Resnikoff, Henry A, Charles G Miller, and Jean E Schwarzbauer. “Implications of fibrotic extracellular matrix in diabetic retinopathy”. Exp Biol Med (Maywood) (2022): , 15353702221087175. Web.Abstract
Fibrosis is an accumulation of extracellular matrix (ECM) proteins and fibers in a disordered fashion, which compromises cell and tissue functions. High glucose-induced fibrosis, a major pathophysiological change of diabetic retinopathy (DR), severely affects vision by compromising the retinal vasculature and ultimately disrupting retinal tissue organization. The retina is a highly vascularized, stratified tissue with multiple cell types organized into distinct layers. Chronically high blood glucose stimulates certain retinal cells to increase production and assembly of ECM proteins resulting in excess ECM deposition primarily in the capillary walls on the basal side of the endothelium. This subendothelial fibrosis of the capillaries is the earliest histological change in the diabetic retina and has been linked to the vascular dysfunction that underlies DR. Proteins that are not normally abundant in the capillary basement membrane (BM) matrix, such as the ECM protein fibronectin, are assembled in significant quantities, disrupting the architecture of the BM and altering its properties. Cell culture models have identified multiple mechanisms through which elevated glucose can stimulate fibronectin matrix assembly, including intracellular signaling pathways, alternative splicing, and non-enzymatic glycation of the ECM. The fibrotic subendothelial matrix alters cell adhesion and supports further accumulation of other ECM proteins leading to disruption of endothelial cell-cell junctions. We review evidence supporting the notion that these molecular changes in the ECM contribute to the pathogenesis of DR, including vascular leakage, loss of endothelial cells and pericytes, changes in blood flow, and neovascularization. We propose that the accumulation of ECM, especially fibronectin matrix, first around the vasculature and later in extravascular locations, plays a critical role in DR and vision loss. Strategies for DR prevention and treatment should consider the ECM a potential therapeutic target.
Hill, Katherine E, Benjamin M Lovett, and Jean E Schwarzbauer. “Heparan sulfate is necessary for the early formation of nascent fibronectin and collagen I fibrils at matrix assembly sites”. J Biol Chem 298.1 (2022): , 298, 1, 101479. Web.Abstract
Fibronectin (FN), an essential component of the extracellular matrix (ECM), is assembled via a cell-mediated process in which integrin receptors bind secreted FN and mediate its polymerization into fibrils that extend between cells, ultimately forming an insoluble matrix. Our previous work using mutant Chinese hamster ovary (CHO) cells identified the glycosaminoglycan heparan sulfate (HS) and its binding to FN as essential for the formation of insoluble FN fibrils. In this study, we investigated the contributions of HS at an early stage of the assembly process using knockdown of exostosin-1 (EXT1), one of the glycosyltransferases required for HS chain synthesis. NIH 3T3 fibroblasts with decreased EXT1 expression exhibited a significant reduction in both FN and type I collagen in the insoluble matrix. We show that FN fibril formation is initiated at matrix assembly sites, and while these sites were formed by cells with EXT1 knockdown, their growth was stunted compared with wild-type cells. The most severe defect observed was in the polymerization of nascent FN fibrils, which was reduced 2.5-fold upon EXT1 knockdown. This defect was rescued by the addition of exogenous soluble heparin chains long enough to simultaneously bind multiple FN molecules. The activity of soluble heparin in this process indicates that nascent fibril formation depends on HS more so than on the protein component of a specific HS proteoglycan. Together, our results suggest that heparin or HS is necessary for concentrating and localizing FN molecules at sites of early fibril assembly.
Miller, Charles G, et al.The Proteome of Preretinal Tissue in Proliferative Vitreoretinopathy”. Ophthalmic Surg Lasers Imaging Retina 52.S1 (2021): , 52, S1, S5-S12. Web.Abstract
BACKGROUND AND OBJECTIVE: Proliferative vitreoretinopathy (PVR) is the leading cause of retinal detachment repair failure. However, the molecular pathogenesis remains incompletely understood. Determining the proteome of PVR will help to identify novel therapeutic targets. MATERIALS AND METHODS: Preretinal tissue samples, delaminated during surgery from six PVR cases and one idiopathic epiretinal membrane (ERM) were analyzed by mass spectrometry. Tandem mass spectra were extracted using the UniProt database, generating a list of 896 proteins, which were subjected to pathway set and fold-change (ERM vs PVR) analyses. RESULTS: Two pathways were enriched in PVR: extracellular matrix (ECM) organization and extracellular structure organization. A fold-change analysis comparing mean total spectral counts from PVR to an ERM control identified fibronectin, the ECM glycoprotein, as the protein most significantly elevated in PVR compared to ERM. CONCLUSION: These data identify pathwayskey to PVR progression, including thoseinvolved in cell-mediated ECM assembly and thus tractional force generation at the cellular level. .
Siddiqui, Ahad M, et al.Promoting Neuronal Outgrowth Using Ridged Scaffolds Coated with Extracellular Matrix Proteins”. Biomedicines 95 (2021). Web.Abstract
Spinal cord injury (SCI) results in cell death, demyelination, and axonal loss. The spinal cord has a limited ability to regenerate, and current clinical therapies for SCI are not effective in helping promote neurologic recovery. We have developed a novel scaffold biomaterial that is fabricated from the biodegradable hydrogel oligo(poly(ethylene glycol)fumarate) (OPF). We have previously shown that positively charged OPF scaffolds (OPF+) in an open spaced, multichannel design can be loaded with Schwann cells to support axonal generation and functional recovery following SCI. We have now developed a hybrid OPF+ biomaterial that increases the surface area available for cell attachment and that contains an aligned microarchitecture and extracellular matrix (ECM) proteins to better support axonal regeneration. OPF+ was fabricated as 0.08 mm thick sheets containing 100 μm high polymer ridges that self-assemble into a spiral shape when hydrated. Laminin, fibronectin, or collagen I coating promoted neuron attachment and axonal outgrowth on the scaffold surface. In addition, the ridges aligned axons in a longitudinal bipolar orientation. Decreasing the space between the ridges increased the number of cells and neurites aligned in the direction of the ridge. Schwann cells seeded on laminin coated OPF+ sheets aligned along the ridges over a 6-day period and could myelinate dorsal root ganglion neurons over 4 weeks. This novel scaffold design, with closer spaced ridges and Schwann cells, is a novel biomaterial construct to promote regeneration after SCI.
Sharma, Archana, and Jean E Schwarzbauer. “Differential Regulation of Neurite Outgrowth and Growth Cone Morphology by 3D Fibronectin and Fibronectin-Collagen Extracellular Matrices”. Mol Neurobiol (2021). Web.Abstract
The extracellular matrix (ECM) plays a critical role in development, homeostasis, and regeneration of tissue structures and functions. Cell interactions with the ECM are dynamic and cells respond to ECM remodeling by changes in morphology and motility. During nerve regeneration, the ECM facilitates neurite outgrowth and guides axons with target specificity. Decellularized ECMs retain structural, biochemical, and biomechanical cues of native ECM and have the potential to replace damaged matrix to support cell activities during tissue repair. To determine the ECM components that contribute to nerve regeneration, we analyzed neuron-ECM interactions on two types of decellularized ECM. One matrix was composed primarily of fibronectin (FN) fibrils, and the other FN-rich ECM also contained significant numbers of type I collagen (COL I) fibrils. Using primary neurons dissociated from superior cervical ganglion (SCG) explants, we found that neurites were extended on both matrices without a significant difference in average neurite length after 24 h. The most distinctive features of neurites on the FN matrix were numerous short actin-filled protrusions and longer branches extending from neurite shafts. Very few protrusions and branches were detected on FN-COL matrix. Growth cone morphologies also differed with mostly filopodial growth cones on FN matrix whereas on FN-COL matrix, equivalent numbers of filopodial and slender growth cones were formed. Our work provides new information about how changes in major components of the ECM during tissue repair modulate neuron and growth cone morphologies and helps to define the contributions of neuron-ECM interactions to nerve development and regeneration.
Garrison, Carly M, and Jean E Schwarzbauer. “Fibronectin fibril alignment is established upon initiation of extracellular matrix assembly”. Mol Biol Cell (2021): , mbcE20080533. Web.Abstract
The physical structure of the extracellular matrix (ECM) is tissue-specific and fundamental to normal tissue function. Proper alignment of ECM fibers is essential for the function of a variety of tissues. While matrix assembly in general has been intensively investigated, little is known about the mechanisms required for formation of aligned ECM fibrils. We investigated the initiation of fibronectin (FN) matrix assembly using fibroblasts that assemble parallel ECM fibrils and found that matrix assembly sites, where FN fibrillogenesis is initiated, were oriented in parallel at the cell poles. We show that these polarized matrix assembly sites progress into fibrillar adhesions and ultimately into aligned FN fibrils. Cells that assemble an unaligned, meshwork matrix formed matrix assembly sites around the cell periphery but the distribution of matrix assembly sites in these cells could be modulated through micropatterning or mechanical stretch. While an elongated cell shape corresponds with a polarized matrix assembly site distribution, these two features are not absolutely linked since we discovered that transforming growth factor beta (TGF-β1) enhances matrix assembly site polarity and assembly of aligned fibrils independently of cell elongation. We conclude the ultimate orientation of FN fibrils is determined by the alignment and distribution of matrix assembly sites which form during the initial stages of cell-FN interactions.
Vega, Maria E, et al.Elevated glucose alters global gene expression and tenascin-C alternative splicing in mesangial cells”. Matrix Biol Plus 8 (2020): , 8, 100048. Web.Abstract
Mesangial cells are the major extracellular matrix (ECM)-producing cells in the kidney glomerulus and, when exposed to elevated glucose levels, they up-regulate assembly of fibronectin (FN) and other ECM proteins. Increases in glucose concentration are known to alter gene expression; here we investigated the connection between increased ECM production and changes in gene expression in mesangial cells. Comparison of mesangial cells grown in normal or high glucose conditions by RNA-sequencing showed significant expression changes in over 6000 genes and, when grouped by KEGG pathway analysis, identified the ECM-receptor interaction and focal adhesion pathways among the top 5 upregulated pathways. Of note was the significant increase in expression of tenascin-C (TN-C), a known regulator of FN matrix assembly. Mouse TN-C has multiple isoforms due to alternative splicing of 6 FNIII repeat exons. In addition to the transcriptional increase with high glucose, exon inclusion via alternative splicing was also changed resulting in production of higher molecular weight isoforms of TN-C. Mesangial cells grown in normal glucose secreted small isoforms with 1-2 variable repeats included whereas in high glucose large isoforms estimated to include 5 repeats were secreted. Unlike the smaller isoforms, the larger TN-C was not detected in the FN matrix. This change in TN-C isoforms may affect the regulation of FN matrix assembly and in this way may contribute to increased ECM accumulation under high glucose conditions.
Vega, Maria E, et al.Stimulation of Fibronectin Matrix Assembly by Lysine Acetylation”. Cells 93 (2020). Web.Abstract
Diabetic nephropathy, a devastating consequence of diabetes mellitus, is characterized by the accumulation of extracellular matrix (ECM) that disrupts the kidney's filtration apparatus. Elevated glucose levels increase the deposition of a fibronectin (FN) matrix by mesangial cells, the primary matrix-producing cells of the kidney, and also increase acetyl-CoA leading to higher levels of lysine acetylation. Here, we investigated the connection between acetylation and the ECM and show that treatment of mesangial cells with deacetylase inhibitors increases both acetylation and FN matrix assembly compared to untreated cells. The matrix effects were linked to lysine 794 (K794) in the β1 integrin cytoplasmic domain based on studies of cells expressing acetylated (K794Q) and non-acetylated (K794R) mimetics. β1(K794Q) cells assembled significantly more FN matrix than wildtype β1 cells, while the non-acetylated β1(K794R) form was inactive. We show that mutation of K794 affects FN assembly by stimulating integrin-FN binding activity and cell contractility. Wildtype and β1(K794Q) cells but not β1(K794R) cells further increased their FN matrix when stimulated with deacetylase inhibitors indicating that increased acetylation on other proteins is required for maximum FN assembly. Thus, lysine acetylation provides a mechanism for glucose-induced fibrosis by up-regulation of FN matrix assembly.
Garrison, Carly M, et al.A multi-layered scaffold for regeneration of smooth muscle and connective tissue layers”. J Biomed Mater Res A (2020). Web.Abstract
Tissue regeneration often requires recruitment of different cell types and rebuilding of two or more tissue layers to restore function. Here we describe the creation of a novel multi-layered scaffold with distinct fiber organizations - aligned to unaligned and dense to porous - to template common architectures found in adjacent tissue layers. Electrospun scaffolds were fabricated using a biodegradable, tyrosine-derived terpolymer, yielding densely-packed, aligned fibers that transition into randomly-oriented fibers of increasing diameter and porosity. We demonstrate that differently-oriented scaffold fibers direct cell and extracellular matrix (ECM) organization, and that scaffold fibers and ECM protein networks are maintained after decellularization. Smooth muscle and connective tissue layers are frequently adjacent in vivo; we show that within a single scaffold, the architecture supports alignment of contractile smooth muscle cells and deposition by fibroblasts of a meshwork of ECM fibrils. We rolled a flat scaffold into a tubular construct and, after culture, showed cell viability, orientation, and tissue-specific protein expression in the tube were similar to the flat-sheet scaffold. This scaffold design not only has translational potential for reparation of flat and tubular tissue layers but can also be customized for alternative applications by introducing two or more cell types in different combinations. This article is protected by copyright. All rights reserved.
Chen, Jeffrey W, et al.Controlling the Surface Chemistry of a Hydrogel for Spatially Defined Cell Adhesion”. ACS Appl Mater Interfaces 11.17 (2019): , 11, 17, 15411-15416. Web.Abstract
A two-step synthesis is described for activating the surface of a fully hydrated hydrogel that is of interest as a possible scaffold for neural regeneration devices. The first step exploits the water content of the hydrogel and the hydrophobicity of the reaction solvent to create a thin oxide layer on the hydrogel surface using a common titanium or zirconium alkoxide. This layer serves as a reactive interface that enables rapid transformation of the hydrophilic, cell-nonadhesive hydrogel into either a highly hydrophobic surface by reaction with an alkylphosphonic acid, or into a cell-adhesive one using a (α,ω-diphosphono)alkane. Physically imprinting a mask ("debossing") into the hydrogel, followed by a two-step surface modification with a phosphonate, allows for patterning its surface to create spatially defined, cell-adhesive regions.
Saunders, Jared T, and Jean E Schwarzbauer. “Fibronectin matrix as a scaffold for procollagen proteinase binding and collagen processing”. Mol Biol Cell 30.17 (2019): , 30, 17, 2218-2226. Web.Abstract
The extracellular matrix (ECM) proteins fibronectin (FN) and type I collagen (collagen I) are codistributed in many tissues, and collagens have been shown to depend on an FN matrix for fibrillogenesis. Microscopic analysis of a fibroblast ECM showed colocalization of procollagen I with FN fibrils, and proteolytic cleavage of procollagen to initiate fibril formation was significantly reduced with inhibition of FN matrix assembly. We examined the role of FN matrix in procollagen processing by the C-propeptide proteinase bone morphogenetic protein 1 (BMP-1). We found that BMP-1 binds to a cell-assembled ECM in a dose-dependent manner and that, like procollagen, BMP-1 colocalizes with FN fibrils in the matrix microenvironment. Binding studies with FN fragments identified a binding site in FN's primary heparin-binding domain. In solution, BMP-1-FN interactions and BMP-1 cleavage of procollagen I were both enhanced by the presence of heparin, suggesting a role for heparin in complex formation during proteolysis. Indeed, addition of heparin enhanced the rate of procollagen cleavage by matrix-bound BMP-1. Our results show that matrix localization of this proteinase facilitates the initiation of collagen assembly and suggest a model in which FN matrix and associated heparan sulfate act as a scaffold to organize enzyme and substrate for procollagen processing.
