Health Impacts of Air Pollution

Zhou, Mi, Hongxun Liu, Liqun Peng, Yue Qin, Dan Chen, Lin Zhang, and Denise L. Mauzerall+. “Environmental benefits and household costs of clean heating options in northern China.” Nature Sustainability (2021).Abstract
The Chinese government accelerated the clean residential heating transition in northern China as part of a successful effort to improve regional air quality. Meanwhile, China has committed to carbon neutrality by 2060, making strategic choices for long-term decarbonization of the residential sector necessary. However, the synergies and trade-offs for health and carbon of alternative heating options and associated costs have not been systematically considered. Here we investigate air-quality–health–carbon interdependencies as well as household costs of using electricity (heat pumps or resistance heaters), gas or clean coal for residential heating for individual provinces across northern China. We find substantial air-quality and health benefits, varied carbon emissions and increased heating costs across clean heating options. With the 2015 power mix, gas heaters offer the largest health–carbon co-benefits, while resistance heaters lead to health–carbon trade-offs. As the power grid decarbonizes, by 2030 heat pumps achieve the largest health–carbon synergies of the options we analysed. Despite high capital costs, heat pumps generally have the lowest operating costs and thus are competitive for long-term use. With increased subsidies on the purchase of heat pumps, the government can facilitate further air-quality improvements and carbon mitigation in the clean heating transition.
Full Article PDF
Peng^, Liqun, Feiqi Liu^, Mi Zhou^, Mingwei Li#, Qiang Zhang, and Denise L. Mauzerall+. “Alternative-energy-vehicles deployment delivers climate, air quality, and health co-benefits when coupled with decarbonizing power generation in China.” One Earth 4 (2021).Abstract
We estimate the co-benefits of AEV utilization for air quality, health, and climate, and evaluate the economic benefits of AEV penetration with various levels of decarbonized electricity in China. We find that air quality and GHG mitigation co-benefits through alternative energy vehicle deployment increases as the power sector decarbonized. Co­benefits are maximized via high penetration of AEV deployment powered with ambitious and rapid power sector decarbonization.
Full Article PDF
Hess, Jeremy J., ..., and Denise L. Mauzerall. “Guidelines for Modeling and Reporting Health Effects of Climate Change Mitigation Actions.” Environmental Health Perspectives 128, no. 11 (2020).Abstract


Modeling suggests that climate change mitigation actions can have substantial human health benefits that accrue quickly and locally. Documenting the benefits can help drive more ambitious and health-protective climate change mitigation actions; however, documenting the adverse health effects can help to avoid them. Estimating the health effects of mitigation (HEM) actions can help policy makers prioritize investments based not only on mitigation potential but also on expected health benefits. To date, however, the wide range of incompatible approaches taken to developing and reporting HEM estimates has limited their comparability and usefulness to policymakers.


The objective of this effort was to generate guidance for modeling studies on scoping, estimating, and reporting population health effects from climate change mitigation actions.


An expert panel of HEM researchers was recruited to participate in developing guidance for conducting HEM studies. The primary literature and a synthesis of HEM studies were provided to the panel. Panel members then participated in a modified Delphi exercise to identify areas of consensus regarding HEM estimation. Finally, the panel met to review and discuss consensus findings, resolve remaining differences, and generate guidance regarding conducting HEM studies.


The panel generated a checklist of recommendations regarding stakeholder engagement: HEM modeling, including model structure, scope and scale, demographics, time horizons, counterfactuals, health response functions, and metrics; parameterization and reporting; approaches to uncertainty and sensitivity analysis; accounting for policy uptake; and discounting.


This checklist provides guidance for conducting and reporting HEM estimates to make them more comparable and useful for policymakers. Harmonization of HEM estimates has the potential to lead to advances in and improved synthesis of policy-relevant research that can inform evidence-based decision making and practice.

Full Article PDF
Qin, Yue, Yuanyuan Fang, Xiaoyuan Li, Vaishali Naik, Larry W. Horowitz, Junfeng Liu, Noah Scovronick, and Denise L. Mauzerall+. “Source attribution of black carbon affecting regional air quality, premature mortality and glacial deposition in 2000.”  Atmospheric Environment 206 (2019): 144-155.Abstract
Black carbon (BC) mitigation can reduce adverse environmental impacts on climate, air quality, human health, and water resource availability. To facilitate the identification of mitigation priorities, we use a state-of-thescience global chemistry-climate coupled model (AM3), with additional tagged BC tracers representing regional (East Asia, South Asia, Europe and North America) and sectoral (land transport, residential, industry) anthropogenic BC emissions to identify sources with the largest impacts on air quality, human health and glacial deposition. We find that within each tagged region, domestic emissions dominate BC surface concentrations and associated premature mortality (generally over 90%), as well as BC deposition on glaciers (∼40–95% across glaciers). BC emissions occurring within each tagged source region contribute roughly 1–2 orders of magnitude more to their domestic BC concentrations, premature mortality, and BC deposition on regional glaciers than that caused by the same quantity of BC emitted from foreign regions. At the sectoral level, the South Asian residential sector contributes ∼60% of BC associated premature mortality in South Asia and ∼40–60% of total BC deposited on southern Tibetan glaciers. Our findings imply that BC mitigation within a source region, particularly from East and South Asian residential sectors, will bring the largest reductions in BC associated air pollution, premature mortality, and glacial deposition.
