Electrophysiological low-frequency coherence and cross-frequency coupling contribute to BOLD connectivity.

Citation:

Wang, L., Saalmann, Y. B., Pinsk, M. A., Arcaro, M. J., & Kastner, S. (2012). Electrophysiological low-frequency coherence and cross-frequency coupling contribute to BOLD connectivity. Neuron , 76, 1010-20.

Date Published:

2012 Dec 6

ISSN:

1097-4199

Abstract:

Brain networks are commonly defined using correlations between blood oxygen level-dependent (BOLD) signals in different brain areas. Although evidence suggests that gamma-band (30-100 Hz) neural activity contributes to local BOLD signals, the neural basis of interareal BOLD correlations is unclear. We first defined a visual network in monkeys based on converging evidence from interareal BOLD correlations during a fixation task, task-free state, and anesthesia, and then simultaneously recorded local field potentials (LFPs) from the same four network areas in the task-free state. Low-frequency oscillations (<20 Hz), and not gamma activity, predominantly contributed to interareal BOLD correlations. The low-frequency oscillations also influenced local processing by modulating gamma activity within individual areas. We suggest that such cross-frequency coupling links local BOLD signals to BOLD correlations across distributed networks.

DOI:

10.1016/j.neuron.2012.09.033

Alternate Journal:

Neuron
Last updated on 10/12/2018