quality, health, and climate implications of China's synthetic natural gas development.” Proceedings of the National Academy of Sciences of the United States of America 114, no. 19 (2017): 4887-4892.Abstract
Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollutionassociated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties
Full Article PDF