Full Article PDF
Yang^, Junnan, Xiaoyuan Li^, Wei Peng^, Fabian Wagner, and Denise L. Mauzerall+. “Climate, air quality and human health benefits of various solar photovoltaic deployment scenarios in China in 2030.” Environmental Research Letters 13, no. 6 (2018).Abstract
Solar photovoltaic (PV) electricity generation can greatly reduce both air pollutant and greenhouse gas emissions compared to fossil fuel electricity generation. The Chinese government plans to greatly scale up solar PV installation between now and 2030. However, different PV development pathways will influence the range of air quality and climate benefits. Benefits depend on how much electricity generated from PV is integrated into power grids and the type of power plant displaced. Using a coal-intensive power sector projection as the base case, we estimate the climate, air quality, and related human health benefits of various 2030 PV deployment scenarios. We use the 2030 government goal of 400 GW installed capacity but vary the location of PV installation and the extent of inter-provincial PV electricity transmission. We find that deploying distributed PV in the east with inter-provincial transmission maximizes potential CO2 reductions and air quality-related health benefits (4.2% and 1.2% decrease in national total CO2 emissions and air pollution-related premature deaths compared to the base case, respectively). Deployment in the east with inter-provincial transmission results in the largest benefits because it maximizes displacement of the dirtiest coal-fired power plants and minimizes PV curtailment, which is more likely to occur without inter-provincial transmission. We further find that the maximum co-benefits achieved with deploying PV in the east and enabling inter-provincial transmission are robust under various maximum PV penetration levels in both provincial and regional grids. We find large potential benefits of policies that encourage distributed PV deployment and facilitate inter-provincial PV electricity transmission in China.
Full Text PDF
Peng^, Wei, Junnan Yang^, Xi Lu, and Denise L. Mauzerall+. “Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China.” Applied Energy (2018).Abstract
Electrification with decarbonized electricity is a central strategy for carbon mitigation. End-use electrification can also reduce air pollutant emissions from the demand sectors, which brings public health co-benefits. Here we focus on electrification strategies for China, a country committed to both reducing air pollution and peaking carbon emissions before 2030. Considering both coal-intensive and decarbonized power system scenarios for 2030, we assess the air quality, health and climate co-benefits of various end-use electrification scenarios for the vehicle and residential sectors relative to a non-electrified coal-intensive business-as-usual scenario (BAU). Based on an integrated assessment using the regional air pollution model WRF-Chem and epidemiological concentration–response relationships, we find that coal-intensive electrification (75% coal) does not reduce carbon emissions, but can bring significant air quality and health benefits (41,000–57,000 avoided deaths in China annually). In comparison, switching to a half decarbonized power supply (∼50% coal) for electrification of the transport and/or residential sectors leads to a 14–16% reduction in carbon emissions compared to BAU, as well as greater air quality and health co-benefits (55,000–69,000 avoided deaths in China annually) than coal intensive electrification. Furthermore, depending on which end-use sector is electrified, we find different regional distributions of air quality and health benefits. While electrifying the transport sector improves air quality throughout eastern China, electrifying the residential sector brings most benefits to the North China Plain region in winter where coal-based heating contributes substantially to air pollution.
Full Article PDF
Peng, Wei, Fabian Wagner, M. V. Ramana, Haibo Zhai, Mitchell J. Small, Carole Dalin, Xin Zhang, and Denise L. Mauzerall+. “Managing China's coal power plants to address multiple environmental objectives.” Nature Sustainability 1 (2018): 693-701.Abstract
China needs to manage its coal-dominated power system to curb carbon emissions, as well as to address local environmental priorities such as air pollution and water stress. Here we examine three province-level scenarios for 2030 that represent various electricity demand and low-carbon infrastructure development pathways. For each scenario, we optimize coal power generation strategies to minimize the sum of national total coal power generation cost, inter-regional transmission cost and air pollution and water costs. We consider existing environmental regulations on coal power plants, as well as varying prices for air pollutant emissions and water to monetize the environmental costs. Comparing 2030 to 2015, we find lower CO2 emissions only in the scenarios with substantial renewable generation or low projected electricity demand. Meanwhile, in all three 2030 scenarios, we observe lower air pollution and water impacts than were recorded in 2015 when current regulations and prices for air pollutant emissions and water are imposed on coal power plants. Increasing the price of air pollutant emissions or water alone can lead to a tradeoff between these two objectives, mainly driven by differences between air pollution-oriented and water-oriented transmission system designs that influence where coal power plants will be built and retired.
