Research interests

  • Crop and Horticultural Physiology
  • Controlled Environment Agriculture
  • Stable Isotopes applied to Plant Metabolism
  • Urban and Forest Ecosystem Modeling

On-going Projects: 

Shedding Light on the benefit of Mycorrhizal network to improve plant resilience to pests

Participant: Olivia Trase '17

For millions of years, plants paired with Mycorrhizae to improve their nutrients' acquisition and adapt to environmental stressors. This aspect of plant-mycorrhizae common benefit is well know and still underuse to mitigate the effect of pests and environmental stressors on crop yield. Indeed, Myccorhizae can connect plants one to another and secondary compounds could be transfer. 

Trees Biodiversity and resilience to climate change



Environmental stable Isotopes as tool and research target



Photosynthetic Light limitation as a target for future yield improvement 

Respiratory metabolism is divided in two fundamental parts: the electron transport chain for energy production and the tricarboxylic acid pathway (TCAP) (also known as Krebs cycle). When measuring net CO2 production using a classical gas exchange system (such as LI-6400), only decarboxylations through the TCAP can be measured. As part of my research in Princeton University, I designed and built the first gas exchange system that allows direct, continuous and long-term measurement of gross photosynthesis in entire leaves (Gauthier et al. 2016) using oxygen isotopes. This method involves measuring net O2 production from the change in O2 concentration, and gross production from the rate at which 18O-labeled O2 is generated from 18O labeled water. The O2 produced by photosynthetic water splitting is then registered as a change in d18O of O2. The change of d18O of O2, and O2/N2, are measured to high precision, allowing net and gross production to be accurately assessed at irradiances as low as a few tens of mmol m-2 s-1. This system constitutes an incredible opportunity to study fundamental metabolic pathways and link them to leaf gas exchanges. 


Designing new tools for Plant Physiology Measurements



Scientific Computing: Princeton University Python Community

In collaboration with Quentin Caudron, I founded Princeton University Python Community, a python-enthousiats community that aims to expand the utilization of Python as a primary programming language across disciplines. The community includes undergraduates and graduates students, faculty and staff members with any level of expertise.