Wang, Dai, and Thomas Shenk. “Human cytomegalovirus UL131 open reading frame is required for epithelial cell tropism.”. J Virol 79.16 (2005): , 79, 16, 10330-8. Web.Abstract
Epithelial cells are one of the prominent cell types infected by human cytomegalovirus (HCMV) within its host. However, many cultured epithelial cells, such as ARPE-19 retinal pigmented epithelial cells, are poorly infected by laboratory-adapted strains in cell culture, and little is known about the viral factors that determine HCMV epithelial cell tropism. In this report, we demonstrate that the UL131 open reading frame (ORF), and likely the entire UL131-128 locus, is required for efficient infection of epithelial cells. Repair of the mutated UL131 gene in the AD169 laboratory strain of HCMV restored its ability to infect both epithelial and endothelial cells while compromising its ability to replicate in fibroblasts. ARPE-19 epithelial cells support replication of the repaired AD169 virus as well as clinical isolates of HCMV. Productive infection of cultured epithelial cells, endothelial cells, and fibroblasts with the repaired AD169 virus leads to extensive membrane fusion and syncytium formation, suggesting that the virus may spread through cell-cell fusion.
Wang, Dai, and Thomas Shenk. “Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism.”. Proc Natl Acad Sci U S A 102.50 (2005): , 102, 50, 18153-8. Web.Abstract
Human cytomegalovirus replicates in many different cell types, including epithelial cells, endothelial cells, and fibroblasts. However, laboratory strains of the virus, many of which were developed as attenuated vaccine candidates by serial passage in fibroblasts, have lost the ability to infect epithelial and endothelial cells. Their growth is restricted primarily to fibroblasts, due to mutations in the UL131-UL128 locus. We now demonstrate that two products of this locus, pUL130 and pUL128, form a complex with gH and gL, but not gO. The AD169 laboratory strain, which lacks a functional UL131 protein, produces virions containing only the gH-gL-gO complex. An epithelial and endothelial cell tropic AD169 variant in which the UL131 ORF has been repaired, termed BADrUL131, produces virions that carry both gH-gL-gO and gH-gL-pUL128-pUL130 complexes. Antibodies against pUL130 and pUL128 block infection of epithelial and endothelial cells by BADrUL131 and the fusion-inducing factor X clinical human cytomegalovirus isolate but do not affect the efficiency with which fibroblasts are infected.
Goodrum, Felicia, et al.Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations.”. Blood 104.3 (2004): , 104, 3, 687-95. Web.Abstract
The cellular reservoir for latent human cytomegalovirus (HCMV) in the hematopoietic compartment, and the mechanisms governing a latent infection and reactivation from latency are unknown. Previous work has demonstrated that HCMV infects CD34+ progenitors and expresses a limited subset of viral genes. The outcome of HCMV infection may depend on the cell subpopulations infected within the heterogeneous CD34+ compartment. We compared HCMV infection in well-defined CD34+ cell subpopulations. HCMV infection inhibited hematopoietic colony formation from CD34+/CD38- but not CD34+/c-kit+ cells. CD34+/CD38- cells transiently expressed a large subset of HCMV genes that were not expressed in CD34+/c-kit+ cells or cells expressing more mature cell surface phenotypes. Although viral genomes were present in infected cells, viral gene expression was undetectable by 10 days after infection. Importantly, viral replication could be reactivated by coculture with permissive fibroblasts only from the CD34+/CD38- population. Strikingly, a subpopulation of CD34+/CD38- cells expressing a stem cell phenotype (lineage-/Thy-1+) supported a productive HCMV infection. These studies demonstrate that the outcome of HCMV infection in the hematopoietic compartment is dependent on the nature of the cell subpopulations infected and that CD34+/CD38- cells support an HCMV infection with the hallmarks of latency.