Full Article PDF
Fang, Yuanyuan, Vaishali Naik, Larry W. Horowitz, and Denise L. Mauzerall+. “Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to the present.” Atmospheric Chemistry Physics (2013).Abstract
Increases in surface ozone (O3) and fine particulate matter (≤ 2.5 µm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. We estimate changes in surface O3 and PM2.5 from pre-industrial (1860) to present (2000) and the global present-day (2000) premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year) have increased by 8 ± 0.16 µg m−3 and 30 ± 0.16 ppbv (results reported as annual average ±standard deviation of 10-yr model simulations), respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O3) to change by +7.5 ± 0.19 µg m−3 (+25 ± 0.30 ppbv), +0.4 ± 0.17 µg m−3 (+0.5 ± 0.28 ppbv), and 0.04 ± 0.24 µg m−3 (+4.3 ± 0.33 ppbv), respectively. Total global changes in PM2.5 are associated with 1.5 (95 % confidence interval, CI, 1.2–1.8) million cardiopulmonary mortalities and 95 (95 % CI, 44–144) thousand lung cancer mortalities annually and changes in O3 are associated with 375 (95 % CI, 129–592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95 % and 85 % of mortalities from PM2.5 and O3 respectively). However, changing climate and increasing CH4 concentrations also contribute to premature mortality associated with air pollution globally (by up to 5 % and 15 %, respectively). In some regions, the contribution of climate change and increased CH4 together are responsible for more than 20 % of the respiratory mortality associated with O3 exposure. We find the interaction between climate change and atmospheric chemistry has influenced atmospheric composition and human mortality associated with industrial air pollution. Our study highlights the benefits to air quality and human health of CH4 mitigation as a component of future air pollution control policy.
Full Article PDF Supplementary Information
Smith, Kirk R., Howard Frumkin, Kalpana Balakrishnan, Colin D. Butler, Zoe A. Chafe, Ian Fairlie, Patrick Kinney, et al.Energy and Human Health.” Annual Review of Public Health 34 (2013): 159-188.Abstract
Energy use is central to human society and provides many health benefits. But each source of energy entails some health risks. This article reviews the health impacts of each major source of energy, focusing on those with major implications for the burden of disease globally. The biggest health impacts accrue to the harvesting and burning of solid fuels, coal and biomass, mainly in the form of occupational health risks and household and general ambient air pollution. Lack of access to clean fuels and electricity in the world’s poor households is a particularly serious risk for health. Although energy efficiency brings many benefits, it also entails some health risks, as do renewable energy systems, if not managed carefully. We do not review health impacts of climate change itself, which are due mostly to climate-altering pollutants from energy systems, but do discuss the potential for achieving near-term health cobenefits by reducing certain climate-related emissions.
Full Article PDF
Smith, KR, K Balakrishnan, C Butler, Z Chafe, I Fairlie, P Kinney, T Kjellstrom, et al.Energy and Health.” In Global Energy Assessment: Toward a Sustainable Future. Cambridge, UK: Cambridge University Press and International Institute for Applied Systems Analysis, 2012.
Mauzerall, Denise L.Methane Mitigation – Benefits for air quality, health, crop yields, and climate.” IGAC Newsletter (2011): 17-18. Full Text PDF
Zhang, J., DL Mauzerall, T Zhu, S Liang, M Ezzati, and J Remais. “Environmental health in China: challenges to achieving clean air and safe water.” The Lancet 375 (2010): 1110–19.Abstract
Environmental risk factors, especially air and water pollution, are a major source of morbidity and mortality in China. Biomass fuel and coal are burned for cooking and heating in almost all rural and many urban households, resulting in severe indoor air pollution that contributes greatly to the burden of disease. Many communities lack access to safe drinking water and sanitation, and thus the risk of waterborne disease in many regions is high. At the same time, China is rapidly industrialising with associated increases in energy use and industrial waste. Although economic growth from industrialisation has improved health and quality of life indicators, it has also increased the release of chemical toxins into the environment and the rate of environmental disasters, with severe eff ects on health. Air quality in China’s cities is among the worst in the world, and industrial water pollution has become a widespread health hazard. Moreover, emissions of climate-warming greenhouse gases from energy use are rapidly increasing. Global climate change will inevitably intensify China’s environmental health troubles, with potentially catastrophic outcomes from major shifts in temperature and precipitation. Facing the overlap of traditional, modern, and emerging environmental dilemmas, China has committed substantial resources to environmental improvement. The country has the opportunity to address its national environmental health challenges and to assume a central role in the international eff ort to improve the global environment.