Cadoff, EB, et al.Mechanistic insights into the cellular effects of a novel FN1 variant associated with a spondylometaphyseal dysplasia”. Clin Genet 94.5 (2018): , 94, 5, 429-437. Web.Abstract
Spondylometaphyseal dysplasia (SMD) is characterized by developmental changes in long bones and vertebrae. It has large phenotypic diversity and multiple genetic causes, including a recent link to novel variants in the extracellular matrix (ECM) protein fibronectin (FN), a regulator of ECM assembly and key link between the ECM and proper cell function. We identified a patient with a unique SMD, similar to SMD with corner fractures. The patient has been followed over 19 years and presents with short stature, genu varum, kyphoscoliosis, and pectus carinatum. Radiography shows metaphyseal changes that resolved over time, vertebral changes, and capitular avascular necrosis. Whole exome sequencing identified a novel heterozygous FN1 variant (p.Cys97Trp). Using mass spectroscopy, mutant FN was detected in plasma and in culture medium of primary dermal fibroblasts isolated from the patient, but mutant protein was much less abundant than wild-type FN. Immunofluorescence and immunoblotting analyses show that mutant fibroblasts assemble significantly lower amounts of FN matrix than wild-type cells, and mutant FN was preferentially retained within the endoplasmic reticulum. This work highlights the importance of FN in skeletal development, and its potential role in the pathogenesis of a subtype of SMD.
Hsia, Henry C, Michael R Weaver, and Jean E Schwarzbauer. “Impact of Acellular Dermal Matrix on Postsurgical Wound Fluid Biomarkers in Prosthetic Breast Reconstruction”. Ann Plast Surg (2018). Web.Abstract
BACKGROUND: Despite the widespread practice of using biologic scaffolds for soft tissue reinforcement over prosthetic implants, the impact of acellular dermal matrix (ADM) on surgical wound fluid biomarkers over the initial postoperative period after prosthetic breast reconstruction remains poorly understood. METHODS: Patients undergoing prosthetic breast reconstruction surgery where ADM was likely to be used were consented to have fluid samples collected from surgical drains after surgery. Sample collections occurred at an "Early" time point at 24 to 48 hours after surgery and then a "Late" time point approximately 1 to 2 weeks after surgery. All procedures were performed by a single surgeon. Acellular dermal matrix was placed when prosthetic coverage with autologous tissue could not be achieved. Laboratory analyses were performed in blinded fashion without the knowledge of whether the samples came from the ADM "Present" or "Not Present" group. RESULTS: Twenty-one patients were in the ADM Present group and 18 patients were in the Not Present group. Both groups showed similar demographics based on age and body mass index. Analyses for cell concentration, protein concentration, extracellular matrix protein levels, cell proliferation activity, and matrix metalloproteinase activity showed no significant differences between wound fluid samples from the 2 groups. CONCLUSIONS: The presence of ADM does not appear to significantly impact wound biomarkers in prosthetic breast reconstruction. The current study provides useful data regarding the impact of ADM on surgical wound fluid during the initial postoperative period, laying important groundwork for more extensive future studies on the impact of biologic scaffolds on wound biology.
Harris, Greg M, Irene Raitman, and Jean E Schwarzbauer. “Cell-derived decellularized extracellular matrices”. Methods Cell Biol 143 (2018): , 143, 97-114. Web.Abstract
The ability to create cell-derived decellularized matrices in a dish gives researchers the opportunity to possess a bioactive, biocompatible material made up of fibrillar proteins and other factors that recapitulates key features of the native structure and composition of in vivo microenvironments. By using cells in a culture system to provide a natural ECM, decellularization allows for a high degree of customization through the introduction of selected proteins and soluble factors. The culture system, culture medium, cell types, and physical environments can be varied to provide specialized ECMs for wide-ranging applications to study cell-ECM signaling, cell migration, cell differentiation, and tissue engineering purposes. This chapter describes a procedure for performing a detergent and high pH-based extraction that leaves the native, cell-assembled ECM intact while removing cellular materials. We address common evaluation methods for assessing the ECM and its composition as well as potential uses for a decellularized ECM.
Bandini, Stephen B., et al.Perforation Does Not Compromise Patterned Two-Dimensional Substrates for Cell Attachment and Aligned Spreading”. ACS Biomaterials Science & Engineering 312 (2017): , 3, 12, 3123-3127. Web. Publisher's VersionAbstract
Polymeric sheets were perforated by laser ablation and were uncompromised by a debris field when first treated with a thin layer of photoresist. Polymer sheets perforated with holes comprising 5, 10, and 20% of the nominal surface area were then patterned in stripes by photolithography, which was followed by synthesis in exposed regions of a cell-attractive zirconium oxide-1,4-butanediphosphonic acid interface. Microscopic and scanning electron microscopy analyses following removal of unexposed photoresist show well-aligned stripes for all levels of these perforations. NIH 3T3 fibroblasts plated on each of these perforated surfaces attached to the interface and spread in alignment with pattern fidelity in every case that is as high as that measured on a nonperforated, patterned substrate.
Raitman, Irene, et al.Heparin-fibronectin interactions in the development of extracellular matrix insolubility”. Matrix Biol (2017). Web.Abstract
During extracellular matrix (ECM) assembly, fibronectin (FN) fibrils are irreversibly converted into a detergent-insoluble form which, through FN's multi-domain structure, can interact with collagens, matricellular proteins, and growth factors to build a definitive matrix. FN also has heparin/heparan sulfate (HS) binding sites. Using HS-deficient CHO cells, we show that the addition of soluble heparin significantly increased the amount of FN matrix that these cells assemble. Sulfated HS glycosaminoglycan (GAG) mimetics similarly increased FN assembly and demonstrated a dependence on GAG sulfation. The length of the heparin chains also plays a role in assembly. Chains of sufficient length to bind to two FN molecules gave maximal stimulation of assembly whereas shorter heparin had less of an effect. Using a decellularized fibroblast matrix for proteolysis, detergent fractionation, and mass spectrometry, we found that the predominant domain within insoluble fibril fragments is FN's major heparin-binding domain HepII (modules III12-14). Multiple HepII domains bind simultaneously to a single heparin chain in size exclusion chromatography analyses. We propose a model in which heparin/HS binding to the HepII domain connects multiple FNs together to facilitate the formation of protein interactions for insoluble fibril assembly.
Goyal, Ritu, et al.Development of hybrid scaffolds with natural extracellular matrix deposited within synthetic polymeric fibers.”. J Biomed Mater Res A (2017). Web.Abstract
A major challenge of tissue engineering is to generate materials that combine bioactivity with stability in a form that captures the robust nature of native tissues. Here we describe a procedure to fabricate a novel hybrid extracellular matrix (ECM)-synthetic scaffold biomaterial by cell-mediated deposition of ECM within an electrospun fiber mat. Synthetic polymer fiber mats were fabricated using poly(desamino tyrosyl-tyrosine carbonate) (PDTEC) co-spun with poly(ethylene glycol) (PEG) used as a sacrificial polymer. PEG removal increased the overall mat porosity and produced a mat with a layered structure that could be peeled into separate sheets of about 50 μm in thickness. Individual layers had pore sizes and wettability that facilitated cell infiltration over the depth of the scaffold. Confocal microscopy showed the formation of a highly interpenetrated network of cells, fibronectin fibrils, and synthetic fibers mimicking a complex ECM as observed within tissues. Decellularization did not perturb the structure of the matrix or the fiber mat. The resulting hybrid ECM-scaffold promoted cell adhesion and spreading and stimulated new ECM assembly by stem cells and tumor cells. These results identify a new technique for fabricating highly porous synthetic fibrous scaffolds and an approach to supplement them with natural biomimetic cues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2017.
Miller, Charles G, et al.Minireview: Fibronectin in retinal disease.”. Exp Biol Med (Maywood) 242.1 (2017): , 242, 1, 1-7. Web.Abstract
Retinal fibrosis, characterized by dysregulation of extracellular matrix (ECM) protein deposition by retinal endothelial cells, pigment epithelial cells, and other resident cell-types, is a unifying feature of several common retinal diseases. Fibronectin is an early constituent of newly deposited ECM and serves as a template for assembly of other ECM proteins, including collagens. Under physiologic conditions, fibronectin is found in all layers of Bruch's membrane. Proliferative vitreoretinopathy (PVR), a complication of retinal surgery, is characterized by ECM accumulation. Among the earliest histologic manifestations of diabetic retinopathy (DR) is capillary basement membrane thickening, which occurs due to perturbations in ECM homeostasis. Neovascularization, the hallmark of late stage DR as well as exudative age-related macular degeneration (AMD), involves ECM assembly as a scaffold for the aberrant new vessel architecture. Rodent models of retinal injury demonstrate a key role for fibronectin in complications characteristic of PVR, including retinal detachment. In mouse models of DR, reducing fibronectin gene expression has been shown to arrest the accumulation of ECM in the capillary basement membrane. Alterations in matrix metalloproteinase activity thought to be important in the pathogenesis of AMD impact the turnover of fibronectin matrix as well as collagens. Growth factors involved in PVR, AMD, and DR, such as PDGF and TGFβ, are known to stimulate fibronectin matrix assembly. A deeper understanding of how pathologic ECM deposition contributes to disease progression may help to identify novel targets for therapeutic intervention.
Pastino, Alexandra K, et al.Stimulatory effects of advanced glycation endproducts (AGEs) on fibronectin matrix assembly.”. Matrix Biol 59 (2017): , 59, 39-53. Web.Abstract
Advanced glycation endproducts (AGEs) are a heterogeneous group of compounds that form via non-enzymatic glycation of proteins throughout our lifespan and at a higher rate in certain chronic diseases such as diabetes. AGEs contribute to the progression of fibrosis, in part by stimulating cellular pathways that affect gene expression. Long-lived ECM proteins are targets for non-enzymatic glycation but the question of whether the AGE-modified ECM leads to excess ECM accumulation and fibrosis remains unanswered. In this study, cellular changes due to AGE accretion in the ECM were investigated. Non-enzymatic glycation of proteins in a decellularized fibroblast ECM was achieved by incubating the ECM in a solution of methylglyoxal (MGO). Mass spectrometry of fibronectin (FN) isolated from the glycated matrix identified twenty-eight previously unidentified MGO-derived AGE modification sites including functional sites such as the RGD integrin-binding sequence. Mesangial cells grown on the glycated, decellularized matrix assembled increased amounts of FN matrix. Soluble AGE-modified bovine serum albumin (BSA) also stimulated FN matrix assembly and this effect was reduced by function-blocking antibodies against the receptor for AGE (RAGE). These results indicate that cells respond to AGEs by increasing matrix assembly and that RAGE is involved in this response. This raises the possibility that the accumulation of ECM during the progression of fibrosis may be enhanced by cell interactions with AGEs on a glycated ECM.
Vega, Maria E, and Jean E Schwarzbauer. “Collaboration of fibronectin matrix with other extracellular signals in morphogenesis and differentiation.”. Curr Opin Cell Biol 42 (2016): , 42, 1-6. Web.Abstract
Tissue formation and cell differentiation depend on a properly assembled extracellular matrix (ECM). Fibronectin is a key constituent of the pericellular ECM, forming essential connections between cell surface integrin receptors and structural components of the ECM. Recent studies using vertebrate models, conditional gene knockouts, tissue explants, and cell culture systems have identified developmental processes that depend on fibronectin and its receptor α5β1 integrin. We describe requirements for fibronectin matrix in the cardiovascular system, somite and precartilage development, and epithelial-mesenchymal transition. Information about molecular mechanisms shows the importance of fibronectin and integrins during tissue morphogenesis and cell differentiation, as well as their cooperation with growth factors to mediate changes in cell behaviors.
Harris, Greg M, et al.Nerve Guidance by a Decellularized Fibroblast Extracellular Matrix.”. Matrix Biol (2016). Web.Abstract
Spinal cord and peripheral nerve injuries require the regeneration of nerve fibers across the lesion site for successful recovery. Providing guidance cues and soluble factors to promote neurite outgrowth and cell survival can enhance repair. The extracellular matrix (ECM) plays a key role in tissue repair by controlling cell adhesion, motility, and growth. In this study, we explored the ability of a mesenchymal ECM to support neurite outgrowth from neurons in the superior cervical ganglia (SCG). Length and morphology of neurites extended on a decellularized fibroblast ECM were compared to those on substrates coated with laminin, a major ECM protein in neural tissue, or fibronectin, the main component of a mesenchymal ECM. Average radial neurite extension was equivalent on laminin and on the decellularized ECM, but contrasted with the shorter, curved neurites observed on the fibronectin substrate. Differences between neurites on fibronectin and on other substrates were confirmed by fast Fourier transform analyses. To control the direction of neurite outgrowth, we developed an ECM with linearly aligned fibril organization by orienting the fibroblasts that deposit the matrix on a polymeric surface micropatterned with a striped chemical interface. Neurites projected from SCGs appeared to reorient in the direction of the pattern. These results highlight the ability of a mesenchymal ECM to enhance neurite extension and to control the directional outgrowth of neurites. This micropatterned decellularized ECM architecture has potential as a regenerative microenvironment for nerve repair.
Schwarzbauer, Jean E, Mark W Leader, and David G Drubin. “Setting the bar for cell biology best practices.”. Mol Biol Cell 27.18 (2016): , 27, 18, 2803. Web.
Meighan, Christopher M, and Jean E Schwarzbauer. “α Integrin cytoplasmic tails have tissue-specific roles during C. elegans development”. Int J Dev Biol 58.5 (2014): , 58, 5, 325-33. Web.Abstract
Integrin signaling impacts many developmental processes. The complexity of these signals increases when multiple, unique integrin heterodimers are expressed during a single developmental event. Since integrin heterodimers have different signaling capabilities, the signals originating at each integrin type must be separated in the cell. C. elegans have two integrin heterodimers, α INA-1/β PAT-3 and α PAT-2/β PAT-3, which are expressed individually or simultaneously, based on tissue type. We used chimeric α integrins to assess the role of α integrin cytoplasmic tails during development. Chimeric integrin ina-1 with the pat-2 cytoplasmic tail rescued lethality and maintained neuron fasciculation in an ina-1 mutant. Interestingly, the pat-2 tail was unable to completely restore distal tip cell migration and vulva morphogenesis. Chimeric integrin pat-2 with the ina-1 cytoplasmic tail had a limited ability to rescue a lethal mutation in pat-2, with survivors showing aberrant muscle organization, yet normal distal tip cell migration. In a wild type background, α integrin pat-2 with the ina-1 cytoplasmic tail had a dominant negative effect which induced muscle disorganization, cell migration defects and lethality. These results show the α integrin cytoplasmic tails impact unique cellular behaviors that vary by tissue type during development.