Kulesza, Caroline A, and Thomas Shenk. “Human cytomegalovirus 5-kilobase immediate-early RNA is a stable intron.”. J Virol 78.23 (2004): , 78, 23, 13182-9. Web.Abstract
Immediate-early viral gene products of human cytomegalovirus (HCMV) are derived from several genomic loci and largely serve to establish a cellular environment conducive to viral replication. We have further examined an unusual immediate-early transcript known as the 5-kb RNA, concluding that it is a stable intron encoded by HCMV. The 5-kb RNA is highly AT rich in sequence and lacks open reading frames likely to be translated into protein. We confirmed the absence of polyadenylation of the transcript and showed that it is primarily nuclear localized during viral infection. We mapped the 5' end of the 5-kb RNA to a consensus splice donor site and localized the 3' end in the vicinity of a splice acceptor site. In transfection studies, we showed that the 5-kb RNA can be spliced from a heterologous primary transcript. Using bacterial artificial chromosome technology, we constructed a viral recombinant containing a mutation in the 5' splice donor site that defines the 5' end of the RNA and found that this mutation eliminates expression of the 5-kb RNA during viral infection. This mutant grows in human fibroblasts without complementation. Taken together, these data support the conclusion that the 5-kb RNA is a stable intron expressed by HCMV.
Wang, Dai, Wade Bresnahan, and Thomas Shenk. “Human cytomegalovirus encodes a highly specific RANTES decoy receptor.”. Proc Natl Acad Sci U S A 101.47 (2004): , 101, 47, 16642-7. Web.Abstract
The human cytomegalovirus pUL21.5 protein is a small, secreted glycoprotein whose mRNA is packaged into virions. We demonstrate that pUL21.5 protein is a soluble CC chemokine receptor that functions as a decoy to modulate the host immune response to infection. In contrast to other viral chemokine-binding proteins, which interact promiscuously with multiple chemokines, pUL21.5 selectively binds RANTES (regulated upon activation, normal T cell expressed and secreted) with high affinity. By binding RANTES, pUL21.5 blocks RANTES interaction with its cellular receptors. We propose that human cytomegalovirus directs the synthesis of a secreted, virus-coded protein that modulates the host antiviral response even before the newly infecting viral genome becomes transcriptionally active.
Nevels, Michael, Christina Paulus, and Thomas Shenk. “Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation.”. Proc Natl Acad Sci U S A 101.49 (2004): , 101, 49, 17234-9. Web.Abstract
The human cytomegalovirus 72-kDa immediate-early (IE)1 and 86-kDa IE2 proteins are expressed at the start of infection, and they are believed to exert much of their function through promiscuous transcriptional activation of viral and cellular gene expression. Here, we show that the impaired growth of an IE1-deficient mutant virus in human fibroblasts is efficiently rescued by histone deacetylase (HDAC) inhibitors of three distinct chemical classes. In the absence of IE1 expression, the viral major IE and UL44 early promoters exhibited decreased de novo acetylation of histone H4 during the early phase of infection, and the hypoacetylation correlated with reduced transcription and accumulation of the respective gene products. Consistent with these findings, IE1 interacts specifically with HDAC3 within infected cells. We also demonstrate an interaction between IE2 and HDAC3. We propose that the ability to modify chromatin is fundamental to transcriptional activation by IE1 and, likely, IE2 as well.
Adamo, Joan E, Jörg Schröer, and Thomas Shenk. “Human cytomegalovirus TRS1 protein is required for efficient assembly of DNA-containing capsids.”. J Virol 78.19 (2004): , 78, 19, 10221-9. Web.Abstract
The human cytomegalovirus tegument protein, pTRS1, appears to function at several discrete stages of the virus replication cycle. We previously demonstrated that pTRS1 acts during the late phase of infection to facilitate the production of infectious virions. We now have more precisely identified the late pTRS1 function by further study of a mutant virus lacking the TRS1 region, ADsubTRS1. We observed a significant reduction in the production of capsids, especially DNA-containing C-capsids, in mutant virus-infected cells. ADsubTRS1 exhibited normal cleavage of DNA concatemers, so the defect in C-capsid production must occur after DNA cleavage and before DNA is stably inserted into a capsid. Further, the normal virus-induced morphological reorganization of the nucleus did not occur after infection with the pTRS1-deficient mutant.