Full Article PDF
Saikawa, E, V. Naik, L. W. Horowitz, J Liu, and DL Mauzerall+. “Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing.” Atmospheric Environment 43 (2009): 2814–2822.Abstract
Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO2), a sulfate (SO4 2) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct radiative effects and indirect effects on clouds, SO4 2 and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China’s emissions of SO2, SO4 2, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing (RF). Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration–response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to RF in 2000 and 2030. In 2000, we estimate these aerosols cause approximately 470 000 premature deaths in China and an additional 30 000 deaths globally. In 2030, aggressive emission controls lead to a 50% reduction in premature deaths from the 2000 level to 240 000 in China and 10 000 elsewhere, while under a high emissions scenario premature deaths increase 50% from the 2000 level to 720 000 in China and to 40 000 elsewhere. Because the negative RF from SO4 2 and OC is larger than the positive forcing from BC, Chinese aerosols lead to global net direct RF of 74 mW m2 in 2000 and between 15 and 97 mW m2 in 2030 depending on the emissions scenario. Our analysis indicates that increased effort to reduce greenhouse gases is essential to address climate change as China’s anticipated reduction of aerosols will result in the loss of net negative radiative forcing.
Full Article PDF Supplementary Information
Liu, J, DL Mauzerall+, and L. W. Horowitz. “Evaluating Inter-continental transport of fine aerosols: (2) Global Health Impacts.” Atmospheric Environment (2009).Abstract
In this second of two companion papers, we quantify for the first time the global impact on premature mortality of the inter-continental transport of fine aerosols (including sulfate, black carbon, organic carbon, and mineral dust) using the global modeling results of (Liu et al., 2009). Our objective is to estimate the number of premature mortalities in each of ten selected continental regions resulting from fine aerosols transported from foreign regions in approximately year 2000. Our simulated annual mean population-weighted (P-W) concentrations of total PM2.5 (aerosols with diameter less than 2.5 mm) are highest in East Asia (EA, 30 mg m3 ) and lowest in Australia (3.6 mg m3 ). Dust is the dominant component of PM2.5 transported between continents. We estimate global annual premature mortalities (for adults age 30 and up) due to inter-continental transport of PM2.5 to be nearly 380 thousand (K) in 2000. Approximately half of these deaths occur in the Indian subcontinent (IN), mostly due to aerosols transported from Africa and the Middle East (ME). Approximately 90K deaths globally are associated with exposure to foreign (i.e., originating outside a receptor region) non-dust PM2.5. More than half of the premature mortalities associated with foreign non-dust aerosols are due to aerosols originating from Europe (20K), ME (18K) and EA (15K); and nearly 60% of the 90K deaths occur in EA (21K), IN (19K) and Southeast Asia (16K). The lower and higher bounds of our estimated 95% confidence interval (considering uncertainties from the concentration–response relationship and simulated aerosol concentrations) are 18% and 240% of the estimated deaths, respectively, and could be larger if additional uncertainties were quantified. We find that in 2000 nearly 6.6K premature deaths in North America (NA) were associated with foreign PM2.5 exposure (5.5K from dust PM2.5). NA is least impacted by foreign PM2.5 compared to receptors on the Eurasian continent. However, the number of premature mortalities associated with foreign aerosols in NA (mostly occurring in the U.S.) is comparable to the reduction in premature mortalities expected to result from tightening the U.S. 8-h O3 standard from 0.08 ppmv to 0.075 ppmv. International efforts to reduce inter-continental transport of fine aerosol pollution would substantially benefit public health on the Eurasian continent and would also benefit public health in the United States.