Magruder, Hilary T, et al.The G protein-coupled estrogen receptor-1, GPER-1, promotes fibrillogenesis via a Shc-dependent pathway resulting in anchorage-independent growth”. Horm Cancer 56 (2014): , 5, 6, 390-404. Web.Abstract
The G protein-coupled estrogen receptor-1, GPER-1, coordinates fibronectin (FN) matrix assembly and release of heparan-bound epidermal growth factor (HB-EGF). This mechanism of action results in the recruitment of FN-engaged integrin α5β1 to fibrillar adhesions and the formation of integrin α5β1-Shc adaptor protein complexes. Here, we show that GPER-1 stimulation of murine 4 T1 or human SKBR3 breast cancer cells with 17β-estradiol (E2β) promotes the formation of focal adhesions and actin stress fibers and results in increased cellular adhesion and haptotaxis on FN, but not collagen. These actions are also induced by the xenoestrogen, bisphenol A, and the estrogen receptor (ER) antagonist, ICI 182, 780, but not the inactive stereoisomer, 17α-estradiol (E2α). In addition, we show that GPER-1 stimulation of breast cancer cells allows for FN-dependent, anchorage-independent growth and FN fibril formation in "hanging drop" assays, indicating that these GPER-1-mediated actions occur independently of adhesion to solid substrata. Stable expression of Shc mutant Y317F lacking its primary tyrosyl phosphorylation site disrupts E2β-induced focal adhesion and actin stress fiber formation and abolishes E2β-enhanced haptotaxis on FN and anchorage-dependent growth. Collectively, these data demonstrate that E2β action via GPER-1 enhances cellular adhesivity and FN matrix assembly and allows for anchorage-independent growth, cellular events that may allow for cellular survival, and tumor progression.
Park, J, and JE Schwarzbauer. “Mammary epithelial cell interactions with fibronectin stimulate epithelial-mesenchymal transition.”. Oncogene 33.13 (2014): , 33, 13, 1649-57. Web.Abstract
In the mammary gland, the stromal extracellular matrix (ECM) undergoes dramatic changes during development and in tumorigenesis. For example, normal adult breast tissue is largely devoid of the ECM protein fibronectin (FN) whereas high FN levels have been detected in the stroma of breast tumors. FN is an established marker for epithelial-mesenchymal transition (EMT), which occurs during development and has been linked to cancer. During EMT, epithelial cell adhesion switches from cell-cell contacts to mainly cell-ECM interactions, raising the possibility that FN may have a role in promoting this transition. Using MCF-10A mammary epithelial cells, we show that exposure to exogenous FN induces an EMT response including upregulation of the EMT markers FN, Snail, N-cadherin, vimentin, the matrix metalloprotease MMP2, α-smooth muscle actin and phospho-Smad2, as well as acquisition of cell migratory behavior. FN-induced EMT depends on Src kinase and extracellular signal-regulated kinase/mitogen-activated protein (ERK/MAP) kinase signaling but not on the immediate early gene EGR-1. FN initiates EMT under serum-free conditions; this response is partially reversed by a transforming growth factor (TGF)β-neutralizing antibody, suggesting that FN enhances the effect of endogenous TGFβ. EMT marker expression is upregulated in cells on a fragment of FN containing the integrin-binding domain but not other domains. Differences in gene expression between FN and Matrigel are maintained with addition of a subthreshold level of TGFβ1. Together, these results show that cells interacting with FN are primed to respond to TGFβ. The ability of FN to induce EMT shows an active role for the stromal ECM in this process and supports the notion that the increased levels of FN observed in breast tumors facilitate tumorigenesis.
Desai, Vivek D, Henry C Hsia, and Jean E Schwarzbauer. “Reversible modulation of myofibroblast differentiation in adipose-derived mesenchymal stem cells.”. PLoS One 91 (2014): , 9, 1, e86865. Web.Abstract
Unregulated activity of myofibroblasts, highly contractile cells that deposit abundant extracellular matrix (ECM), leads to fibrosis. To study the modulation of myofibroblast activity, we used human adipose-derived mesenchymal stem cells (ADSCs), which have much potential in regenerative medicine. We found that ADSCs treated with TGF-β developed a myofibroblastic phenotype with increases in α-smooth muscle actin (α-SMA), a myofibroblast marker, and ECM proteins type I collagen and fibronectin. In contrast, treatment with bFGF had the opposite effect. bFGF-differentiated ADSCs showed marked down-regulation of α-SMA expression, collagen I, and fibronectin, and loss of focal adhesions and stress fibers. Functionally, bFGF-differentiated ADSCs were significantly more migratory, which correlated with up-regulation of tenascin-C, an anti-adhesive ECM protein, and vimentin, a pro-migratory cytoskeletal protein. On the other hand, TGF-β-differentiated ADSCs were significantly more contractile than bFGF-differentiated cells. Interestingly, cells completely reversed their morphologies, marker expression, signaling pathways, and contractility versus migratory profiles when switched from culture with one growth factor to the other, demonstrating that the myofibroblast differentiation process is not terminal. Cell differentiation was associated with activation of Smad2 downstream of TGF-β and of ERK/MAP kinase downstream of bFGF. Reversibility of the TGF-β-induced myofibroblastic phenotype depends, in part, on bFGF-induced ERK/MAP kinase signaling. These findings show that ADSC differentiation into myofibroblasts and re-differentiation into fibroblast-like cells can be manipulated with growth factors, which may have implications in the development of novel therapeutic strategies to reduce the risk of fibrosis.
Singh, Shivani, et al.A cell-assembled, spatially aligned extracellular matrix to promote directed tissue development.”. J Mater Chem B Mater Biol Med 211 (2014): , 2, 11, 1449-1453. Web.
Miller, Charles G, et al.Effects of high glucose on integrin activity and fibronectin matrix assembly by mesangial cells.”. Mol Biol Cell 25.16 (2014): , 25, 16, 2342-50. Web.Abstract
The filtration unit of the kidney is the glomerulus, a capillary network supported by mesangial cells and extracellular matrix (ECM). Glomerular function is compromised in diabetic nephropathy (DN) by uncontrolled buildup of ECM, especially type IV collagen, which progressively occludes the capillaries. Increased levels of the ECM protein fibronectin (FN) are also present; however, its role in DN is unknown. Mesangial cells cultured under high glucose conditions provide a model system for studying the effect of elevated glucose on deposition of FN and collagen IV. Imaging of mesangial cell cultures and analysis of detergent-insoluble matrix show that, under high glucose conditions, mesangial cells assembled significantly more FN matrix, independent of FN protein levels. High glucose conditions induced protein kinase C-dependent β1 integrin activation, and FN assembly in normal glucose was increased by stimulation of integrin activity with Mn(2+). Collagen IV incorporation into the matrix was also increased under high glucose conditions and colocalized with FN fibrils. An inhibitor of FN matrix assembly prevented collagen IV deposition, demonstrating dependence of collagen IV on FN matrix. We conclude that high glucose induces FN assembly, which contributes to collagen IV accumulation. Enhanced assembly of FN might facilitate dysregulated ECM accumulation in DN.
Singh, Purva, and Jean E Schwarzbauer. “Fibronectin matrix assembly is essential for cell condensation during chondrogenesis.”. J Cell Sci 127.Pt 20 (2014): , 127, Pt 20, 4420-8. Web.Abstract
Mesenchymal cell condensation is the initiating event in endochondral bone formation. Cell condensation is followed by differentiation into chondrocytes, which is accompanied by induction of chondrogenic gene expression. Gene mutations involved in chondrogenesis cause chondrodysplasias and other skeletal defects. Using mesenchymal stem cells (MSCs) in an in vitro chondrogenesis assay, we found that knockdown of the diastrophic dysplasia (DTD) sulfate transporter (DTDST, also known as SLC26A2), which is required for normal cartilage development, blocked cell condensation and caused a significant reduction in fibronectin matrix. Knockdown of fibronectin with small interfering RNAs (siRNAs) also blocked condensation. Fibrillar fibronectin matrix was detected prior to cell condensation, and its levels increased during and after condensation. Inhibition of fibronectin matrix assembly by use of the functional upstream domain (FUD) of adhesin F1 from Streptococcus pyogenes prevented cell condensation by MSCs and also by the chondrogenic cell line ATDC5. Our data show that cell condensation and induction of chondrogenesis depend on fibronectin matrix assembly and DTDST, and indicate that this transporter is required earlier in chondrogenesis than previously appreciated. They also raise the possibility that certain of the skeletal defects in DTD patients might derive from the link between DTDST, fibronectin matrix and condensation.
Wong, Ming-Ching, William P Kennedy, and Jean E Schwarzbauer. “Transcriptionally regulated cell adhesion network dictates distal tip cell directionality.”. Dev Dyn 243.8 (2014): , 243, 8, 999-1010. Web.Abstract
BACKGROUND: The mechanisms that govern directional changes in cell migration are poorly understood. The migratory paths of two distal tip cells (DTC) determine the U-shape of the C. elegans hermaphroditic gonad. The morphogenesis of this organ provides a model system to identify genes necessary for the DTCs to execute two stereotyped turns. RESULTS: Using candidate genes for RNAi knockdown in a DTC-specific strain, we identified two transcriptional regulators required for DTC turning: cbp-1, the CBP/p300 transcriptional coactivator homologue, and let-607, a CREBH transcription factor homologue. Further screening of potential target genes uncovered a network of integrin adhesion-related genes that have roles in turning and are dependent on cbp-1 and let-607 for expression. These genes include src-1/Src kinase, tln-1/talin, pat-2/α integrin and nmy-2, a nonmuscle myosin heavy chain. CONCLUSIONS: Transcriptional regulation by means of cbp-1 and let-607 is crucial for determining directional changes during DTC migration. These regulators coordinate a gene network that is necessary for integrin-mediated adhesion. Overall, these results suggest that directional changes in cell migration rely on the precise gene regulation of adhesion.
Taylor-Weiner, Hermes, Jean E Schwarzbauer, and Adam J Engler. “Defined extracellular matrix components are necessary for definitive endoderm induction”. Stem Cells 31.10 (2013): , 31, 10, 2084-94. Web.Abstract
Differentiation methods often rely exclusively on growth factors to direct mouse embryonic stem cell (ESC) fate, but the niche also contains fibrillar extracellular matrix (ECM) proteins, including fibronectin (FN) and laminin, which could also direct cell fate. Soluble differentiation factors are known to increase ECM expression, yet ECM's ability to direct ESC fate is not well understood. To address the extent to which these proteins regulate differentiation when assembled into a matrix, we examined mouse ESC embryoid bodies (EBs) and found that their ability to maintain pluripotency marker expression was impaired by soluble serum FN. EBs also showed a spatiotemporal correlation between expression of FN and GATA4, a marker of definitive endoderm (DE), and an inverse correlation between FN and Nanog, a pluripotency marker. Maintenance of mouse ESC pluripotency prevented fibrillar matrix production, but induction medium created lineage-specific ECM containing varying amounts of FN and laminin. Mouse ESC-derived matrix was unlike conventional fibroblast-derived matrix, which did not contain laminin. Naïve mouse ESCs plated onto ESC- and fibroblast-derived matrix exhibited composition-specific differentiation. With exogenously added laminin, fibroblast-derived matrix is more similar in composition to mouse ESC-derived matrix and lacks residual growth factors that mouse ESC matrix may contain. Naïve mouse ESCs in DE induction medium exhibited dose-dependent DE differentiation as a function of the amount of exogenous laminin in the matrix in an α3 integrin-dependent mechanism. These data imply that fibrillar FN is necessary for loss of pluripotency and that laminin within a FN matrix improves DE differentiation.
Carraher, Cara L, and Jean E Schwarzbauer. “Regulation of matrix assembly through rigidity-dependent fibronectin conformational changes.”. J Biol Chem 288.21 (2013): , 288, 21, 14805-14. Web.Abstract
Cells sense and respond to the mechanical properties of their microenvironment. We investigated whether these properties affect the ability of cells to assemble a fibrillar fibronectin (FN) matrix. Analysis of matrix assembled by cells grown on FN-coated polyacrylamide gels of varying stiffnesses showed that rigid substrates stimulate FN matrix assembly and activation of focal adhesion kinase (FAK) compared with the level of assembly and FAK signaling on softer substrates. Stimulating integrins with Mn(2+) treatment increased FN assembly on softer gels, suggesting that integrin binding is deficient on soft substrates. Guanidine hydrochloride-induced extension of the substrate-bound FN rescued assembly on soft substrates to a degree similar to that of Mn(2+) treatment and increased activation of FAK along with the initiation of assembly at FN matrix assembly sites. In contrast, increasing actin-mediated cell contractility did not rescue FN matrix assembly on soft substrates. Thus, rigidity-dependent FN matrix assembly is determined by extracellular events, namely the engagement of FN by cells and the induction of FN conformational changes. Extensibility of FN in response to substrate stiffness may serve as a mechanosensing mechanism whereby cells use pericellular FN to probe the stiffness of their environment.
Donnelly, Patrick E, et al.A Simple Nanoscale Interface Directs Alignment of a Confluent Cell Layer on Oxide and Polymer Surfaces.”. J Mater Chem B Mater Biol Med 129 (2013): , 1, 29, 3553-3561. Web.Abstract
Templating of cell spreading and proliferation is described that yields confluent layers of cells aligned across an entire two-dimensional surface. The template is a reactive, two-component interface that is synthesized in three steps in nanometer thick, micron-scaled patterns on silicon and on several biomaterial polymers. In this method, a volatile zirconium alkoxide complex is first deposited at reduced pressure onto a surface pattern that is prepared by photolithography; the substrate is then heated to thermolyze the organic ligands to form surface-bound zirconium oxide patterns. The thickness of this oxide layer ranges from 10 to 70 nanometers, which is controlled by alkoxide complex deposition time. The oxide layer is treated with 1,4-butanediphosphonic acid to give a monolayer pattern whose composition and spatial conformity to the photolithographic mask are determined spectroscopically. NIH 3T3 fibroblasts and human bone marrow-derived mesenchymal stem cells attach and spread in alignment with the pattern without constraint by physical means or by arrays of cytophilic and cytophobic molecules. Cell alignment with the pattern is maintained as cells grow to form a confluent monolayer across the entire substrate surface.
Chiang, Chunyi, et al.Surface derivatization strategy for combinatorial analysis of cell response to mixtures of protein domains”. Langmuir 28.1 (2012): , 28, 1, 548-56. Web.Abstract
We report a robust strategy for conjugating mixtures of two or more protein domains to nonfouling polyurethane surfaces. In our strategy, the carbamate groups of polyurethane are reacted with zirconium alkoxide from the vapor phase to give a surface-bound oxide that serves as a chemical layer that can be used to bond organics to the polymer substrate. A hydroxyalkylphosphonate monolayer was synthesized on this layer, which was then used to covalently bind primary amine groups in protein domains using chloroformate-derived cross-linking. The effectiveness of this synthesis strategy was gauged by using an ELISA to measure competitive, covalent bonding of cell-binding (III(9-10)) and fibronectin-binding (III(1-2)) domains of the cell adhesion protein fibronectin. Cell adhesion, spreading, and fibronectin matrix assembly were examined on surfaces conjugated with single domains, a 1:1 surface mixture of III(1-2) and III(9-10), and a recombinant protein "duplex" containing both domains in one fusion protein. The mixture performed as well as or better than the other surfaces in these assays. Our surface activation strategy is amenable to a wide range of polymer substrates and free amino group-containing protein fragments. As such, this technique may be used to create biologically specific materials through the immobilization of specific protein groups or mixtures thereof on a substrate surface.