Terhune, Scott S, Jörg Schröer, and Thomas Shenk. “RNAs are packaged into human cytomegalovirus virions in proportion to their intracellular concentration.”. J Virol 78.19 (2004): , 78, 19, 10390-8. Web.Abstract
The assembly of human cytomegalovirus (HCMV) virions is a complex process and involves the incorporation of viral transcripts. These RNAs are delivered to the newly infected cells and have the potential to be translated in the absence of HCMV gene expression. We have quantified the relative amount of RNAs in HCMV virions and infected cells with real-time reverse transcription-PCR and observed that viral and cellular RNAs are packaged in proportion to the amount of RNA within the cell at the time of assembly. To determine whether cis elements influenced RNA packaging, we constructed a recombinant HCMV mutant virus that expressed the yellow fluorescence protein (YFP) gene fused to the virion RNA UL21.5. We also constructed a mutant virus in which the UL21.5 transcription unit was replaced with the YFP gene. YFP RNA was incorporated into both viruses, indicating that RNA is incorporated in the absence of a virus-specific signal motif. Furthermore, with in situ hybridization, packaged transcripts were observed throughout the cytoplasm of the infected cells, including the site of virus assembly. Several proteins that nonspecifically interact with RNA, including the tegument protein pp28, were found within HCMV virions. These studies demonstrate that both viral and cellular RNAs are nonspecifically incorporated into HCMV, potentially through interactions with several virion proteins.
Nevels, Michael, Wolfram Brune, and Thomas Shenk. “SUMOylation of the human cytomegalovirus 72-kilodalton IE1 protein facilitates expression of the 86-kilodalton IE2 protein and promotes viral replication.”. J Virol 78.14 (2004): , 78, 14, 7803-12. Web.Abstract
The 72-kDa immediate-early 1 protein (IE1-72kDa) of human cytomegalovirus has been previously shown to be posttranslationally modified by covalent conjugation to the ubiquitin-related protein SUMO-1. Using an infectious bacterial artificial chromosome clone of human cytomegalovirus, we constructed a mutant virus (BADpmIE1-K450R) that is deficient for SUMOylation of IE1-72 kDa due to a single amino acid exchange in the SUMO-1 attachment site. Compared to wild-type virus, this mutant grew more slowly and generated a reduced yield in infected human fibroblasts, indicating that SUMO modification is required for the full activity of IE1-72 kDa. The lack of SUMOylation did not affect the intranuclear localization of IE1-72 kDa, including its ability to target to and disrupt PML bodies and to bind to mitotic chromatin. Likewise, SUMOylation-deficient IE1-72 kDa activated several viral promoters as efficiently as the wild-type protein. However, the failure to modify IE1-72 kDa resulted in substantially reduced levels of the IE2 transcript and its 86-kDa protein (IE2-86 kDa). These observations suggest that SUMO modification of IE1-72 kDa contributes to efficient HCMV replication by promoting the accumulation of IE2-86 kDa.
Yu, Dong, Maria C Silva, and Thomas Shenk. “Functional map of human cytomegalovirus AD169 defined by global mutational analysis.”. Proc Natl Acad Sci U S A 100.21 (2003): , 100, 21, 12396-401. Web.Abstract
Human cytomegalovirus has a complex double-stranded DNA genome of approximately 240,000 bp that contains approximately 150 ORFs likely to encode proteins, most of whose functions are not well understood. We have used an infectious bacterial artificial chromosome to introduce 413 defined insertion and substitution mutations into the human cytomegalovirus AD169 genome by random and site-directed transposon mutagenesis. Mutations were produced in all unique ORFs with a high probability of encoding proteins for which mutants have not been previously documented and in many previously characterized ORFs. The growth of selected mutants was assayed in cultured human fibroblasts, and we now recognize 41 essential, 88 nonessential, and 27 augmenting ORFs. Most essential and augmenting genes are located in the central region, and nonessential genes generally cluster near the ends of the viral genome.