Full Article PDF
Liu, J, DL Mauzerall+, and L. W. Horowitz. “Source-Receptor Relationships between East Asian Sulfur Dioxide Emissions and Northern Hemisphere Sulfate Concentrations.” Atmos. Chem. Phys 8 (2008): 3721–3733. Publisher's VersionAbstract
We analyze the effect of varying East Asian (EA) sulfur emissions on sulfate concentrations in the Northern Hemisphere, using a global coupled oxidant-aerosol model (MOZART-2). We conduct a base and five sensitivity simulations, in which sulfur emissions from each continent are tagged, to establish the source-receptor (S-R) relationship between EA sulfur emissions and sulfate concentrations over source and downwind regions. We find that from west to east across the North Pacific, EA sulfate contributes approximately 80%–20% of sulfate at the surface, but at least 50% at 500 hPa. Surface sulfate concentrations are dominated by local anthropogenic sources. Of the sulfate produced from sources other than local anthropogenic emissions (defined here as “background” sulfate), EA sources account for approximately 30%–50% (over the Western US) and 10%– 20% (over the Eastern US). The surface concentrations of sulfate from EA sources over the Western US are highest in MAM (up to 0.15µg/m3 ), and lowest in DJF (less than 0.06µg/m3 ). Reducing EA SO2 emissions will significantly decrease the spatial extent of the EA sulfate influence (represented by the areas where at least 0.1µg m−3 of sulfate originates from EA) over the North Pacific both at the surface and at 500 hPa in all seasons, but the extent of influence is insensitive to emission increases, particularly in DJF and JJA. We find that EA sulfate concentrations over most downwind regions respond nearly linearly to changes in EA SO2 emissions, but sulfate concentrations over the EA source region increase more slowly than SO2 emissions, particularly at the surface and in winter, due to limited availability of oxidants (in particular of H2O2, which oxidizes SO2 to sulfate in the aqueous phase). We find that similar estimates of the S-R relationship for trans-Pacific transport of EA sulfate would be obtained using either sensitivity (i.e., varying emissions from a region to examine the effects on downwind concentrations) or tagging techniques. Our findings suggest that future changes in EA sulfur emissions may cause little change in the sulfate-induced health impact over downwind continents. However, SO2 emission reductions may significantly reduce the sulfate concentrations and the resulting negative radiative forcing over the North Pacific and the United States, thus providing a warming tendency.
Full Article PDF
Tong, DQ, and DL Mauzerall+. “Summertime State-Level Source-Receptor Relationships between Nitrogen Oxide Emissions and Downwind Surface Ozone Concentrations over the Continental United States.” Environmental Science & Technology (2008).Abstract
Interstate transport of ozone (O3) and its precursors can contribute substantially to state-level surface O3 concentrations, making it difficult for some states to meet the National Ambient Air Quality Standards (NAAQS) for O3 by limiting only their own emissions. We analyze the effect of interstate transport on surface O3 in each continental U.S. state in July 1996 using the community multiscale air quality (CMAQ) model. By examining the difference between a baseline simulation and perturbation simulations in which each state’s nitrogen oxides (NOx) emissions are removed, we establish for the first time a summertime source-receptor matrixfor all 48 continental states. We find that for 16 (20) states at least one neighboring state’s NOx emissions are responsible for a larger increase in monthly mean peak 8 h (all-hour) O3 concentrations than the state’s own emissions. For over 80% of the contiguous states, interstatetransport is more importantthan local emissions for summertime peak O3 concentrations. Our source-receptor matrices indicate that the geographic range of the clean air interstate rule (CAIR) was sufficient to address interstate transport of O3 in most of the states included in the program. However, the exclusion of Texas, which has particularly large NOx emissions, from the CAIR O3 program left emission sources uncontrolled that contribute more than 1 ppbv to the July mean of peak8hO3 concentrations in over a dozen states.
