Chen^, Xu, Kevin P. Gallagher, and Denise L. Mauzerall+. “
Chinese Overseas Development Financing of Electric Power Generation: A Comparative Analysis.”
One Earth 3 (2020): 491-503.
Abstract
IN BRIEF:
The Paris climate goals require rapid decarbonization of the global power generation sector. To achieve this goal, it is critical to redirect international development finance away from fossil fuel toward renewable energy technologies. We find that East Asian national DFIs have committed to finance a new generation of coal power plants. However, China’s new domestic decarbonization goal, if extended to its overseas finance, will be enormously valuable in reducing future carbon emissions from recipient countries.
SUMMARY:
Global power generation must rapidly decarbonize by mid-century to meet the goal of stabilizing global warming below 2C. To meet this objective, multilateral development banks (MDBs) have gradually reduced fossil fuel and increased renewable energy financing. Meanwhile, globally active national development finance institutions (DFIs) from Japan and South Korea have continued to finance overseas coal plants. Less is known about the increasingly active Chinese DFIs. Here, we construct a new dataset of China’s policy banks’ overseas power generation financing and compare their technology choices and impact on generation capacity with MDBs and Japanese and South Korean DFIs. We find that Chinese DFI power financing since 2000 has dramatically increased, surpassing other East Asian national DFIs and the major MDBs’ collective public sector power financing in 2013. As most Chinese DFI financing is currently in coal, decarbonization of their power investments will be critical in reducing future carbon emissions from recipient countries.
Full Article PDF Liu, H, and DL Mauzerall+. “
Costs of clean heating in China: Evidence from rural households in the Beijing-Tianjin-Hebei region.”
Energy Economics 90 (2020).
AbstractTo address severe air pollution, the Chinese government plans to replace most residential coal stoves in northern China with clean heating devices by 2021. Coal stove replacement started in the “Beijing-Tianjin-Hebei (BTH)” region and is expanding throughout northern China. Removing coal stoves reduces air pollutant emissions and hence is beneficial for both air quality and public health, as well as offering greenhouse gas mitigation co-benefits. However, there is little discussion of the economic costs of various clean heating technologies. In this study, we estimate total annual costs (TAC, annualized capital costs plus annual operating costs) for rural households, across cities/counties in the BTH region, to replace their coal stoves with several prevalent clean options—air-source heat pumpswith fan coils (ASHPwF), electric resistance heaters with thermal storage (RHwTS),
natural gas heaters (NGH), and clean coal briquettes with improved stoves (CCIS). We find: 1) Without subsidies, CCIS have the lowest TAC of all clean options. TAC of unsubsidized CCIS approximately doubles TAC of raw coal with improved stoves (RCIS), while unsubsidized electric/gas heaters cost 3–5 times more than RCIS. Thus, it is important for governments to financially support households' replacement of their coal stoves with clean heaters to facilitatewidespread adoption. 2)With subsidies, CCIS have the lowest TAC in all regions except Beijing. In Beijing, generous subsides make ASHPwF—themost energy-efficient option—have the lowest TAC. In Tianjin, TAC of subsidized ASHPwF are slightly higher than CCIS and NGH. Throughout Hebei, except for a few severely cold northern counties where gas prices are high, subsidized NGH have lower TAC than ASHPwF and RHwTS. 3) Cost competitiveness of ASHPwF increases as heat demand increases, (e.g., higher desired indoor temperatures, larger home sizes, etc.) indicating that ASHP are good options for households with larger home sizes and commercial buildings. 4) Substantial potential exists to reduce heating expenses by improving building energy efficiency particularly in severely cold regions. 5) Cost advantages of NGH vary sharply with gas prices.
Full Article PDF Li^, Zhongshu, Kevin P. Gallagher, and Denise L. Mauzerall+. “
China’s global power: Estimating Chinese foreign direct investment in the electric power sector.”
Energy Policy 136 (2020): 1-9.
AbstractWe analyze the spatial and technological distribution of China’s overseas electric power investments around the world, and the pollution intensity of Chinese coal fired power plants relative to those held by non-Chinese entities. We find that Chinese firms hold approximately $115 billion USD in electric power assets globally, with an average of 73% ownership stake in a total capacity of 81 GW. Chinese power investments span the globe but are largely found in developing countries, particularly in Asia and Latin America. The vast majority of Chinese investment goes to coal (24.5 GW), gas (20.5 GW) and hydropower (18.1 GW), while the share of wind (7.2 GW) and solar (3.1 GW) is relatively small but may be rising. The energy mix of Chinese overseas investment is similar to the existing world portfolio. Within the coal sector, between 2011 and 2017, the majority of Chinese greenfield investment in coal used supercritical technologies (58 percent) while only 34 percent of non-Chinese coal plants built during this period were supercritical.
Full Article PDF