Problem 1

[Based on 4.3 of Vives(2008)] Consider a market with a single risky asset, with random fundamental value \(\theta \sim N(\bar{\theta}, \sigma_\theta^2) \), and a riskless asset (with unitary return). There are 3 types of traders: informed traders indexed in the interval \([0, 1]\), noise traders, and risk-neutral market makers. Informed traders have CARA utility function with risk aversion coefficient \(\rho \). Each informed traders \(i \) receives a private signal \(s_i = \theta + \varepsilon_i \) about \(\theta \), where \(\theta \) and \(\varepsilon_i \) are uncorrelated, errors are uncorrelated across agents and normally distributed with zero mean and variance \(\sigma^2_\varepsilon \). \(u \sim N(0, \sigma^2_u) \) is noisy traders’ total demand for the risk asset.

Informed traders and noisy traders move first. A proportion \(\nu \) of informed traders submit demand schedules \(X(s_i, p) = a(s_i - \bar{\theta}) + \zeta(p) \) and the rest of informed traders place market orders \(Y(s_i) = c(s_i - \bar{\theta}) \), where \(a, c, \) and \(\zeta(p) \) are determined endogenously. Their orders are accumulated in a limit-order book \(L(\cdot) \). Based on this limit-order book, competitive risk-neutral market makers set price informational efficiently:

\[
p = E[\theta | L(\cdot)]
\]

(a) Derive \(L(\cdot) \) and argue that \(p = E[\theta | p] \);

(b) Derive \(\text{var}[p] \) and show \(\text{var}[p - \bar{\theta}] + \text{var}[\theta - p] = \text{var}[\theta] \). Provide some comment.

(c) Express \(a \) explicitly and derive \(c \) as a root of a cubic equation.

(d) Set \(\nu = 1 \), derive the expected volume traded by informed agents,

\[
E \left[\int_0^1 X(s_i, p) \, di \right]
\]

(e) (optional) set \(\nu = 0 \), perform a comparative statics analysis of the market parameters \(\rho, \sigma^2_\varepsilon, \sigma^2_\theta, \) and \(\sigma^2_u \).
Problem 2

[Based on 7.1 of Veldkamp(2011)] There is a continuum of ex ante identical traders, indexed by i, with CARA utility function and risk averse coefficient ρ. There are two assets. One offers a riskless return r. The other pays a risky amount $f = \theta + \varepsilon$, where $\theta \sim N(\bar{\theta}, \sigma_\theta^2)$, $\varepsilon \sim N(0, \sigma_\varepsilon^2)$, and θ and ε are uncorrelated. Traders can observe θ at a cost of c. The supply of the risky asset is $x \sim N(\bar{x}, \sigma_x^2)$. Solve the equilibrium asset price p and the proportion of traders who the acquire information about f.