Asset Pricing under Asymmetric Information
Modeling Information & Solution Concepts

Markus K. Brunnermeier

Princeton University

August 22, 2007
References

Books:

Articles:
many others - see syllabus

Some parts of these slides rely on Princeton lecture notes by Nöldeke (1993)
Two Interpretations of Asymmetric Information

- different information
- different interpretation of the same information (different background information)
Modeling information I

- **State space** Ω
 - state $\omega \in \Omega =$ full description of reality
 - fundamentals
 - signals
 - state space is common knowledge and fully agreed among agents
Modeling information II

• Partition
 • \((\omega_1, \omega_2, \omega_3), (\omega_4, \omega_5), (\omega_6, \omega_7, \omega_8)\)
 • \(P_i^1, P_i^2, P_i^3\) (partition cells)
 • later more about ‘knowledge operators’ etc.

• Field (Sigma-Algebra) \(\mathcal{F}_i\)

• Probability measure/distribution \(P\)
Modeling information III

- Prior distribution
 - Common prior assumption (CPA) (Harsanyi doctrine)
 - any difference in beliefs is due to differences in info
 - has strong implications
 - Rational Expectations
 - prior_i = objective distribution \(\forall i \)
 - implies CPA
 - Non-common priors
 - Problem: almost everything goes
 - Way out: Optimal Expectations
 (structure model of endogenous priors)
- Updating/Signal Extraction
Modeling information III

- Updating (general)
 - Bayes’ Rule

\[
P^i (E_n|D) = \frac{P^i (D|E_n) P^i (E_n)}{P^i (D)},
\]

- if events \(E_1, E_2, \ldots, E_N\) are a partition

\[
P^i (E_n|D) = \frac{P^i (D|E_n) P^i (E_n)}{\sum_{n=1}^{N} P^i (D|E_n) P^i (E_n)},
\]
Updating - Signal Extraction - general case

- Updating - Signal Extraction
 - $\omega = \{v, S\}$
 - desired property: signal realization S^H is always more favorable than S^L
 - formally: $G(v|S^H) \text{ FOSD } G(v|S^L)$
 - Milgrom (1981) shows that this is equivalent to $f_S(S|v)$ satisfies monotone likelihood ratio property (MLRP)
 - $f_S(S|v)/f_S(S|\tilde{v})$ is increasing (decreasing) in S if $v > (<)\tilde{v}$
 \[
 \frac{f_S(S|v)}{f_S(S|v')} > \frac{f_S(S'|v)}{f_S(S'|v')} \forall v' > v \text{ and } S' > S.
 \]
 - another property: hazard rate $\frac{f_S(S|v)}{1-F(S|v)}$ is declining in v
Updating - Signal Extraction - Normal distributions

• updating normal variable X after receiving signal $S = s$

$$E[X|S = s] = E[X] + \frac{\text{Cov}[X,S]}{\text{Var}[S]} (s - E[S])$$

$$\text{Var}[X|S = s] = \text{Var}[X] - \frac{\text{Cov}[X,S]^2}{\text{Var}[S]}$$

• n multidimensional random variable $\left(\vec{X}, \vec{S}\right) \sim \mathcal{N}(\mu, \Sigma)$

$$\mu = \begin{bmatrix} \mu_X \\ \mu_S \end{bmatrix}_{n \times 1}; \Sigma = \begin{bmatrix} \Sigma_{X,X} & \Sigma_{X,S} \\ \Sigma_{S,X} & \Sigma_{S,S} \end{bmatrix}_{n \times n}$$

• Projection Theorem $(X|S = s)$

$$\sim \mathcal{N} \left(\mu_X + \Sigma_{X,S} \Sigma_{S,S}^{-1} (s - \mu_S), \Sigma_{X,X} - \Sigma_{X,S} \Sigma_{S,S}^{-1} \Sigma_{S,X} \right)$$
Special Signal Structures