Hunt, Geoffrey C, Purva Singh, and Jean E Schwarzbauer. “Endogenous production of fibronectin is required for self-renewal of cultured mouse embryonic stem cells.”. Exp Cell Res 318.15 (2012): , 318, 15, 1820-31. Web.Abstract
Pluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix. Increasing the level of substrate fibronectin increased cell spreading and integrin receptor signaling through focal adhesion kinase, while concomitantly inducing the loss of Nanog and Oct4 self-renewal markers. Conversely, reducing fibronectin production by mES cells growing on a feeder-free gelatin substrate caused loss of cell adhesion, decreased integrin signaling, and decreased expression of self-renewal markers. These effects were reversed by providing the cells with exogenous fibronectin, thereby restoring adhesion to the gelatin substrate. Interestingly, mES cells do not adhere directly to the gelatin substrate, but rather adhere indirectly through gelatin-bound fibronectin, which facilitates self-renewal via its effects on cell adhesion. These results provide new insights into the mechanism of regulation of self-renewal by growth on a gelatin-coated surface. The effects of increasing or decreasing fibronectin levels show that self-renewal depends on an intermediate level of cell-fibronectin interactions. By providing cell adhesive signals that can act with other self-renewal factors to maintain mES cell pluripotency, fibronectin is therefore a necessary component of the self-renewal signaling pathway in culture.
Singh, Purva, and Jean E Schwarzbauer. “Fibronectin and stem cell differentiation - lessons from chondrogenesis.”. J Cell Sci 125.Pt 16 (2012): , 125, Pt 16, 3703-12. Web.Abstract
The extracellular matrix (ECM) is an intricate network of proteins that surrounds cells and has a central role in establishing an environment that is conducive to tissue-specific cell functions. In the case of stem cells, this environment is the stem cell niche, where ECM signals participate in cell fate decisions. In this Commentary, we describe how changes in ECM composition and mechanical properties can affect cell shape and stem cell differentiation. Using chondrogenic differentiation as a model, we examine the changes in the ECM that occur before and during mesenchymal stem cell differentiation. In particular, we focus on the main ECM protein fibronectin, its temporal expression pattern during chondrogenic differentiation, its potential effects on functions of differentiating chondrocytes, and how its interactions with other ECM components might affect cartilage development. Finally, we discuss data that support the possibility that the fibronectin matrix has an instructive role in directing cells through the condensation, proliferation and/or differentiation stages of cartilage formation.
Wong, Ming-Ching, and Jean E Schwarzbauer. “Gonad morphogenesis and distal tip cell migration in the Caenorhabditis elegans hermaphrodite.”. Wiley Interdiscip Rev Dev Biol 14 (2012): , 1, 4, 519-31. Web.Abstract
Cell migration and morphogenesis are key events in tissue development and organogenesis. In Caenorhabditis elegans, the migratory path of the distal tip cells determines the morphology of the hermaphroditic gonad. The distal tip cells undergo a series of migratory phases interspersed with turns to form the gonad. A wide variety of genes have been identified as crucial to this process, from genes that encode components and modifiers of the extracellular matrix to signaling proteins and transcriptional regulators. The connections between extracellular and transmembrane protein functions and intracellular pathways are essential for distal tip cell migration, and the integration of this information governs gonad morphogenesis and determines gonad size and shape.
Martynovsky, Maria, et al.mig-38, a novel gene that regulates distal tip cell turning during gonadogenesis in C. elegans hermaphrodites.”. Dev Biol 368.2 (2012): , 368, 2, 404-14. Web.Abstract
In Caenorhabditis elegans gonad morphogenesis, the final U-shapes of the two hermaphrodite gonad arms are determined by migration of the distal tip cells (DTCs). These somatic cells migrate in opposite directions on the ventral basement membrane until specific extracellular cues induce turning from ventral to dorsal and then centripetally toward the midbody region on the dorsal basement membrane. To dissect the mechanism of DTC turning, we examined the role of a novel gene, F40F11.2/mig-38, whose depletion by RNAi results in failure of DTC turning so that DTCs continue their migration away from the midbody region. mig-38 is expressed in the gonad primordium, and expression continues throughout DTC migration where it acts cell-autonomously to control DTC turning. RNAi depletion of both mig-38 and ina-1, which encodes an integrin adhesion receptor, enhanced the loss of turning phenotype indicating a genetic interaction between these genes. Furthermore, the integrin-associated protein MIG-15/Nck-interacting kinase (NIK) works with MIG-38 to direct DTC turning as shown by mig-38 RNAi with the mig-15(rh80) hypomorph. These results indicate that MIG-38 enhances the role of MIG-15 in integrin-dependent DTC turning. Knockdown of talin, a protein that is important for integrin activation, causes the DTCs to stop migration prematurely. When both talin and MIG-38 were depleted by RNAi treatment, the premature stop phenotype was suppressed. This suppression effect was reversed upon additional depletion of MIG-15 or its binding partner NCK-1. These results suggest that both talin and the MIG-15/NCK-1 complex promote DTC motility and that MIG-38 may act as a negative regulator of the complex. We propose a model to explain the dual role of MIG-38 in motility and turning.
Sharma, Ram I, Jean E Schwarzbauer, and Prabhas V Moghe. “Nanomaterials can dynamically steer cell responses to biological ligands”. Small 72 (2011): , 7, 2, 242-51. Web.Abstract
Traditional tissue regeneration approaches to activate cell behaviors on biomaterials rely on the use of extracellular-matrix-based or soluble growth-factor cues. In this article, a novel approach is highlighted to dynamically steer cellular phenomena such as cell motility based on nanoscale substratum features of biological ligands. Albumin-derived nanocarriers (ANCs) with variable nanoscale-size features are functionalized with fibronectin III9-10 matrix ligands, and their effects on primary human keratinocyte activation are investigated. The presentation of fibronectin fragments from ANCs significantly enhances cell migration as compared to free ligands at equivalent concentrations. Notably, cell migration is influenced by the size of the underlying ANCs even for variably sized ANCs covered in comparable levels of fibronectin fragment. For equivalent ligand concentrations, cell migration on the smaller-sized ANCs (30 and 50 nm) is significantly enhanced as compared to that on larger-sized ANCs (75 and 100 nm). In contrast, the enhancement of cell migration on nanocarriers is abolished by the use of immobilized, biofunctionalized ANCs, indicating that "dynamic" nanocarrier internalization events underlie the role of nanocarrier geometry on the differential regulation of cell migration kinetics. Uptake studies using fluorescent ANCs indicate that larger-sized ANCs cause delayed endocytic kinetics and hence could present barriers for internalization during the cell adhesion and motility processes. Motile cells exhibit diminished migration upon exposure to clathrin inhibitors, but not caveolin inhibitors, suggesting the role of clathrin-mediated endocytosis in facilitating cell migratory responsiveness to the nanocarriers. Overall, a monotonic relationship is found between the nanocarrier cytointernalization rate and the cell migration rate, suggesting the possibility of designing biointerfacial features for the dynamic control of cell migration. Thus, the functionalization of a mobile nanocarrier by a biorelevant ligand can be used to sensitize cellular motility activation to the adhesion ligands, and such nanocarrier interfaces can dynamically attune cell migration kinetics by modulating the uptake of the ligand-nanocarrier complex via nanocarrier size.
Salmerón-Sánchez, Manuel, et al.Role of material-driven fibronectin fibrillogenesis in cell differentiation”. Biomaterials 32.8 (2011): , 32, 8, 2099-105. Web.Abstract
Fibronectin (FN) is a ubiquitous extracellular matrix protein (ECM) protein that is organized into fibrillar networks by cells through an integrin-mediated process that involves contractile forces. This assembly allows for the unfolding of the FN molecule, exposing cryptic domains that are not available in the native globular FN structure and activating intracellular signalling complexes. However, organization of FN into a physiological fibrillar network upon adsorption on a material surface has not been observed. Here we demonstrate cell-free, material-induced FN fibrillogenesis into a biological matrix with enhanced cellular activities. We found that simple FN adsorption onto poly(ethyl acrylate) surfaces, but not control polymers, triggered FN organization into a fibrillar network via interactions in the amino-terminal 70 kDa fragment, which is involved in the formation of cell-mediated FN fibrils. Moreover, the material-driven FN fibrils exhibited enhanced biological activities in terms of myogenic differentiation compared to individual FN molecules and even type I collagen. Our results demonstrate that molecular assembly of FN can take place at the material interface, giving rise to a physiological protein network similar to fibrillar matrices assembled by cells. This research identifies material surfaces that trigger the organization of extracellular matrix proteins into biological active fibrils and establishes a new paradigm to engineer ECM-mimetic biomaterials.
Wong, Ming-Ching, Maria Martynovsky, and Jean E Schwarzbauer. “Analysis of cell migration using Caenorhabditis elegans as a model system.”. Methods Mol Biol 769 (2011): , 769, 233-47. Web.Abstract
The nematode Caenorhabditis elegans is an excellent model system in which to study long-distance cell migration in vivo. This chapter describes methods used to study a subset of migratory cells in the hermaphrodite nematode, the distal tip cells. These methods take advantage of the organism's transparent body and the expression of green fluorescent protein to observe cell migration and behavior. Additionally, the availability of nematode mutants and gene knockdown techniques that affect cell migration allow the analysis and comparison of wild-type and aberrant migratory paths. Methods for nematode growth and maintenance, strain acquisition, observation and live imaging, gene knockdown, and analysis of cell migration defects are covered.
Schwarzbauer, Jean E, and Douglas W DeSimone. “Fibronectins, their fibrillogenesis, and in vivo functions.”. Cold Spring Harb Perspect Biol 37 (2011). Web.Abstract
Fibronectin (FN) is a multidomain protein with the ability to bind simultaneously to cell surface receptors, collagen, proteoglycans, and other FN molecules. Many of these domains and interactions are also involved in the assembly of FN dimers into a multimeric fibrillar matrix. When, where, and how FN binds to its various partners must be controlled and coordinated during fibrillogenesis. Steps in the process of FN fibrillogenesis including FN self-association, receptor activities, and intracellular pathways have been under intense investigation for years. In this review, the domain organization of FN including the extra domains and variable region that are controlled by alternative splicing are described. We discuss how FN-FN and cell-FN interactions play essential roles in the initiation and progression of matrix assembly using complementary results from cell culture and embryonic model systems that have enhanced our understanding of this process.
Singh, Purva, Cara Carraher, and Jean E Schwarzbauer. “Assembly of fibronectin extracellular matrix.”. Annu Rev Cell Dev Biol 26 (2010): , 26, 397-419. Web.Abstract
In the process of matrix assembly, multivalent extracellular matrix (ECM) proteins are induced to self-associate and to interact with other ECM proteins to form fibrillar networks. Matrix assembly is usually initiated by ECM glycoproteins binding to cell surface receptors, such as fibronectin (FN) dimers binding to α5ß1 integrin. Receptor binding stimulates FN self-association mediated by the N-terminal assembly domain and organizes the actin cytoskeleton to promote cell contractility. FN conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. Once assembled, the FN matrix impacts tissue organization by contributing to the assembly of other ECM proteins. Here, we describe the major steps, molecular interactions, and cellular mechanisms involved in assembling FN dimers into fibrillar matrix while highlighting important issues and major questions that require further investigation.
Quinn, Jeffrey A, et al.Coordinate regulation of estrogen-mediated fibronectin matrix assembly and epidermal growth factor receptor transactivation by the G protein-coupled receptor, GPR30”. Mol Endocrinol 23.7 (2009): , 23, 7, 1052-64. Web.Abstract
Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.
Engler, Adam J, et al.A novel mode of cell detachment from fibrillar fibronectin matrix under shear.”. J Cell Sci 122.Pt 10 (2009): , 122, Pt 10, 1647-53. Web.Abstract
Cells within tissues are surrounded by fibrillar extracellular matrix (ECM) that supports cell adhesion via integrin receptors. The strength of cell interactions with fibrillar matrix and the effects of force on these interactions have not been quantified. To this end, we used a spinning disc device to apply radially increasing shear to human HT1080 fibrosarcoma cells attached to a cell-derived fibrillar fibronectin (FN) matrix. The shear required to detach 50% of HT1080 cells was eight times greater on a FN-coated, rigid glass substrate than on fibrillar FN matrix. Covalent crosslinking of the FN matrix increased its stiffness tenfold and produced a modest increase in shear detachment force for these cells. On FN-coated surfaces, cells detach by releasing interactions between alpha5beta1 integrin and FN. By contrast, cell detachment from fibrillar matrix occurred through a novel mechanism of fibril breakage, which left holes in the matrix visible by fluorescence microscopy. These results show that cells require less force to detach from fibrillar matrix than from FN adsorbed on glass and that detachment occurs through breaking fibrils instead of by release of integrin-matrix bonds. Thus, ECM fibril breakage is another molecular feature to consider when understanding cell and tissue homeostasis.
Karuri, Nancy W, et al.Probing the conformation of the fibronectin III1-2 domain by fluorescence resonance energy transfer.”. J Biol Chem 284.6 (2009): , 284, 6, 3445-52. Web.Abstract
Fibronectin (FN) matrix is crucial for cell and tissue functions during embryonic development, wound healing, and oncogenesis. Assembly of FN matrix fibrils requires FN domains that mediate interactions with integrin receptors and with other FN molecules. In addition, regulation of FN matrix assembly depends on the first two FN type III modules, III(1) and III(2), which harbor FN-binding sites. We propose that interactions between these two modules sequester FN-binding sites in soluble FN and that these sites become exposed by FN conformational changes during assembly. To test the idea that III(1-2) has a compact conformation, we constructed CIIIY, a conformational sensor of III(1-2) based on fluorescent resonance energy transfer between cyan and yellow fluorescent proteins conjugated at its N and C termini. We demonstrate energy transfer in CIIIY and show that fluorescent resonance energy transfer was eliminated by proteolysis and by treatment with mild denaturants that disrupted intramolecular interactions between the two modules. We also show that mutations of key charged residues resulted in conformational changes that exposed binding sites for the N-terminal 70-kDa FN fragment. Collectively, these results support a conformation-dependent mechanism for the regulation of FN matrix assembly by III(1-2).
Williams, Selwyn A, and Jean E Schwarzbauer. “A shared mechanism of adhesion modulation for tenascin-C and fibulin-1.”. Mol Biol Cell 20.4 (2009): , 20, 4, 1141-9. Web.Abstract
Adhesion modulatory proteins are important effectors of cell-matrix interactions during tissue remodeling and regeneration. They comprise a diverse group of matricellular proteins that confer antiadhesive properties to the extracellular matrix (ECM). We compared the inhibitory effects of two adhesion modulatory proteins, fibulin-1 and tenascin-C, both of which bind to the C-terminal heparin-binding (HepII) domain of fibronectin (FN) but are structurally distinct. Here, we report that, like tenascin-C, fibulin-1 inhibits fibroblast spreading and cell-mediated contraction of a fibrin-FN matrix. These proteins act by modulation of focal adhesion kinase and extracellular signal-regulated kinase signaling. The inhibitory effects were bypassed by lysophosphatidic acid, an activator of RhoA GTPase. Fibroblast response to fibulin-1, similar to tenascin-C, was dependent on expression of the heparan sulfate proteoglycan syndecan-4, which also binds to the HepII domain. Therefore, blockade of HepII-mediated signaling by competitive binding of fibulin-1 or tenascin-C represents a shared mechanism of adhesion modulation among disparate modulatory proteins.