Kalejta, Robert F, Jill T Bechtel, and Thomas Shenk. “Human cytomegalovirus pp71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors.”. Mol Cell Biol 23.6 (2003): , 23, 6, 1885-95. Print.Abstract
The oncoproteins of the DNA tumor viruses, adenovirus E1A, simian virus 40 T antigen, and papillomavirus E7, each interact with the retinoblastoma family of tumor suppressors, leading to cell cycle stimulation, apoptosis induction, and cellular transformation. These proteins utilize a conserved LXCXE motif, which is also found in cellular proteins, to target the retinoblastoma family. Here, we describe a herpesvirus protein that shares a subset of the properties of the DNA tumor virus oncoproteins but maintains important differences as well. The human cytomegalovirus pp71 protein employs an LXCXD motif to attack the retinoblastoma family members and induce DNA synthesis in quiescent cells. pp71 binds to and induces the degradation of the hypophosphorylated forms of the retinoblastoma protein and its family members p107 and p130 in a proteasome-dependent manner. However, pp71 does not induce apoptosis and fails to transform cells. Thus, the similarities and differences in comparison to E1A, T antigen, and E7 make pp71 an interesting new tool with which to further dissect the role of the retinoblastoma/E2F pathway in cellular growth control and carcinogenesis.
Kalejta, Robert F, and Thomas Shenk. “The human cytomegalovirus UL82 gene product (pp71) accelerates progression through the G1 phase of the cell cycle.”. J Virol 77.6 (2003): , 77, 6, 3451-9. Print.Abstract
As viruses are reliant upon their host cell to serve as proper environments for their replication, many have evolved mechanisms to alter intracellular conditions to suit their own needs. For example, human cytomegalovirus induces quiescent cells to enter the cell cycle and then arrests them in late G(1), before they enter the S phase, a cell cycle compartment that is presumably favorable for viral replication. Here we show that the protein product of the human cytomegalovirus UL82 gene, pp71, can accelerate the movement of cells through the G(1) phase of the cell cycle. This activity would help infected cells reach the late G(1) arrest point sooner and thus may stimulate the infectious cycle. pp71 also induces DNA synthesis in quiescent cells, but a pp71 mutant protein that is unable to induce quiescent cells to enter the cell cycle still retains the ability to accelerate the G(1) phase. Thus, the mechanism through which pp71 accelerates G(1) cell cycle progression appears to be distinct from the one that it employs to induce quiescent cells to exit G(0) and subsequently enter the S phase.
Browne, Edward P, and Thomas Shenk. “Human cytomegalovirus UL83-coded pp65 virion protein inhibits antiviral gene expression in infected cells.”. Proc Natl Acad Sci U S A 100.20 (2003): , 100, 20, 11439-44. Web.Abstract
The initial interaction of human cytomegalovirus with fibroblasts triggers, and then partially blocks, an innate immune response pathway that leads to the induction of IFN-responsive genes and proinflammatory chemokines. Infection of fibroblasts with human cytomegalovirus inhibited their ability to respond to exogenous IFN. Consistent with the observation that the block did not depend on de novo viral protein synthesis, ectopic expression of the viral UL83-coded pp65, an abundant virion protein, inhibited IFN signaling. Furthermore, DNA array analysis showed that infection with a pp65-deficient mutant virus caused a much stronger induction of many IFN-response and proinflammatory chemokine RNAs than infection with wild-type virus. The nuclear DNA-binding activities of transcription factors NF-kappaB and IRF1 were induced to a much greater extent after infection with the pp65-deficient mutant than with wild-type virus. IFN-stimulated gene factor 3 DNA-binding was modestly enhanced, whereas IRF3 activity was not affected by mutation of pp65. Together, these results imply that pp65, which is delivered to newly infected cells in the virion, antagonizes a pathway that affects NF-kappaB and IRF1 and prevents the accumulation of mRNAs encoded by numerous cellular antiviral genes.