Full Article PDF Supplementary Information
Naik, V., D. L. Mauzerall, L. W. Horowitz, M. D. Schwarzkopf, V. Ramaswamy, and M. Oppenheimer. “Sensitivity of Radiative Forcing from Biomass Burning Aerosols and Ozone to Emission Location.” Geophys. Res. Lett. 34 (2007). Full Article PDF
Liu, J., and D. L. Mauzerall+. “Evaluating the potential influence of inter-continental transport of sulfate aerosols on air quality.” Environmental Research Letters 2 (2007). Publisher's Version Full Article PDF
Tong, D.Q., and D. L. Mauzerall. “Spatial variability of summertime tropospheric ozone over the continental United States: Implications of an evaluation of the CMAQ model.” Atmospheric Environment 40 (2006): 3041-3056.Abstract
This study evaluates the ability of the Community Multiscale Air Quality (CMAQ) model to simulate the spatial variability of summertime ozone (O3) at the surface and in the free troposphere over the continental United States. Simulated surface O3 concentrations are compared with 987 Air Quality System (AQS) sites and 123 Clean Air Status and Trends Network (CASTNet) sites. CMAQ’s ability to reproduce surface observations varies with O3 concentration. The model best simulates observed O3 for intermediate concentrations (40–60 ppbv), while over-(under-) predicting at lower (higher) levels. CMAQ reproduces surface O3 for a wide range of conditions (30–80 ppbv) with a normalized mean error (NME) less than 35% and normalized mean bias (NMB) lying between 715% for the whole domain. Although systematically over-predicting O3 in the east and under-predicting it in the western United States, CMAQ is able to reproduce 1- and 8-h daily maxima with a cross-domain mean bias (MB) of 1 and 8 ppbv, or NMB of 8% and 25%, respectively. The model underestimates observed O3 at rural sites (MB ¼ 5 ppbv, NMB ¼ 5% and NME ¼ 23% with a 40 ppbv cut-off value) and over-predicts it at urban and suburban sites by a similar magnitude (MB ¼ 6 ppbv, NMB ¼ 7% and NME ¼ 25%). Apparent errors and biases decrease when data is averaged over longer periods, suggesting that most evaluation statistics are dependent on the time scale of data aggregation. Therefore, performance criteria should specify an averaging period (e.g., 1- or 8- h) and not be independent of averaging period as some current model evaluation studies imply. Comparisons of vertical profiles of simulated O3 with ozonesonde data show both overestimation and underestimation by 10–20 ppbv in the lower troposphere and a consistent under-prediction in the upper troposphere. Vertical O3 distributions are better simulated when lateral boundary conditions obtained from the global Model of Ozone and Related Tracers version 2 (MOZART-2) are used, but under-prediction remains. The assumption of zero-flux at the top boundary and the resulting exclusion of the contribution of stratosphere–troposphere exchange to tropospheric O3 concentrations limit the ability of CMAQ to reproduce O3 concentrations in the upper troposphere. r 2006 Elsevier Ltd. All rights reserved.
Full Article PDF
Wang, X., and D. L. Mauzerall. “Evaluating Impacts of Air Pollution in China on Public Health: Implications for Future Air Pollution and Energy Policies.” Atmospheric Environment 40, no. 9 (2006): 1706-1721.Abstract
Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the ‘‘willingness-to-pay’’ metric, was equivalent to 10% of Zaozhuang’s GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang’s projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger. Despite significant uncertainty associated with each element of the integrated assessment approach, we demonstrate that substantial benefits to public health could be achieved in this region of eastern China through the use of additional pollution controls and particularly from the use of advanced coal gasification technology. Without such controls, the impacts of air pollution on public health, presently considerable, will increase substantially by 2020.
Full Article PDF
Tong, D.Q., N.Z. Muller, D. L. Mauzerall, and R.O. Mendelsohn. “Integrated Assessment of the Spatial Variability of Ozone Impacts from Emissions of Nitrogen Oxides.” Environmental Science and Technology 40, no. 5 (2006): 1395-1400.Abstract
This paper examines the ozone (O3) damages caused by nitrogen oxides (NOx) emissions in different locations around the Atlanta metropolitan area during a summer month. We calculate O3 impacts using a new integrated assessment model that links pollution emissions to their chemical transformation, transport, population exposures, and effects on human health. We find that increased NOx emissions in rural areas around Atlanta increase human exposure to ambient O3 twice as much as suburban emissions. However, increased NOx emissions in central city Atlanta actually reduce O3 exposures. For downtown emissions, the reduction in human exposures to O3 from titration by NO in the central city outweighs the effects from increased downwind O3. The results indicate that the marginal damage from NOx emissions varies greatly across a metropolitan area. The results raise concerns if cap and trade regulations cause emissions to migrate toward higher marginal damage locations.
Full Article PDF
West, J.J., A. F. Fiore, L. W. Horowitz, and D. L. Mauzerall. “Mitigating Ozone Pollution with Methane Emission Controls: Global Health Benefits.” Proceedings of the National Academy of Science 103, no. 11 (2006).Abstract
Methane (CH4) contributes to the growing global background concentration of tropospheric ozone (O3), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by 1 part per billion by volume globally. By using epidemiologic ozonemortality relationships, this ozone reduction is estimated to prevent 30,000 premature all-cause mortalities globally in 2030, and 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be $420,000 per avoided mortality. If avoided mortalities are valued at $1 million each, the benefit is $240 per tonne of CH4 ($12 per tonne of CO2 equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO2. Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.