Hunt, Geoffrey C, and Jean E Schwarzbauer. “Tightening the connections between cadherins and fibronectin matrix.”. Dev Cell 16.3 (2009): , 16, 3, 327-8. Web.Abstract
Fibronectin extracellular matrix is assembled and remodeled throughout embryogenesis and plays key roles in early vertebrate development. In this issue of Developmental Cell, Dzamba et al. reveal, through their studies of Xenopus embryos, a novel mechanism for regulating fibronectin matrix assembly through Wnt signaling and cadherin-mediated cell-cell adhesion.
Cram, Erin J, Kristina Marie Fontanez, and Jean E Schwarzbauer. “Functional characterization of KIN-32, the Caenorhabditis elegans homolog of focal adhesion kinase”. Dev Dyn 237.3 (2008): , 237, 3, 837-46. Web.Abstract
We have identified the single Caenorhabditis elegans focal adhesion kinase (FAK) homolog KIN-32, which has the signature FAK structure including an N-terminal Four.1-Ezrin-Radixin-Moesin (FERM) domain followed by a tyrosine kinase domain and a C-terminal domain with weak homology to the focal adhesion targeting domain. The functional requirements for KIN-32 were examined using RNA interference depletion experiments and analysis of a deletion allele, kin-32(ok166), in which a large segment of the FERM domain is missing. Our results show that reduced levels of expression or absence of the FERM domain do not affect viability, fertility, or anatomy in C. elegans. Expression of an analogous FERM deletion in mouse FAK showed kinase activity in vitro and supported normal focal adhesion localization in cell culture. Thus, the FERM domain of KIN-32, and possibly KIN-32 activity in general, appears to be dispensable for normal C. elegans physiology.
Ginsberg, Mark H, and Jean E Schwarzbauer. “Cell-to-cell contact and extracellular matrix”. Curr Opin Cell Biol 20.5 (2008): , 20, 5, 492-4. Web.
Williams, Courtney M, et al.Fibronectin expression modulates mammary epithelial cell proliferation during acinar differentiation.”. Cancer Res 68.9 (2008): , 68, 9, 3185-92. Web.Abstract
The mammary gland consists of a polarized epithelium surrounded by a basement membrane matrix that forms a series of branching ducts ending in hollow, sphere-like acini. Essential roles for the epithelial basement membrane during acinar differentiation, in particular laminin and its integrin receptors, have been identified using mammary epithelial cells cultured on a reconstituted basement membrane. Contributions from fibronectin, which is abundant in the mammary gland during development and tumorigenesis, have not been fully examined. Here, we show that fibronectin expression by mammary epithelial cells is dynamically regulated during the morphogenic process. Experiments with synthetic polyacrylamide gel substrates implicate both specific extracellular matrix components, including fibronectin itself, and matrix rigidity in this regulation. Alterations in fibronectin levels perturbed acinar organization. During acinar development, increased fibronectin levels resulted in overproliferation of mammary epithelial cells and increased acinar size. Addition of fibronectin to differentiated acini stimulated proliferation and reversed growth arrest of mammary epithelial cells negatively affecting maintenance of proper acinar morphology. These results show that expression of fibronectin creates a permissive environment for cell growth that antagonizes the differentiation signals from the basement membrane. These effects suggest a link between fibronectin expression and epithelial cell growth during development and oncogenesis in the mammary gland.
Meighan, Christopher M, and Jean E Schwarzbauer. “Temporal and spatial regulation of integrins during development.”. Curr Opin Cell Biol 20.5 (2008): , 20, 5, 520-4. Web.Abstract
Integrin receptors for extracellular matrix (ECM) are critical determinants of biological processes. Regulation of integrin expression is one way for cells to respond to changes in the ECM, to integrate intracellular signals, and to obtain appropriate adhesion for cell motility, proliferation, and differentiation. Transcriptional and post-translational mechanisms for changing the integrin repertoire at the cell surface have recently been described. These mechanisms work through transcriptional regulation that alters the proportions of one integrin relative to another, referred to as integrin switching, or through localized regulation of integrin-ECM interactions, thus providing exquisite control over cell rearrangements during tissue morphogenesis and remodeling. These integrin regulatory pathways may also be important targets in such emerging fields as tissue engineering and regenerative medicine.
Pereira, Marian, et al.Engineered cell-adhesive nanoparticles nucleate extracellular matrix assembly”. Tissue Eng 13.3 (2007): , 13, 3, 567-78. Web.Abstract
Tissue engineering aims to regenerate new biological tissue for replacing diseased or injured tissues. We propose a new approach to accelerate the deposition of cell-secreted matrix proteins into extracellular matrix fibrils. We examined whether dynamic substrates with nanoscale ligand features allowing for alpha5beta1 integrin recruiting, cellular tension generation, and alpha5beta1 integrin mobility would enhance fibronectin matrix assembly in a ligand model system that is routinely not sufficient for its induction. To this end, we developed biodynamic substrates consisting of cell adhesive fragment from the 9th and 10th type repeats of fibronectin (FNf ) functionalized to 100 nm prefabricated albumin nanoparticles (ANPs). FNf-ANPs modulated cellular spreading processes, promoting the development of stellate or dendritic morphologies. Concomitant with the spreading, FNf-ANPs rapidly recruited beta1 integrins to focal contacts and promoted the migration of beta1 integrins centripetally from the cell periphery toward the center. FNf-ANPs stimulated the deposition of secreted fibronectin into matrix fibrils; FNf, the key ligand alone, was not sufficient for fibronectin fibrillogenesis. When FNf-ANPs were displayed from "immobilized" substrates, abolishing any mobility of ligated beta1 integrins, fibronectin matrix assembly was abrogated, implicating the role of dynamic matrix display on matrix assembly. Receptor ligation of FNf-ANPs via noncontractile adhesions was not sufficient to stimulate fibrillogenesis, and Rho-kinase inhibitors abolished fibronectin matrix deposition. Our approach highlights the possibility of engineering integrin-based extracellular matrix assembly using nanotechnology, which may have implications for improved biomaterials for wound repair and basic understanding of matrix remodeling within pathogenesis and biomedicine.
Wierzbicka-Patynowski, Iwona, Yong Mao, and Jean E Schwarzbauer. “Continuous requirement for pp60-Src and phospho-paxillin during fibronectin matrix assembly by transformed cells.”. J Cell Physiol 210.3 (2007): , 210, 3, 750-6. Web.Abstract
Fibronectin (FN) matrix assembly is an integrin-mediated process that is regulated by both the extracellular environment and intracellular signaling pathways. The activity of Src-family kinases is important for initiation of FN assembly by normal fibroblasts. Here we report that in HT1080 fibrosarcoma cells, Src kinase activity is required not only for the assembly of FN matrix but also for the maintenance of FN matrix fibrils at the cell surface. Dexamethasone-induced FN fibril formation by these cells was completely blocked for at least 24 h when Src-family kinase activity was inhibited by either PP1 or SU6656. Inhibition of Src after significant matrix had already been assembled, resulted in an increased rate of loss of detergent-insoluble FN. Binding of activation-dependent integrin antibodies reveals a role for Src in maintaining integrin activity. The requirement for Src kinase activity appears to depend, in part, on phosphorylation of paxillin at tyrosine 118 (Y118). Phospho-paxillin co-localized with FN fibrils, and overexpression of GFP-paxillin but not of GFP-paxillinY118F enhanced cell-mediated assembly of FN. Our results indicate that Src maintains FN matrix at the cell surface through its effect on integrin activity and paxillin phosphorylation.
Meighan, Christopher M, and Jean E Schwarzbauer. “Control of C. elegans hermaphrodite gonad size and shape by vab-3/Pax6-mediated regulation of integrin receptors.”. Genes Dev 21.13 (2007): , 21, 13, 1615-20. Web.Abstract
Integrin receptors for extracellular matrix are critical for cell motility, but the signals that determine when to stop are not known. Analysis of distal tip cell (DTC) migration during gonadogenesis in Caenorhabditis elegans has revealed the importance of transcription factor vab-3/Pax6 in regulating the alpha integrin genes, ina-1 and pat-2. Utilizing vab-3 mutants, we show that the down-regulation of ina-1 is necessary for DTC migration cessation and the up-regulation of pat-2 is required for directionality. These results demonstrate concomitant, but distinct roles in migration for each integrin. Notably, transcriptional control of migration termination provides a new mechanism for regulation of morphogenesis and organ size.
Dennes, Joseph T, et al.High-yield activation of scaffold polymer surfaces to attach cell adhesion molecules.”. J Am Chem Soc 129.1 (2007): , 129, 1, 93-7. Web.Abstract
Zirconium tetra(tert-butoxide) reacts with surface amide groups of polyamide nylon 6/6 to give (eta(2)-amidate)zirconium complexes in high yield. These surface complexes react to bond the cell-adhesive peptide arginine-glycine-aspartic acid (RGD) to the polymer surface. A surface loading of 0.18 nmol/cm(2) of RGD is achieved, which is 20-1000 times higher than previously reported attainable on natural or synthetic polymers by other strategies. Approximately 40% of the nylon surface is covered by the RGD, which gives a surface that is both stable to hydrolysis and highly active for cell adhesion and spreading in vitro.
Engler, AJ, et al.Extracellular matrix elasticity directs stem cell differentiation.”. J Musculoskelet Neuronal Interact 74 (2007): , 7, 4, 335. Print.
Galante, Leontine L, and Jean E Schwarzbauer. “Requirements for sulfate transport and the diastrophic dysplasia sulfate transporter in fibronectin matrix assembly.”. J Cell Biol 179.5 (2007): , 179, 5, 999-1009. Web.Abstract
Diastrophic dysplasia sulfate transporter (DTDST) is a sulfate/chloride antiporter whose function is impaired in several human chondrodysplasias. We show that DTDST is upregulated by dexamethasone stimulation of HT1080 fibrosarcoma cells and is required for fibronectin (FN) extracellular matrix deposition by these cells. DTDST imports sulfate for the modification of glycosaminoglycans. We find that N-sulfation of these chains is important for FN matrix assembly and that sulfation of cell surface proteoglycans is reduced in the absence of DTDST. Of the candidate HT1080 cell surface proteoglycans, only loss of syndecan-2 compromises FN assembly, as shown by syndecan-2 small interfering RNA knockdown. DTDST is both necessary and sufficient to induce FN matrix assembly in HT1080 cells. Knockdown of DTDST ablates FN matrix, whereas its overexpression increases assembly without dexamethasone stimulation. These results identify a previously unrecognized regulatory pathway for matrix assembly via modulation of a sulfate transporter and proteoglycan sulfation. These data raise the possibility that FN assembly defects contribute to chondrodysplasias.
Sharma, Ram I, et al.Albumin-derived nanocarriers: substrates for enhanced cell adhesive ligand display and cell motility”. Biomaterials 27.19 (2006): , 27, 19, 3589-98. Web.Abstract
Cell-adhesive ligands organized on nanoscale synthetic biomaterials can potentially recapitulate the nanoscale organization of extracellular matrix and the consequent effects of cell dynamics. In this study, 100 nm albumin nanocarriers (ANC) were fabricated to serve as nanoscale organizational units for a well-defined ligand, the recombinant fragment from fibronectin comprised of the RGD-containing module 10 and the synergy-region-containing module 9. Conventional protein conjugation chemistry was employed to fabricate nanocarriers with increasing levels of displayed ligand. Presentation of ligand-functionalized ANCs adsorbed onto substrates was found to enhance keratinocyte attachment when compared to equivalent levels of adsorbed ligands, supported by ELISA data that the display of ligand on ANCs essentially increased the accessibility of the cell-binding domain and AFM data that the ligand was likely exposed due to ligand-ANC repulsion. The ligand presentation from ANCs converted the cellular morphology from a stationary phenotype to a motile phenotype, with the expression of filopodia-like microextensions, and a decrease in focal adhesions, indicating decreased cell adhesion strength. Consequently, cell motility was found to be significantly elevated on ligand-ANC substrates relative to substrates with equivalent levels of ligand. Overall, the ligand-functionalized albumin nanocarriers offer a unique model platform with two distinct properties: enhanced ligand exposure for enhancement of cell attachment to ligands at low concentrations; and enhanced cell detachment, motile phenotype, and migration kinetics.
Mao, Yong, and Jean E Schwarzbauer. “Accessibility to the fibronectin synergy site in a 3D matrix regulates engagement of alpha5beta1 versus alphavbeta3 integrin receptors.”. Cell Commun Adhes 13.5-6 (2006): , 13, 5-6, 267-77. Web.Abstract
Cell adhesion and migration on fibronectin (FN) extracellular matrix are mediated by integrin receptors. Integrins alpha5beta1 and alphavbeta3 require the RGD cell-binding sequence in FN, but alpha5beta1 also requires the nearby synergy site for maximal binding. In this study, we investigated how differences in the numbers of RGD or synergy sites within a three-dimensional (3D) FN-rich matrix influence cell adhesion and migration. CHO cell adhesion, spreading, and migration were reduced on 3D chimeric matrix containing FN lacking RGD (FN(RGD-)). Incorporation of FN with mutation of the synergy site (FN(syn-)), however, resulted in selective usage of integrins. CHO cells expressing alpha5beta1 showed decreased interactions with FN(syn-) chimeric matrix. In contrast, the presence of FN(syn-) had no effect on CHOalphavbeta3 cell migration. Interestingly, CHOalpha5/alphavbeta3 cells expressing both integrins selectively used alpha5beta1 for migration on wild type FN matrix but preferred alphavbeta3 for migration on FN(syn-) chimeric matrix. Thus sequestration or exposure of the FN synergy site within a 3D matrix may represent a novel mechanism for regulating cell functions through differential usage of integrin receptors. [Supplementary materials are available for this article. Go to the publisher's online edition of Cell Communication and Adhesion for the following free supplemental resource: a video recording shows migration of HT1080 cells on 3D matrix. HT1080 cells were allowed to attach to the matrix in serum-free DMEM for 2 h. FBS was then added to the medium to a final concentration of 10% and video recording was started. Images were taken every 5 min for 2 h. The video plays at 6 frames/s.].
Hsia, Henry C, and Jean E Schwarzbauer. “Adenoviral-mediated expression and local deposition of recombinant tenascin-C perturbs cell-dependent matrix contraction.”. J Surg Res 136.1 (2006): , 136, 1, 92-7. Web.Abstract
BACKGROUND: To mimic the wound environment, we have developed a three-dimensional (3-D) fibrin-fibronectin (FN) matrix model that is formed in vitro from purified proteins and approximates the provisional matrix. Tenascin-C, a large extracellular matrix (ECM) glycoprotein, is expressed transiently in tissue adjacent to areas of injury and contacts the provisional matrix in vivo. We have constructed a novel recombinant adenovirus vector (Ad-70Ten) to up-regulate local expression and secretion of a recombinant form of tenascin-C. METHODS: Ad-70Ten and a control vector were constructed and used to infect cultured mammalian cells. Post-infection monitoring of expression was accomplished by immunoblot and immunohistochemical techniques. Local protein deposition was examined by immunofluorescence. Cell contractility was assessed by ability of infected cells to contract 3-D fibrin-FN matrices. Some matrices also contained lysophosphatidic acid (LPA), an activator of Rho GTPase. RESULTS: Adenovirus-infected cells demonstrated high recombinant tenascin-C expression and deposited protein at sites of cell-matrix contacts resulting in significantly reduced contractility with 2.5-fold lower contraction of the matrix compared with control cells. Matrix contraction could be restored by treatment with LPA. CONCLUSION: These results show that endogenous expression of tenascin-C down-regulates cell contractility and strongly suggest that it exerts its effects via a Rho GTPase signaling pathway. Taken with previous findings, these results suggest that tenascin-C acts in both a paracrine and autocrine manner via Rho GTPase pathways. This report demonstrates that recombinant adenovirus infection is a feasible method to induce high expression of large matrix proteins in mammalian cells, allowing better approximation of in vivo circumstances for investigations of locally secreted matrix protein. While the current vector has been constructed for research purposes, it also represents a proof in principle that adenoviral vectors encoding large proteins may have potential benefit in clinical applications.