Silva, Maria C, et al.Human cytomegalovirus UL99-encoded pp28 is required for the cytoplasmic envelopment of tegument-associated capsids.”. J Virol 77.19 (2003): , 77, 19, 10594-605. Print.Abstract
The human cytomegalovirus UL99-encoded pp28 is a myristylated phosphoprotein that is a constituent of the virion. The pp28 protein is positioned within the tegument of the virus particle, a protein structure that resides between the capsid and envelope. In the infected cell, pp28 is found in a cytoplasmic compartment derived from the Golgi apparatus, where the virus buds into vesicles to acquire its final membrane. We have constructed two mutants of human cytomegalovirus that fail to produce the pp28 protein, a substitution mutant (BADsubUL99) and a point mutant (BADpmUL99), and we have propagated them by complementation in pp28-expressing fibroblasts. Both mutant viruses are profoundly defective for growth in normal fibroblasts; no infectious virus could be detected after infection. Whereas normal levels of viral DNA and late proteins were observed in mutant virus-infected cells, large numbers of tegument-associated capsids accumulated in the cytoplasm that failed to acquire an envelope. We conclude that pp28 is required for the final envelopment of the human cytomegalovirus virion in the cytoplasm.
Brune, Wolfram, Michael Nevels, and Thomas Shenk. “Murine cytomegalovirus m41 open reading frame encodes a Golgi-localized antiapoptotic protein.”. J Virol 77.21 (2003): , 77, 21, 11633-43. Print.Abstract
Viruses have evolved various strategies to prevent premature apoptosis of infected host cells. Some of the viral genes mediating antiapoptotic functions have been identified by their homology to cellular genes, but others are structurally unrelated to genes of known function. In this study, we used a random, unbiased approach to identify such genes in the murine cytomegalovirus genome. From a library of random transposon insertion mutants, a mutant virus that caused premature cell death was isolated. The transposon was inserted within open reading frame m41. An independently constructed m41 deletion mutant showed the same phenotype, whereas deletion mutants lacking the adjacent genes m40 and M42 did not. Apoptosis occurred in different cell types, could be blocked by caspase inhibitors, and did not require p53. Within the murine cytomegalovirus genome, m41, m40, and m39 form a small cluster of genes of unknown function. They are homologous to r41, r40, and r39 of rat cytomegalovirus, but lack sequence homology to UL41, UL40, and UL37 exon 1 (UL37x1) which are located at the corresponding positions of the human cytomegalovirus genome. Unlike UL37x1 of human cytomegalovirus, which encodes a mitochondrion-localized inhibitor of apoptosis that is essential for virus replication, m41 encodes a protein that localizes to the Golgi apparatus. The murine cytomegalovirus m41 product is the first example of a Golgi-localized protein that prevents premature apoptosis and thus extends the life span of infected cells.
Kalejta, Robert F, and Thomas Shenk. “Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein.”. Proc Natl Acad Sci U S A 100.6 (2003): , 100, 6, 3263-8. Web.Abstract
Most of the substrates degraded by the proteasome are marked with polyubiquitin chains. However, there are a limited number of examples of nonubiquitinated proteins that are degraded by the proteasome. Here, we describe the degradation of the retinoblastoma family of tumor suppressor proteins by the proteasome in the absence of polyubiquitination. The retinoblastoma protein (p105), p107, and p130 are each targeted for degradation by the pp71 protein, which is encoded by the UL82 gene of human cytomegalovirus. It functions to direct their degradation in the absence of other viral proteins. While the pp71-mediated degradation of the retinoblastoma family of proteins requires proteasome function, it occurs without the attachment of ubiquitin to the substrates and in the absence of a functioning ubiquitin-conjugation system.