Full Article PDF
Liu, J., D. L. Mauzerall, and L. W. Horowitz. “Analysis of Seasonal and Interannual Variability in Transpacific Transport.” J. Geophys. Res. 110, no. D04302 (2005).Abstract
The purpose of our analysis is both to evaluate the meteorological component of the seasonal and interannual variability of transpacific transport and to identify meteorological features that can be used to estimate transpacific transport. To accomplish this goal, we simulate the transport of nine continental tracers with uniform emissions and two-week lifetimes using the global Model of Ozone and Related Tracers Version 2 (MOZART-2) driven with NCEP reanalysis meteorology from 1991–2001. In addition, we define a transpacific ‘‘transport potential,’’ a measure of the quantity of a tracer transported from a particular region normalized by its total emissions from that region, across a meridional plane in the eastern Pacific at 130W. We find that at midlatitudes, the east Asian and Indian tracers have the largest transport potentials, particularly in spring. The interannual variability of the transpacific transport potentials of most tracers is relatively high in winter and fall (particularly in February and September) but is low from April to August. At high latitudes the former Soviet Union, east Asian, and European tracers have the largest transpacific transport potentials, especially in late summer and fall, when the lowest interannual variability is observed. We find that El Nin˜o winters are associated with stronger eastward transport of east Asian emissions in the subtropical eastern Pacific. Transport of the east Asian tracer in the central North Pacific is well correlated with the North Pacific Index. However, we find that the interannual variability of transport across the west coast of North America is mostly driven by local meteorology. We therefore created a new index based on meteorology over the eastern Pacific, which we call the Eastern Pacific Index (EPI). The EPI captures most of the interannual variability of transpacific transport at both middle- and high-latitude regions across the west coast of North America.
Full Article PDF
Liu, J., and D. L. Mauzerall. “Estimating the Average Time for Inter-continental Transport of Air Pollutants.” Geophysical Research Letters 32, no. L11814 (2005).Abstract
We estimate the average time required for intercontinental transport of atmospheric tracers based on simulations with the global chemical tracer model MOZART-2 driven with NCEP meteorology. We represent the average transport time by a ratio of the concentration of two tracers with different lifetimes. We find that average transport times increase with tracer lifetimes. With tracers of 1- and 2-week lifetimes the average transport time from East Asia (EA) to the surface of western North America (NA) in April is 2 – 3 weeks, approximately a half week longer than transport from NA to western Europe (EU) and from EU to EA. We develop an ‘equivalent circulation’ method to estimate a timescale which has little dependence on tracer lifetimes and obtain similar results to those obtained with short-lived tracers. Our findings show that average intercontinental transport times, even for tracers with short lifetimes, are on average 1 – 2 weeks longer than rapid transport observed in plumes.
Full Article PDF
Mauzerall, D. L, B. Sultan, J Kim, and D. Bradford. “NOx Emissions: Variability in Ozone Production, Resulting Health Damages and Economic Costs.” Atmospheric Environment 39, no. 16 (2005): 2851-2866.Abstract
We present a proof-of-concept analysis of the measurement of the health damage of ozone (O3) produced from nitrogen oxides ðNOx ¼ NO þ NO2Þ emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air quality Model with Extensions (CAMx), to quantify the variable impact that a fixed quantity of NOx emitted from individual sources can have on the downwind concentration of surface O3, depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting O3-related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used ‘‘cap and trade’’ approach to NOx regulation, which presumes that shifts of emissions over time and space, holding the total fixed over the course of the summer O3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NOx emissions from one place or time to another could result in large changes in resulting health effects due to O3 formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NOx emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage.
Full Article PDF
Wang, Xiaoping, Denise L. Mauzerall, Yongtao Hu, Armistead G. Russell, Eric D. Larson, Jung-Hun Woo, David G. Streets, and Alex Guenther. “A high-resolution emission inventory for eastern China in 2000 and three scenarios for 2020.” Atmospheric Environment 39, no. 32 (2005): 5917-5933.Abstract
We develop a source-specific high-resolution emission inventory for the Shandong region of eastern China for 2000 and 2020. Our emission estimates for year 2000 are higher than other studies for most pollutants, due to our inclusion of rural coal consumption, which is significant but often underestimated. Still, our inventory evaluation suggests that we likely underestimate actual emissions. We project that emissions will increase greatly from 2000 to 2020 if no additional emission controls are implemented. As a result, PM2.5 concentrations will increase; however O3 concentrations will decrease in most areas due to increased NOx emissions and VOC-limited O3 chemistry. Taking Zaozhuang Municipality in this region as a case study, we examine possible changes in emissions in 2020 given projected growth in energy consumption with no additional controls utilized (BAU), with adoption of best available end-of-pipe controls (BACT), and with advanced, low-emission coal gasification technologies (ACGT) which are capable of gasifying the high-sulfur coal that is abundant in China. Emissions of NH3 are projected to be 20% higher, NMVOC50% higher, and all other species 130–250% higher in 2020 BAU than in 2000. Both alternative 2020 emission scenarios would reduce emissions relative to BAU. Adoption of ACGT, which meets only 24% of energy service demand in Zaozhuang in 2020 would reduce emissions more than BACT with 100% penetration. In addition, coal gasification technologies create an opportunity to reduce greenhouse gas emissions by capturing and sequestering CO2 emissions below ground.