Valenick, Leyla V, and Jean E Schwarzbauer. “Ligand density and integrin repertoire regulate cellular response to LPA.”. Matrix Biol 25.4 (2006): , 25, 4, 223-31. Web.Abstract
Engagement of integrin receptors by the extracellular matrix (ECM) protein fibronectin (FN) activates intracellular signaling, cytoskeletal reorganization and cellular tension. The soluble factor lysophosphatidic acid (LPA) acts through Rho GTPase and its effector Rho kinase (ROCK) to enhance alpha5beta1 integrin-mediated cell spreading on the Arg-Gly-Asp (RGD) cell-binding domain of FN. A second cell-binding site for alpha4 integrins resides in the CS1 segment of the alternatively spliced V region of FN. We show here that LPA treatment of alpha4beta1-expressing CHOalpha4 cells on FN induced a significant decrease in spread cell area. LPA also decreased apoptosis induced by serum-deprivation in CHOalpha4 and human A375 melanoma cells in an alpha4beta1-dependent manner. Improvement in cell viability and changes in cell morphology were dependent on ROCK and on the number of substrate binding sites for alpha4beta1. LPA signaling combined with alpha4beta1-mediated adhesion appears to sustain cell viability in situations where FN matrix is limiting. Such cooperation may impact dynamic cellular events such as wound healing, fibrosis, and metastasis.
Midwood, Kim S, et al.Modulation of cell-fibronectin matrix interactions during tissue repair.”. J Investig Dermatol Symp Proc 11.1 (2006): , 11, 1, 73-8. Print.Abstract
Environmental signals from the extracellular matrix (ECM) are transmitted by cell surface receptors that connect to the actin cytoskeleton and to multiple intracellular signaling pathways. To dissect how the ECM regulates cell functions, we are using a three-dimensional (3D) fibrin-fibronectin matrix, resembling the wound provisional matrix. Fibroblasts adhere to fibronectin in this matrix via concomitant engagement of alpha 5 beta 1 integrin receptors and syndecan-4, a transmembrane proteoglycan. An adhesive phenotype is developed with actin stress fibers and activation of focal adhesion kinase (FAK) and Rho GTPase. Lack of syndecan-4 engagement, as occurs in the presence of the ECM protein tenascin-C, promotes a motile phenotype; FAK and Rho signaling are downregulated and filopodia are extended. Fibronectin matrices have distinct effects on two other receptors: alpha 4 beta 1 and beta v beta 3 integrins. Although alpha 4 beta 1 does not naturally support strong cell interactions with a fibrin-fibronectin matrix, binding is dramatically enhanced by proteolytic cleavage of fibronectin. Conversely, activity of alpha v beta 3 is stimulated by multimeric fibronectin fibrils showing that the organization of fibronectin differentially affects integrin functions. Thus, deposition of additional ECM components, expression of co-receptors for ECM, cleavage of adhesive proteins, and the architecture of the ECM microenvironment are different mechanisms for modulating cell responses to fibronectin matrix.
Cram, Erin J, Hongyu Shang, and Jean E Schwarzbauer. “A systematic RNA interference screen reveals a cell migration gene network in C. elegans.”. J Cell Sci 119.Pt 23 (2006): , 119, Pt 23, 4811-8. Web.Abstract
Cell migration is essential during embryonic development and tissue morphogenesis. During gonadogenesis in the nematode Caenorhabditis elegans, migration of the distal tip cells forms two U-shaped gonad arms. Malformation results if the distal tip cells stop prematurely or follow an aberrant path, and abnormalities are easily visualized in living nematodes. Here we describe the first comprehensive in vivo RNA interference screen for genes required for cell migration. In this non-biased screen, we systematically analyzed 16,758 RNA-interference depletion experiments by light microscopy and identified 99 genes required for distal tip cell migration. Genetic and physical interaction data connect 59 of these genes to form a cell migration gene network that defines distal tip cell migration in vivo.
Lee, Myeongwoo, et al.Connections between integrins and Rac GTPase pathways control gonad formation and function in C. elegans”. Biochim Biophys Acta 1723.1-3 (2005): , 1723, 1-3, 248-55. Web.Abstract
The integrins are a family of alphabeta heterodimeric transmembrane receptors that link extracellular matrix (ECM) proteins to the cytoskeleton and orchestrate cell behaviors. It's been suggested that integrins interact with Rho family small GTPases, such as Rho and Rac. We took advantage of a C. elegans nematode line expressing HA-betatail, a beta integrin transgene inhibiting the functions of endogenous integrins, to determine the combined effects of reducing PAT-3 beta integrin and Rac pathway activities. Double mutants of HA-betatail and unc-73, a guanine nucleotide exchange factor GEF for MIG-2/Rac, had body wall and vulval muscle abnormalities. On the other hand, HA-betatail combined with mutant CED-5, another Rac interacting protein, showed ovulation defects and sterility. RNA-mediated interference (RNAi) of pat-3 on Rac mutant backgrounds also affected gonad structure and function. These results show a functional link between integrins and Rac signaling in muscles and gonads. Furthermore, data showing distinct phenotypes of HA-betatail with unc-73 versus ced-5 suggest some tissue-specificity in the usage of Rac signaling pathways.
Valenick, Leyla V, Henry C Hsia, and Jean E Schwarzbauer. “Fibronectin fragmentation promotes alpha4beta1 integrin-mediated contraction of a fibrin-fibronectin provisional matrix.”. Exp Cell Res 309.1 (2005): , 309, 1, 48-55. Web.Abstract
In injured tissues, the fibrin-fibronectin (FN) provisional matrix provides a framework for cell adhesion, migration, and repair. Effective repair and remodeling require a proper balance between extracellular matrix (ECM) deposition, contraction, and turnover. We utilized a three-dimensional (3D) fibrin-FN provisional matrix model to determine the contributions of the FN-binding integrin receptors alpha5beta1 and alpha4beta1 to matrix contraction. CHOalpha5 cells expressing alpha5beta1, a receptor for FN's RGD cell-binding domain, were highly contractile, and cells were well spread on a 3D fibrin-FN matrix. In contrast, CHOalpha4 cells expressing the alpha4beta1 receptor for FN's alternatively spliced V region attached less efficiently to FN and were deficient in fibrin-FN matrix contraction. Surprisingly, cell adhesion and matrix contraction by CHOalpha4 cells were dramatically enhanced, to levels equivalent to CHOalpha5 cells, when proteolyzed FN was used in place of intact FN in the fibrin-FN matrix. Similar enhancement was observed when ligand binding by alpha4beta1 integrins was activated by treatment with Mn(++), but not by stimulation of actin organization with LPA. Therefore, alpha4beta1-dependent cell responses to the provisional matrix are modulated by cleavage of matrix components.
Hsia, Henry C, and Jean E Schwarzbauer. “Meet the tenascins: multifunctional and mysterious.”. J Biol Chem 280.29 (2005): , 280, 29, 26641-4. Web.
Mao, Yong, and Jean E Schwarzbauer. “Fibronectin fibrillogenesis, a cell-mediated matrix assembly process.”. Matrix Biol 24.6 (2005): , 24, 6, 389-99. Web.Abstract
The extracellular matrix provides a framework for cell adhesion, supports cell movement, and serves to compartmentalize tissues into functional units. Fibronectin is a core component of many extracellular matrices where it regulates a variety of cell activities through direct interactions with cell surface integrin receptors. Fibronectin is synthesized by many adherent cells which then assemble it into a fibrillar network. The assembly process is integrin-dependent and fibronectin-integrin interactions initiate a step-wise process involving conformational activation of fibronectin outside and organization of the actin cytoskeleton inside. During assembly, fibronectin undergoes conformational changes that expose fibronectin-binding sites and promote intermolecular interactions needed for fibril formation. In this review, the main steps of fibronectin assembly are described and recent studies on fibronectin conformational changes are discussed.
Mao, Yong, and Jean E Schwarzbauer. “Stimulatory effects of a three-dimensional microenvironment on cell-mediated fibronectin fibrillogenesis.”. J Cell Sci 118.Pt 19 (2005): , 118, Pt 19, 4427-36. Web.Abstract
The assembly of fibronectin into a fibrillar matrix is a regulated step-wise process that involves binding to integrin receptors and interactions between fibronectin molecules. This process has been studied extensively using cells in two-dimensional (2D) monolayer culture. In most situations in vivo, however, matrix assembly occurs within existing three-dimensional (3D) extracellular matrix networks. In an attempt to mimic this environment, we analyzed matrix assembly by fibroblasts cultured on a pre-assembled 3D fibronectin matrix and found significant stimulation of fibronectin fibril assembly compared to cells in 2D culture. Lower amounts of fibronectin were needed to initiate the assembly process, fibrils accumulated to higher density, and the 3D fibril organization played a key role in the stimulatory effect. Moreover, cells expressing activation-dependent integrins were able to assemble fibronectin matrix without exogenous stimulation, suggesting regulatory effects of the 3D fibronectin matrix on integrin activity. These results provide evidence for an additional level of control of fibronectin deposition through cell interactions with the local microenvironment.
Midwood, Kim S, et al.Coregulation of fibronectin signaling and matrix contraction by tenascin-C and syndecan-4.”. Mol Biol Cell 15.12 (2004): , 15, 12, 5670-7. Web.Abstract
Syndecan-4 is a ubiquitously expressed heparan sulfate proteoglycan that modulates cell interactions with the extracellular matrix. It is transiently up-regulated during tissue repair by cells that mediate wound healing. Here, we report that syndecan-4 is essential for optimal fibroblast response to the three-dimensional fibrin-fibronectin provisional matrix that is deposited upon tissue injury. Interference with syndecan-4 function inhibits matrix contraction by preventing cell spreading, actin stress fiber formation, and activation of focal adhesion kinase and RhoA mediated-intracellular signaling pathways. Tenascin-C is an extracellular matrix protein that regulates cell response to fibronectin within the provisional matrix. Syndecan-4 is also required for tenascin-C action. Inhibition of syndecan-4 function suppresses tenascin-C activity and overexpression of syndecan-4 circumvents the effects of tenascin-C. In this way, tenascin-C and syndecan-4 work together to control fibroblast morphology and signaling and regulate events such as matrix contraction that are essential for efficient tissue repair.
Midwood, Kim S, et al.Easy and efficient bonding of biomolecules to an oxide surface of silicon.”. Langmuir 20.13 (2004): , 20, 13, 5501-5. Print.Abstract
A new method is described to attach biological molecules to the surface of silicon. Semiconductors such as Si modified with surface-bound capture molecules have enormous potential for use in biosensors for which an ideal detection platform should be inexpensive, recognize targets rapidly with high sensitivity and specificity, and possess superior stability. In this process, a self-assembled film of an organophosphonic acid is bonded to the native or synthesized oxide-coated Si surface as a film of the correspondingphosphonate. The phosphonate film is functionalized to enable covalently coupling biological molecules, ranging in size from small peptides to large multi-subunit proteins, to the Si surface. Surface modification and biomolecule coupling procedures are easily accomplished: all reactions can proceed in air, and most take place under ambient conditions. The biomolecule-modified surfaces are stable under physiological conditions, are selective for adhesion of specific cells types, and are reusable.
Meighan, Christopher M, Erin J Cram, and Jean E Schwarzbauer. “Organogenesis: cutting to the chase.”. Curr Biol 14.22 (2004): , 14, 22, R948-50. Web.Abstract
Gonad morphogenesis in Caenorhabditis elegans requires two secreted proteases. Recent studies show that alterations of the extracellular matrix component fibulin-1 rescue gonadogenesis in the absence of these proteases. This finding is a critical step toward understanding the role of extracellular matrix in organogenesis.
Danahy, Michael P, et al.Self-assembled monolayers of alpha,omega-diphosphonic acids on Ti enable complete or spatially controlled surface derivatization.”. Langmuir 20.13 (2004): , 20, 13, 5333-7. Print.Abstract
Alpha,omega-diphosphonic acids self-assemble on the native oxide surfaces of Ti or Ti-6Al-4V. Heating gives strongly bonded phosphonate monolayers. Infrared and X-ray spectroscopic and water contact angle data show that the films are bonded to the surface by one phosphonate unit; the other remains a phosphonic acid. Surface loadings were measured by quartz crystal microbalance procedures. Mechanical shear strengths for the films were also measured; these do not correlate simply with surface loadings. Films formed from 1,12-diphosphonododecane were treated with zirconium tetra(tert-butoxide) to give surface Zr complex species; derivatives of these surface complexes are stable to hydrolysis under physiological conditions and are mechanically strong. The complexation reaction can be accomplished over the entire surface; alternatively, dropwise application of the alkoxide to the surface enables spatial control of deposition. The cell attractive peptide derivative RGDC can be bound to these surface Zr alkoxide complexes through (maleimido)-alkylcarboxylate intermediates. Surfaces modified with RGDC were shown to be effective for osteoblast binding and proliferation.
Cram, Erin J, and Jean E Schwarzbauer. “The talin wags the dog: new insights into integrin activation.”. Trends Cell Biol 14.2 (2004): , 14, 2, 55-7. Print.Abstract
Integrin transmembrane receptors have a unique property that distinguishes them from other signaling receptors. Their affinity for ligands can be modulated from the inside out in response to intracellular signals generated by non-integrin receptors. Recent findings provide novel mechanistic insights into this process by demonstrating that talin, a protein that links integrins to actin, is necessary for the inside-out activation of integrins.
Midwood, Kim S, Leyla Valenick Williams, and Jean E Schwarzbauer. “Tissue repair and the dynamics of the extracellular matrix.”. Int J Biochem Cell Biol 36.6 (2004): , 36, 6, 1031-7. Web.Abstract
Repair of tissue after injury depends on the synthesis of a fibrous extracellular matrix to replace lost or damaged tissue. Newly deposited extracellular matrix is then re-modeled over time to emulate normal tissue. The extracellular matrix directs repair by regulating the behavior of the wide variety of cell types that are mobilized to the damaged area in order to rebuild the tissue. Acute inflammation, re-epithelialization, and contraction all depend on cell-extracellular matrix interactions and contribute to minimize infection and promote rapid wound closure. Matricellular proteins are up-regulated during wound healing where they modulate interactions between cells and the extracellular matrix to exert control over events that are essential for efficient tissue repair. Here, we discuss how the extracellular matrix changes during the stages of tissue repair, how matricellular proteins affect cell-extracellular matrix interactions, and how these proteins might be exploited for use therapeutically.