Murphy, Eain, et al.Reevaluation of human cytomegalovirus coding potential.”. Proc Natl Acad Sci U S A 100.23 (2003): , 100, 23, 13585-90. Web.Abstract
The Bio-Dictionary-based Gene Finder was used to reassess the coding potential of the AD169 laboratory strain of human cytomegalovirus and sequences in the Toledo strain that are missing in the laboratory strain of the virus. The gene-finder algorithm assesses the potential of an ORF to encode a protein based on matches to a database of amino acid patterns derived from a large collection of proteins. The algorithm was used to score all human cytomegalovirus ORFs with the potential to encode polypeptides >/=50 aa in length. As a further test for functionality, the genomes of the chimpanzee, rhesus, and murine cytomegaloviruses were searched for orthologues of the predicted human cytomegalovirus ORFs. The analysis indicates that 37 previously annotated ORFs ought to be discarded, and at least nine previously unrecognized ORFs with relatively strong coding potential should be added. Thus, the human cytomegalovirus genome appears to contain approximately 192 unique ORFs with the potential to encode a protein. Support for several of the predictions of our in silico analysis was obtained by sequencing several domains within a clinical isolate of human cytomegalovirus.
Murphy, Eain, et al.Coding potential of laboratory and clinical strains of human cytomegalovirus.”. Proc Natl Acad Sci U S A 100.25 (2003): , 100, 25, 14976-81. Web.Abstract
Six strains of human cytomegalovirus have been sequenced, including two laboratory strains (AD169 and Towne) that have been extensively passaged in fibroblasts and four clinical isolates that have been passaged to a limited extent in the laboratory (Toledo, FIX, PH, and TR). All of the sequenced viral genomes have been cloned as infectious bacterial artificial chromosomes. A total of 252 ORFs with the potential to encode proteins have been identified that are conserved in all four clinical isolates of the virus. Multiple sequence alignments revealed substantial variation in the amino acid sequences encoded by many of the conserved ORFs.
Heider, Julie A, et al.Characterization of a human cytomegalovirus with phosphorylation site mutations in the immediate-early 2 protein.”. J Virol 76.2 (2002): , 76, 2, 928-32. Print.Abstract
A human cytomegalovirus mutant (TNsubIE2P) was constructed with alanine substitutions of four residues (T27, S144, T233, and S234) previously shown to be phosphorylated in the immediate-early 2 (IE2) protein. This mutant grew as well as the wild type at both low and high multiplicities of infection. The mutant activated the major immediate-early, UL4, and UL44 promoters to similar levels, and with similar kinetics, as wild-type virus. However, the TNsubIE2P mutant virus transactivated an endogenous simian virus 40 early promoter 4 h earlier and to higher levels than the wild-type virus in infected human fibroblasts. The modification of the IE2 protein by SUMO-1 (i.e., its sumoylated state) was also examined.
Heider, Julie A, Wade A Bresnahan, and Thomas E Shenk. “Construction of a rationally designed human cytomegalovirus variant encoding a temperature-sensitive immediate-early 2 protein.”. Proc Natl Acad Sci U S A 99.5 (2002): , 99, 5, 3141-6. Web.Abstract
We generated a set of cysteine-to-glycine mutations and screened them to identify a temperature-sensitive allele of the human cytomegalovirus UL122 gene, which encodes the immediate-early 2 transcriptional activating protein. The mutant allele contains a single base pair substitution at amino acid 510. In transcription activation assays, the mutant protein activated the simian virus 40 early and human cytomegalovirus UL112 promoters at 32.5 degrees C but not at 39.5 degrees C. We constructed a mutant virus, BTNtsUL122, in which the wild-type UL122 locus is substituted with the mutant allele. The mutant produced progeny at 32.5 degrees C but not at 39.5 degrees C. Although the mutant virus accumulated immediate-early transcripts and proteins at the nonpermissive temperature, it did not produce any early (UL44 and UL54) and late (UL82) transcripts and it did not replicate its DNA. The mutant's defect at the nonpermissive temperature results, at least in part, from the inability of the temperature-sensitive immediate-early 2 protein to activate early viral promoters, whose products are required for DNA replication and progression into the late phase of the virus growth cycle.