Full Article PDF Supplementary Information
Tong, D.Q., and D. L. Mauzerall. “Technical Note: Numerical instability in the Community Multi-scale Air Quality model and its impacts on aerosol and ozone simulations.” Atmospheric Environment (2005).Abstract
This paper reports a numerical instability problem in the widely used Community Multiscale Air Quality (CMAQ) model and discusses its impacts on ozone and particulate matter simulations. By adding 0.5 moles/sec of NO x emissions to Middlesex County, CT, for example, CMAQ (2003 version) predicts up to 1 μg/m 3 change in PM 2.5 concentrations in the Ohio Valley and southern California in less then 48 hours. These regions are beyond the reach of normal transport processes in such a short time, and the remote and upwind responses are 100 times larger than responses near or downwind of the source area. More recently, progress has been made in reducing the numerical instability by correcting coding errors in the transport algorithm, adopting additional vertical wind adjustment to enhance mass conservation, and making numerous improvements in the ISSOROPIA aerosol thermodynamics module (2004 and 2005 CMAQ versions). These improvements, however, are not sufficient to reduce the instability to a reasonable level. The magnitude of peak instability in the 2005 version of CMAQ remains comparable to the normal responses from NO x emissions of a middle-size power plant. This problem, although having a minor effect on the model performance to simulate total O 3 and PM concentrations, results in difficulties when the current version of CMAQ is used to address many important air quality issues including localized emission controls and source-receptor simulations.
Full Text PDF
Naik, V., D. L. Mauzerall, L. W. Horowitz, D. Schwarzkopf, V. Ramaswamy, and M. Oppenheimer. “Net Radiative Forcing Due to Changes in Regional Emissions to Tropospheric Ozone Precursors.” Journal of Geophysical Research 110 (2005).Abstract
The global distribution of tropospheric ozone (O3) depends on the emission of precursors, chemistry, and transport. For small perturbations to emissions, the global radiative forcing resulting from changes in O3 can be expressed as a sum of forcings from emission changes in different regions. Tropospheric O3 is considered in present climate policies only through the inclusion of indirect effect of CH4 on radiative forcing through its impact on O3 concentrations. The short-lived O3 precursors (NOx, CO, and NMHCs) are not directly included in the Kyoto Protocol or any similar climate mitigation agreement. In this study, we quantify the global radiative forcing resulting from a marginal reduction (10%) in anthropogenic emissions of NOx alone from nine geographic regions and a combined marginal reduction in NOx, CO, and NMHCs emissions from three regions. We simulate, using the global chemistry transport model MOZART-2, the change in the distribution of global O3 resulting from these emission reductions. In addition to the short-term reduction in O3, these emission reductions also increase CH4 concentrations (by decreasing OH); this increase in CH4 in turn counteracts part of the initial reduction in O3 concentrations. We calculate the global radiative forcing resulting from the regional emission reductions, accounting for changes in both O3 and CH4. Our results show that changes in O3 production and resulting distribution depend strongly on the geographical location of the reduction in precursor emissions. We find that the global O3 distribution and radiative forcing are most sensitive to changes in precursor emissions from tropical regions and least sensitive to changes from midlatitude and high-latitude regions. Changes in CH4 and O3 concentrations resulting from NOx emission reductions alone produce offsetting changes in radiative forcing, leaving a small positive residual forcing (warming) for all regions. In contrast, for combined reductions of anthropogenic emissions of NOx, CO, and NMHCs, changes in O3 and CH4 concentrations result in a net negative radiative forcing (cooling). Thus we conclude that simultaneous reductions of CO, NMHCs, and NOx lead to a net reduction in radiative forcing due to resulting changes in tropospheric O3 and CH4 while reductions in NOx emissions alone do not.
Full Article PDF
Horowitz, L. W., S. Walters, D. L. Mauzerall, L.K. Emmons, P.J. Rasch, C. Granier, X. Tie, et al.A Global Simulation of Tropospheric Ozone and Related Tracers: Description and Evaluation of MOZART, Version 2.” Journal of Geophysical Research 108, no. D24 (2003): 4784.Abstract
We have developed a global three-dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20-min time step and a horizontal resolution of 2.8 latitude 2.8 longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux-form semi-Lagrangian scheme with a pressure fixer. Subgrid-scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long-lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NOx) and nitric acid (HNO3) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.
Full Article PDF