Wierzbicka-Patynowski, Iwona, Yong Mao, and Jean E Schwarzbauer. “Analysis of fibronectin matrix assembly.”. Curr Protoc Cell Biol Chapter 10 (2004): , Chapter 10, Unit 10.12. Web.Abstract
The extracellular matrix acts as a framework for tissue architecture and dynamically regulates many cellular functions. Fibronectin is a ubiquitous extracellular matrix component that plays critical roles in matrix structure and in directing cell behaviors. Fibronectin is synthesized and secreted by many cell types including fibroblasts, endothelial cells, myoblasts, and astrocytes. Upon secretion, cells assemble fibronectin into a fibrillar network. During assembly, fibronectin is initially organized into fine cell-associated fibrils and, through continued accumulation of fibronectin, these fibrils are converted into a dense network of detergent-insoluble fibrils. Differential solubility in the detergent deoxycholate is the principle for biochemical fractionation of fibronectin matrix. Fibril assembly and organization can also be examined by immunofluorescence staining. In this unit, basic methods of detection, quantification, and visualization of fibrillar fibronectin matrix are described.
Clark, Richard AF, et al.Fibroblast migration on fibronectin requires three distinct functional domains”. J Invest Dermatol 121.4 (2003): , 121, 4, 695-705. Web.Abstract
Mesenchymal cell movement is normally constrained; however, fibronectin can provide a pathway for stromal cell migration during embryogenesis, morphogenesis, and wound healing. Cells can adhere to fibronectin via integrin and nonintegrin receptors, which bind multiple unique peptide sequences. Synthetic peptides and recombinant proteins were used to delineate the functional domains needed for human fibroblast migration over fibronectin. The 9th and 10th fibronectin type III repeats, which contain RGD and PHSRN synergy cell attachment sequences, support almost maximal fibroblast attachment, but not migration of primary dermal fibroblasts. Specific sequences within the heparin domain and the IIICS region are also required for migration. These findings predict and additional data confirm the necessity for the cooperation of multiple integrin and nonintegrin receptors for fibroblast migration on fibronectin. Such stringency of migration most likely imposes an immense constraint on normal mesenchymal cell mobility in unperturbed tissue. Loss of such restraint may be critical for the migration cancer cells through the extracellular matrix.
Wierzbicka-Patynowski, Iwona, and Jean E Schwarzbauer. “The ins and outs of fibronectin matrix assembly.”. J Cell Sci 116.Pt 16 (2003): , 116, Pt 16, 3269-76. Web.Abstract
Cell phenotype is specified by environmental cues embedded in the architecture and composition of the extracellular matrix (ECM). Much has been learned about matrix organization and assembly through analyses of the ECM protein fibronectin (FN). FN matrix assembly is a cell-mediated process in which soluble dimeric FN is converted into a fibrillar network. Binding of cell surface integrin receptors to FN converts it to an active form, which promotes fibril formation through interactions with other cell-associated FN dimers. As FN fibrils form on the outside of the cell, cytoplasmic domains of integrin receptors organize cytoplasmic proteins into functional complexes inside. Intracellular connections to the actin cytoskeletal network and stimulation of certain key intracellular signaling pathways are essential for FN-integrin interactions and propagation of FN fibril formation. Thus, assembly of native functional ECM depends on exquisite coordination between extracellular events and intracellular pathways.
Cram, Erin J, Scott G Clark, and Jean E Schwarzbauer. “Talin loss-of-function uncovers roles in cell contractility and migration in C. elegans.”. J Cell Sci 116.Pt 19 (2003): , 116, Pt 19, 3871-8. Web.Abstract
Integrin receptors for extracellular matrix transmit mechanical and biochemical information through molecular connections to the actin cytoskeleton and to several intracellular signaling pathways. In Caenorhabditis elegans, integrins are essential for embryonic development, muscle cell adhesion and contraction, and migration of nerve cell axons and gonadal distal tip cells. To identify key components involved in distal tip cell migration, we are using an RNA interference (RNAi)-based genetic screen for deformities in gonad morphogenesis. We have found that talin, a cytoskeletal-associated protein and focal adhesion component, is expressed in the distal tip cell and plays a central role in regulating its migration. Reduction of talin expression caused severe defects in gonad formation because of aberrant distal tip cell migration and also disrupted oocyte maturation and gonad sheath cell structure. Contractile muscle cells showed disorganization of the actin cytoskeleton leading to complete paralysis, a phenotype that was also observed with depletion of pat-2 and pat-3 integrins. These in vivo analyses show that talin is required not only for strong adhesion and cytoskeletal organization by contractile cells, but also for dynamic regulation of integrin signals during cell migration. In addition, induction of distal tip cell migration defects by bacterial RNAi in C. elegans provides an effective screen to identify genes involved in integrin signaling and function.
García, Andrés J, Jean E Schwarzbauer, and David Boettiger. “Distinct activation states of alpha5beta1 integrin show differential binding to RGD and synergy domains of fibronectin”. Biochemistry 41.29 (2002): , 41, 29, 9063-9. Web.Abstract
alpha5beta1 integrin can occupy several distinct conformational states which support different strengths of binding to fibronectin [García, A. J., et al. (1998) J. Biol. Chem. 273, 34710-34715]. Using a model system in which specific activating monoclonal antibodies were used to achieve uniform activated states, the binding of alpha5beta1 to full-length wild-type fibronectin and mutants of fibronectin in the defined RGD and PHSRN synergy sites was analyzed using a novel method that measures the strength of the coupling between integrin and its ligand. Neither TS2/16- nor AG89-activated alpha5beta1 showed significant mechanical coupling to RGD-deleted fibronectin. However, peptide competition assays demonstrated a 6-fold difference in the binding affinities of these two states for RGD. The mutant synergy site reduced the AG89 (low)-activated state to background levels, but the TS2/16-activated state still retained approximately 30% of the wild-type activity. Thus, these two active binding states of alpha5beta1 interact differently with both the RGD and synergy domains. The failure of the AG89-activated state to show mechanical coupling to either the RGD or synergy domain mutants was unexpected and implies that the RGD domain itself does not contribute significant mechanical strength to the alpha5beta1-fibronectin interaction. The lack of RGD alone to support alpha5beta1 coupling was further confirmed using a synthetic polymer presenting multiple copies of the RGD loop. These results suggest a model in which the RGD domain serves to activate and align the alpha5beta1-fibronectin interface, and the synergy site provides the mechanical strength to the bond.
Midwood, Kim S, and Jean E Schwarzbauer. “Elastic fibers: building bridges between cells and their matrix.”. Curr Biol 12.8 (2002): , 12, 8, R279-81. Print.Abstract
Extracellular elastic fibers confer resilience and flexibility to tissues. Recent studies have identified a protein, fibulin-5, that connects these fibers to cells and regulates their assembly and organization.
Midwood, Kim S, Iwona Wierzbicka-Patynowski, and Jean E Schwarzbauer. “Preparation and analysis of synthetic multicomponent extracellular matrix.”. Methods Cell Biol 69 (2002): , 69, 145-61. Print.
Wierzbicka-Patynowski, Iwona, and Jean E Schwarzbauer. “Regulatory role for SRC and phosphatidylinositol 3-kinase in initiation of fibronectin matrix assembly.”. J Biol Chem 277.22 (2002): , 277, 22, 19703-8. Web.Abstract
Fibronectin (FN) matrix assembly is a tightly regulated stepwise process that is initiated by interactions between FN and cell surface integrin receptors. These interactions activate many intracellular signaling pathways that regulate processes such as cell adhesion, migration, and survival. Here we demonstrate that cells lacking Src family kinases showed reduced ability to assemble FN fibrils as detected by immunofluorescence and by analysis of detergent extracts. The amount of FN matrix was further reduced by treatment with the phosphatidylinositol 3 (PI 3-kinase) inhibitor, wortmannin. CHOalpha5 cells, which are dependent on exogenous FN to initiate fibril formation, also showed significant reductions in matrix when treated with inhibitors of Src and PI 3-kinase. Combination of both inhibitors showed an additive inhibitory effect on assembly, which was concomitant with a loss of focal adhesion kinase phosphorylation. Decreased binding of the 70-kDa amino-terminal FN fragment at matrix assembly sites further supports a role for these kinases early during the process. We propose that these two signaling molecules, which lie downstream of integrins and focal adhesion kinase, are essential for efficient initiation of FN matrix assembly.
Midwood, Kim S, and Jean E Schwarzbauer. “Tenascin-C modulates matrix contraction via focal adhesion kinase- and Rho-mediated signaling pathways.”. Mol Biol Cell 13.10 (2002): , 13, 10, 3601-13. Web.Abstract
A provisional matrix consisting of fibrin and fibronectin (FN) is deposited at sites of tissue damage and repair. This matrix serves as a scaffold for fibroblast migration into the wound where these cells deposit new matrix to replace lost or damaged tissue and eventually contract the matrix to bring the margins of the wound together. Tenascin-C is expressed transiently during wound repair in tissue adjacent to areas of injury and contacts the provisional matrix in vivo. Using a synthetic model of the provisional matrix, we have found that tenascin-C regulates cell responses to a fibrin-FN matrix through modulation of focal adhesion kinase (FAK) and RhoA activation. Cells on fibrin-FN+tenascin-C redistribute their actin to the cell cortex, downregulate focal adhesion formation, and do not assemble a FN matrix. Cells surrounded by a fibrin-FN+tenascin-C matrix are unable to induce matrix contraction. The inhibitory effect of tenascin-C is circumvented by downstream activation of RhoA. FAK is also required for matrix contraction and the absence of FAK cannot be overcome by activation of RhoA. These observations show dual requirements for both FAK and RhoA activities during contraction of a fibrin-FN matrix. The effects of tenascin-C combined with its location around the wound bed suggest that this protein regulates fundamental processes of tissue repair by limiting the extent of matrix deposition and contraction to fibrin-FN-rich matrix in the primary wound area.
Sechler, JL, et al.A novel fibronectin binding site required for fibronectin fibril growth during matrix assembly.”. J Cell Biol 154.5 (2001): , 154, 5, 1081-8. Web.Abstract
Fibronectin (FN) assembly into a fibrillar extracellular matrix is a stepwise process requiring participation from multiple FN domains. Fibril formation is regulated in part by segments within the first seven type III repeats (III1-7). To define the specific function(s) of this region, recombinant FNs (recFNs) containing an overlapping set of deletions were tested for the ability to assemble into fibrils. Surprisingly, recFN lacking type III repeat III1 (FNDeltaIII1), which contains a cryptic FN binding site and has been suggested to be essential for fibril assembly, formed a matrix identical in all respects to a native FN matrix. Similarly, displacement of the cell binding domain in repeats III9-10 to a position close to the NH2-terminal assembly domain, as well as a large deletion spanning repeats III4-7, had no effect on assembly. In contrast, two deletions that included repeat III2, DeltaIII1-2 and DeltaIII2-5, caused significant reductions in fibril elongation, although binding of FN to the cell surface and initiation of assembly still proceeded. Using individual repeats in binding assays, we show that III2 but not III1 contains an FN binding site. Thus, these results pinpoint repeat III2 as an important module for FN-FN interactions during fibril growth.
Lee, M, et al.Roles for beta(pat-3) integrins in development and function of Caenorhabditis elegans muscles and gonads.”. J Biol Chem 276.39 (2001): , 276, 39, 36404-10. Web.Abstract
Heterodimeric integrin receptors for extracellular matrix (ECM) play vital roles in bidirectional signaling during tissue development, organization, remodeling, and repair. The beta integrin subunit cytoplasmic domain is essential for transmission of many of these signals and overexpression of an unpaired beta tail in cultured cells inhibits endogenous integrins. Unlike vertebrates, which have at least nine beta subunit genes, the nematode Caenorhabditis elegans expresses only one beta subunit (betapat-3), and a null mutation in this gene causes embryonic lethality. To determine the functions of integrins during larval development and in adult tissues, we have taken a dominant negative approach by expression of an HA-betatail transgene composed of a hemagglutinin (HA) epitope tag extracellular domain connected to the betapat-3 transmembrane and cytoplasmic domains. Expression of this transgene in muscle and gonad, major sites of integrin expression, caused a variety of phenotypes dependent on the level of transgene expression. Abnormalities in body wall and sex muscles led to uncoordinated movement and egg-laying defects. Significant anomalies in migration and pathfinding were caused by tissue-specific expression of HA-betatail in the distal tip cells (DTC), the cells that direct gonad morphogenesis. A pat-3 gene with Tyr to Phe mutations in the cytoplasmic domain was able to rescue pat-3 null animals but also showed DTC migration defects. These results show that betapat-3 plays important roles in post-embryonic organogenesis and tissue function.
Darribère, T, and JE Schwarzbauer. “Fibronectin matrix composition and organization can regulate cell migration during amphibian development”. Mech Dev 92.2 (2000): , 92, 2, 239-50. Web.Abstract
Fibronectin (FN) is an adhesive extracellular matrix component that is essential for vertebrate development. It forms a fibrillar matrix at the cell surface which controls cell morphology, migration, proliferation, and other important cellular processes. To address specific functions of FN matrix structure during early vertebrate development, we introduced normal and mutant recombinant FNs (recFNs) into the blastocoel cavity of embryos of the amphibian Pleurodeles waltl. Here we show that a native recFN FN(A-B-) as well as recFNs with specific mutations in the cell-binding domain, FN(RGD-) and FN(syn-), or in a FN-binding region, FNDeltaIII(1), are assembled into fibrillar matrix. A recFN (FNDeltaIII(1-7)) that forms a structurally distinct matrix in cultured cells was assembled into aggregates at the cell periphery and was able to inhibit assembly of endogenous amphibian FN matrix in a dose-dependent manner. Cell adhesion, spreading, and migration were perturbed in vitro and in vivo on chimeric matrices containing FN(RGD-), FN(syn-), or FNDeltaIII(1-7) co-assembled with amphibian FN. Developmentally, this perturbation resulted in defects in mesoderm patterning and inhibition of gastrulation. These results indicate that FN matrix fibrillar structure and composition are important determinants of cell adhesion and migration during development.
Sechler, JL, et al.A novel RGD-independent fibronectin assembly pathway initiated by alpha4beta1 integrin binding to the alternatively spliced V region.”. J Cell Sci 113 ( Pt 8) (2000): , 113 ( Pt 8), 1491-8. Print.Abstract
Fibronectin (FN) matrix assembly is a multi-step process that involves binding to integrin receptors, FN-FN interactions and connections to the actin cytoskeleton. Ultimately, FN is converted into stable matrix fibrils that are detergent-insoluble. RGD-binding integrins such as alpha5beta1 play a major role in the assembly of fibrillar FN. Here we show that alpha4beta1 binding to the alternatively spliced V (IIICS) region of FN initiates an alternative assembly pathway. Activation of alpha4beta1 with exogenous agents such as Mn(2+) or a beta1-stimulatory antibody TS2/16 was sufficient to induce initiation of FN fibrillogenesis by Ramos B lymphoma cells and by CHO(B2)alpha4 cells. Using recombinant FNs lacking specific sequences, we show that assembly is independent of the RGD sequence but requires the V25/CS-1 segment. Previously, we have characterized an activated recombinant FN (FN III(1-7)) that rapidly forms detergent-insoluble multimers upon binding to alpha5beta1 integrin. Alpha4beta1 also formed FNdeltaIII(1-7) multimers without the aid of exogenous stimulants, suggesting that an activated form of FN can override the need for activation of the integrin. In contrast to assembly by alpha5beta1, actin filaments remained largely cortical and no change in cell growth rate was observed with alpha4beta1-mediated assembly. These results show that binding sites on FN other than the RGD sequence/synergy site and distant from the cell binding domain can promote FN assembly. Thus, there appear to be multiple, integrin-specific mechanisms for assembly of FN matrix.