- \mathcal{N}-Signals of form: $S_n = X + \varepsilon_n$

 (Let X be a scalar and $\tau_y = \frac{1}{\text{Var}[y]}$),

\[
E[X|s_1, \ldots, s_N] = \mu_X + \frac{1}{\tau_X + \sum_{n=1}^{N} \tau_{\varepsilon_n}} \sum_{n=1}^{N} \tau_{\varepsilon_n} (s_n - \mu_X)
\]

\[
\text{Var}[X|s_1, \ldots, s_N] = \frac{1}{\tau_X + \sum_{n=1}^{N} \tau_{\varepsilon_n}} = \frac{1}{\tau_X|s_1, \ldots, s_N}
\]

- If, in addition, all ε_n i.i.d. then

\[
E[X|s_1, \ldots, s_N] = \mu_X + \frac{1}{\tau_X + N\tau_{\varepsilon_n}} N\tau_{\varepsilon_n} \left(\sum_{n=1}^{N} \frac{1}{N} s_n - \mu_X \right),
\]

where $\bar{s} := \sum_{n=1}^{N} \left(\frac{1}{N} \right) s_n$ is a sufficient statistic
Special Signal Structures

- **N-Signals of form:** \(X = S + \varepsilon \)

 \[
 E [X|S = s] = s \\
 Var [X|S = s] = Var[\varepsilon]
 \]

- **Binary Signal:** Updating with binary state space/signal
 - \(q = \) precision = \(\text{prob}(X = H|S = S^H) \)

- **“Truncating signals”:** \(v \in [\bar{S}, S] \)
 - \(v \) is Laplace (double exponentially) distributed or uniform
 - posterior is a truncated exponential or uniform

(see e.g. Abreu & Brunnermeier 2002, 2003)
Solution/Equilibrium Concepts

- **Rational Expectations Equilibrium**
 - Competitive environment
 - agents take prices as given (price takers)
 - Rational Expectations (RE) \Rightarrow CPA
 - *General Equilibrium Theory*

- **Bayesian Nash Equilibrium**
 - Strategic environment
 - agents take strategies of others as given
 - CPA (RE) is typically assumed
 - *Game Theory*
 - distinction between normal and extensive form games
 simultaneous move versus sequential move
The 5 Step Approach

<table>
<thead>
<tr>
<th>Step</th>
<th>REE</th>
<th>BNE (sim. moves)</th>
</tr>
</thead>
</table>
| **Step 1** | Specify joint priors
Conjecture price mappings
\(P : \{S^1, \ldots, S^I, u\} \rightarrow \mathbb{R}_+^J \) | Specify joint priors
Conjecture strategy profiles |
| **Step 2** | Derive posteriors | Derive posteriors |
| **Step 3** | Derive individual demand | Derive best response |
| **Step 4** | Impose market clearing | Impose Rationality |
| **Step 5** | Impose Rationality
Equate undet. coeff. | No-one deviates |
A little more abstract

- **REE**
 Fixed Point of Mapping: $M_P(P(\cdot)) \mapsto P(\cdot)$

- **BNE** (simultaneous moves)
 Fixed Point of Mapping:
 strategy profiles \mapsto strategy profiles

- What’s different for sequential move games?
 - late movers react to deviation
 - equilibrium might rely on ‘strange’ out of equilibrium moves
 - refinement: subgame perfection

- Extensive form move games with asymmetric information
 - Sequential equilibrium (agents act sequentially rational)
 - Perfect BNE (for certain games)
 - nature makes a move in the beginning (chooses type)
 - action of agents are observable
A Classification of Market Microstructure Models

- simultaneous submission of demand schedules
 - competitive rational expectation models
 - strategic share auctions
- sequential move models
 - screening models: (uninformed) market maker submits a supply schedule first
 - static
 - uniform price setting
 - limit order book analysis
 - dynamic sequential trade models with multiple trading rounds
- signalling models: informed traders move first, market maker second