Brenner, KA, SA Corbett, and JE Schwarzbauer. “Regulation of fibronectin matrix assembly by activated Ras in transformed cells.”. Oncogene 19.28 (2000): , 19, 28, 3156-63. Web.Abstract
Fibronectin extracellular matrix plays a critical role in the microenvironment of cells. Loss of this matrix frequently accompanies oncogenic transformation, allowing changes in cell growth, morphology, and tissue organization. The HT1080 human fibrosarcoma cell line is deficient in formation of fibronectin matrix fibrils but assembly can be induced by the glucocorticoid dexamethasone. Here we show that fibronectin assembly can also be restored by stimulation of alpha5beta1 integrin with activating antibody or with Mn2+ suggesting that integrin activity is reduced in these cells. While dexamethasone promoted actin stress fiber formation, actin filaments remained cortical following Mn2+ treatment showing that the dexamethasone effect is not due solely to cytoskeletal changes. HT1080 cells have one activated allele of N-ras and PD98059 inhibition of signaling from Ras through ERK increased fibronectin matrix accumulation. Conversely, the p38 MAP kinase inhibitor SB203580 blocked induction of matrix and increased ERK phosphorylation. Thus, two MAP kinase pathways contribute to the control of integrin-mediated fibronectin assembly. ERK activity and fibronectin assembly were linked in three different ras-transformed cell lines but not in SV40- or RSV-transformed cells indicating that oncogenic Ras uses a distinct mechanism to down-regulate cell-fibronectin interactions.
Wenk, MB, KS Midwood, and JE Schwarzbauer. “Tenascin-C suppresses Rho activation.”. J Cell Biol 150.4 (2000): , 150, 4, 913-20. Print.Abstract
Cell binding to extracellular matrix (ECM) components changes cytoskeletal organization by the activation of Rho family GTPases. Tenascin-C, a developmentally regulated matrix protein, modulates cellular responses to other matrix proteins, such as fibronectin (FN). Here, we report that tenascin-C markedly altered cell phenotype on a three-dimensional fibrin matrix containing FN, resulting in suppression of actin stress fibers and induction of actin-rich filopodia. This distinct morphology was associated with complete suppression of the activation of RhoA, a small GTPase that induces actin stress fiber formation. Enforced activation of RhoA circumvented the effects of tenascin. Effects of active Rho were reversed by a Rho inhibitor C3 transferase. Suppression of GTPase activation allows tenascin-C expression to act as a regulatory switch to reverse the effects of adhesive proteins on Rho function. This represents a novel paradigm for the regulation of cytoskeletal organization by ECM.
Rostagno, AA, JE Schwarzbauer, and LI Gold. “Comparison of the fibrin-binding activities in the N- and C-termini of fibronectin”. Biochem J 338 ( Pt 2) (1999): , 338 ( Pt 2), 375-86. Print.Abstract
Fibronectin (Fn) binds to fibrin in clots by covalent and non-covalent interactions. The N- and C-termini of Fn each contain one non-covalent fibrin-binding site, which are composed of type 1 (F1) structural repeats. We have previously localized the N-terminal site to the fourth and fifth F1 repeats (4F1.5F1). In the current studies, using proteolytic and recombinant proteins representing both the N- and C-terminal fibrin-binding regions, we localized and characterized the C-terminal fibrin-binding site, compared the relative fibrin-binding activities of both sites and determined the contribution of each site to the fibrin-binding activity of intact Fn. By fibrin-affinity chromatography, a protein composed of the 10F1 repeat through to the C-terminus of Fn (10F1-COOH), expressed in COS-1 cells, and 10F1-12F1, produced in Saccharomyces cerevisiae, displayed fibrin-binding activity. However, since 10F1 and 10F1.11F1 were not active, the presence of 12F1 is required for fibrin binding. A proteolytic fragment of 14.4 kDa, beginning 14 residues N-terminal to 10F1, was isolated from the fibrin-affinity matrix. Radio-iodinated 14.4 kDa fibrin-binding peptide/protein (FBP) demonstrated a dose-dependent and saturable binding to fibrin-coated wells that was both competitively inhibited and reversed by unlabelled 14.4 kDa FBP. Comparison of the fibrin-binding affinities of proteolytic FBPs from the N-terminus (25.9 kDa FBP), the C-terminus (14.4 kDa) and intact Fn by ELISA yielded estimated Kd values of 216, 18 and 2.1 nM, respectively. The higher fibrin-binding affinity of the N-terminus was substantiated by the ability of both a recombinant 4F1.5F1 and a monoclonal antibody (mAb) to this site to maximally inhibit biotinylated Fn binding to fibrin by 80%, and by blocking the 90% inhibitory activity of a polyclonal anti-Fn, by absorption with the 25.9 kDa FBP. We propose that whereas the N-terminal site appears to contribute to most of the binding activity of native Fn to fibrin, the specific binding of the C-terminal site may strengthen this interaction.
Corbett, SA, and JE Schwarzbauer. “Beta3 integrin activation improves alphavbeta3-mediated retraction of fibrin matrices”. J Surg Res 83.1 (1999): , 83, 1, 27-31. Web.Abstract
BACKGROUND: Integrins are heterodimeric transmembrane glycoproteins that mediate cell interactions with the extracellular matrix. In vivo, integrin affinity can be modulated by intracellular signaling events. This can be simulated by a point mutation (D723R) in the cytoplasmic tail of the beta3 integrin subunit which results in constitutive activation. The effects of beta3 integrin activation on the function of alphavbeta3, an integrin which is important to the adhesive events of multiple cell types, were addressed using Chinese hamster ovary cells expressing either the wild-type alphavbeta3 integrin or the mutant alphavbeta3(D723R). The interactions of these cell lines with fibrin matrices were compared. METHODS: Receptor expression levels were confirmed by FACS analyses using a monoclonal anti-alphavbeta3 antibody. Cell attachment to fibrin-coated dishes was determined after 1 h by fixation and crystal violet staining followed by elution of the dye and OD measurement. Fibrin clot retraction was measured by culturing cells in fibrin clots for 24 h. The clots were detached from the dish and the surface area was calculated at individual time points. RESULTS: CHO alphavbeta3(D723R) cells displayed a greater than twofold increase in attachment to fibrinogen or to fibrin matrices when compared to wild-type transfectants. Further, CHO alphavbeta3(D723R) cell retraction of fibrin matrices was significantly greater at nearly all time points. CONCLUSION: Activation of the beta3 integrin subunit significantly improves the interaction of alphavbeta3 with fibrin and may play a role in the integrin-mediated signaling events which occur following vascular injury.
Corbett, SA, and JE Schwarzbauer. “Requirements for alpha(5)beta(1) integrin-mediated retraction of fibronectin-fibrin matrices”. J Biol Chem 274.30 (1999): , 274, 30, 20943-8. Web.Abstract
Retraction of the blood clot by nucleated cells contributes both to hemostasis and to tissue remodeling. Although plasma fibronectin (FN) is a key component of the clot, its role in clot retraction is unclear. In this report, we demonstrate that the incorporation of FN into fibrin matrices significantly improves clot retraction by nucleated cells expressing the integrin alpha(5)beta(1). Further, we show that FN-fibrin clots support increased cell spreading when compared with fibrin matrices. To determine the structural requirements for FN in this process, recombinant FN monomers deficient in ligand binding or fibrin cross-linking were incorporated into fibrin clots. We show that recombinant FN monomers support clot retraction by Chinese hamster ovary cells expressing the integrin alpha(5)beta(1). This process depends on both the Arg-Gly-Asp (RGD) and the synergy cell-binding sites and on covalent FN-fibrin binding, demonstrating that cross-linking within the clot is important for cell-FN interactions. These data show that alpha(5)beta(1) can bind to FN within a clot to promote clot retraction and support cell shape change. This provides strong evidence that alpha(5)beta(1)-FN interactions may contribute to the cellular events required for wound contraction.
Burton-Wurster, N, et al.The cartilage-specific (V+C)- fibronectin isoform exists primarily in homodimeric and monomeric configurations”. Biochem J 341 ( Pt 3) (1999): , 341 ( Pt 3), 555-61. Print.Abstract
Fibronectin is an extracellular-matrix glycoprotein encoded by a single gene, but with significant protein heterogeneity introduced through alternative RNA splicing and post-translational modifications. The (V+C)(-) splice variant, in which nucleotides encoding protein segments III-15 and I-10 are deleted along with the entire variable region, is unique in that expression is restricted to cartilaginous tissues. All known fibronectin splice variants retain the two C-terminal cysteine residues essential for dimerization, but cellular and/or structural constraints appear to influence homo- and heterodimerization patterns. Dimerization patterns of the (V+C)(-) isoform were studied under native conditions within canine articular cartilage and experimentally in COS-7, NIH-3T3 and CHO-K1 cell cultures. In all systems, (V+C)(-) fibronectin secretion was predominantly in a homodimeric configuration. Lower levels of (V+C)(-) monomers were also present. Heterodimers of (V+C)(-) with V(+),C(+) (V120) isoforms were not detected. Heterodimers of (V+C)(-) with V(-),C(+) (V0) subunits were detected only at low levels. Functional properties may differ significantly among monomers, homodimers and heterodimers. The unique dimerization pattern of (V+C)(-) fibronectin is consistent with this isoform having specialized functional properties in situ that are important for either the structural organization and biomechanical properties of cartilage matrix or regulation of a chondrocytic phenotype.
Schwarzbauer, JE, and JL Sechler. “Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly.”. Curr Opin Cell Biol 11.5 (1999): , 11, 5, 622-7. Print.Abstract
Fibronectin matrix assembly is a regulated stepwise process. In the past year, analyses of fibronectin domains, integrin and cytoskeletal contributions, and fibril architecture have provided new insights into assembly mechanisms and matrix control of cell functions. Like fibronectin, laminin polymerization is cell-mediated. Thus a common pathway for extracellular matrix assembly is emerging.
Corbett, SA, and JE Schwarzbauer. “Fibronectin-fibrin cross-linking: a regulator of cell behavior”. Trends Cardiovasc Med 88 (1998): , 8, 8, 357-62. Web.Abstract
At sites of tissue injury or inflammation, extravasation of plasma proteins leads to the formation of a complex fibrillar matrix composed primarily of fibrin and plasma fibronectin (pFN). This protein meshwork serves not only to reestablish the integrity of the vascular system but also to provide a scaffold for cell migration and subsequent wound repair. The interactions between cell surface receptors and this provisional extracellular matrix (ECM) provide important cues that can modulate the cellular response at the injury site, leading to alterations in cell growth and gene expression. Key determinants of this response may lie in the structure and composition of this "injury-associated" ECM.
Sechler, JL, and JE Schwarzbauer. “Control of cell cycle progression by fibronectin matrix architecture.”. J Biol Chem 273.40 (1998): , 273, 40, 25533-6. Print.Abstract
Developmental patterning and differentiation, maintenance of parenchymal cell function, and the size, shape, and invasiveness of tumors are all orchestrated by cell interactions with the extracellular matrix. Here we show that the fibrillar structure of fibronectin (FN) matrix encodes essential regulatory cues and controls cell proliferation and signaling through changes in matrix architecture. A matrix assembled from native FN stimulated cell growth. In contrast, a mutant FN (FNDeltaIII1-7) that contains all known cell binding motifs but forms a structurally distinct matrix inhibited progression from G0/G1 into S phase. Furthermore, FNDeltaIII1-7 suppressed the stimulatory capacity of native FN and induced different levels of tyrosine phosphorylation of pp125(FAK). The differential effects on cell growth were ablated by blocking formation of matrix fibrils. Thus, modification of matrix architecture provides a novel approach to control cell proliferation.
Foty, RA, et al.Dexamethasone up-regulates cadherin expression and cohesion of HT-1080 human fibrosarcoma cells.”. Cancer Res 58.16 (1998): , 58, 16, 3586-9. Print.Abstract
The synthetic glucocorticoid dexamethasone markedly decreases the invasiveness of HT-1080 human fibrosarcoma cells. We show here that dexamethasone treatment of HT-1080 cell aggregates more than doubles their cohesivity from 3.9 to 9.7 dyne/cm. Western blot analysis shows a corresponding increase in cadherin expression. This was accompanied by an increase in the rate of calcium-dependent aggregation. Dexamethasone-treated aggregates spread to form a monolayer in Matrigel spreading assays, but the cells remained much more contiguous than their untreated counterparts. Invasion-suppression by dexamethasone may therefore be due, at least in part, to a previously unsuspected increase in cadherin-mediated cohesion.
Fitzgerald, MC, and JE Schwarzbauer. “Importance of the basement membrane protein SPARC for viability and fertility in Caenorhabditis elegans.”. Curr Biol 823 (1998): , 8, 23, 1285-8. Print.Abstract
The basement membrane is a specialized extracellular matrix located at epithelial-mesenchymal boundaries that supports cell adhesion, migration, and proliferation; it is highly conserved between invertebrates and vertebrates [1,2]. One of its component proteins, SPARC (osteonectin/BM-40), binds calcium and collagens, and can modulate cell-matrix interactions, so altering cell shape, growth, and differentiation [3,5]. The tissue distribution of a secreted fusion protein containing SPARC and green fluorescent protein (GFP) was analyzed in Caenorhabditis elegans. The protein localized to most basement membranes along body wall and sex muscles, and was also deposited around the pharynx and the gonad, in the spermatheca and at the distal tip cells. The contributions of SPARC to C. elegans development were determined using RNA interference, which accurately phenocopies loss-of-function defects [6-8]. A reduction in the amount of SPARC protein resulted in embryonic or larval lethality in a significant proportion of progeny. Those that survived developed a 'clear' phenotype characterized by a lack of gut granules, which made the animals appear transparent, plus small size, and sterility or reduced fecundity. No significant morphological abnormalities were observed, indicating that SPARC plays a regulatory rather than structural role in modulating cell-matrix interactions during normal development and reproduction.
Sechler, JL, et al.Modulation of cell-extracellular matrix interactions.”. Ann N Y Acad Sci 857 (1998): , 857, 143-54. Print.Abstract
Changes in extracellular matrix (ECM) structure and composition, such as occur during morphogenesis, can have important regulatory effects on cell behavior. Two fibronectin (FN)-based systems have been developed to dissect how cells respond to different types of ECM. One system mimics the provisional matrix of the wound and is composed of FN cross-linked into a fibrin clot matrix. Unlike cells on FN alone, cells on an FN-fibrin matrix are smaller with cortical distribution of actin filaments and membrane ruffles. Addition of the ECM protein tenascin to the FN-fibrin matrix induces a different cell morphology. Thus, matrix composition can have profound effects on cell phenotype. Cells also interact with FN while assembling it into a fibrillar matrix. Using recombinant FNs, a domain that is required for normal progression of FN fibril formation has been identified. During assembly of this recombinant matrix, formation of actin stress fibers and focal adhesions is delayed, demonstrating that changes in FN matrix structure can affect intracellular organization and activation of signaling pathways.