Asset Pricing under Asymmetric Information
Rational Expectations Equilibrium

Markus K. Brunnermeier

Princeton University

August 17, 2007
A Classification of Market Microstructure Models

• simultaneous submission of demand schedules
 • competitive rational expectation models
 • strategic share auctions

• sequential move models
 • screening models:
 (uninformed) market maker submits a supply schedule first
 • static
 ◦ uniform price setting
 ◦ limit order book analysis
 • dynamic sequential trade models with multiple trading rounds

• signalling models:
 informed traders move first, market maker second
Overview

- Competitive REE (Examples)
 - Preliminaries
 - LRT (HARA) utility functions in general
 - CARA Gaussian Setup
 - Certainty equivalence
 - Recall Projection Theorem/Updating
 - REE (Grossman 1976)
 - Noisy REE (Hellwig 1980)

- Allocative versus Informational Efficiency
- Endogenous Information Acquisition
Utility functions and Risk aversion

- utility functions $U(W)$.
- Risk tolerance, $1/\rho = \text{reciprocal of the Arrow-Pratt measure of absolute risk aversion}$

$$\rho(W) := -\frac{\partial^2 U/\partial W^2}{\partial U/\partial W}.$$

- Risk tolerance is linear in W if

$$\frac{1}{\rho} = \alpha + \beta W.$$

- also called hyperbolic absolute risk aversion (HARA) utility functions.
LRT(HARA)-Utility Functions

<table>
<thead>
<tr>
<th>Class</th>
<th>Parameters</th>
<th>$U(W) =$</th>
</tr>
</thead>
<tbody>
<tr>
<td>exponential/CARA</td>
<td>$\beta = 0, \alpha = 1/\rho$</td>
<td>$-\exp{-\rho W}$</td>
</tr>
<tr>
<td></td>
<td>$\beta \neq 1$</td>
<td></td>
</tr>
<tr>
<td>generalised power</td>
<td></td>
<td>$rac{1}{\beta-1}(\alpha + \beta W)^{(\beta-1)/\beta}$</td>
</tr>
<tr>
<td>a) quadratic</td>
<td>$\beta = -1, \alpha > W$</td>
<td>$-(\alpha - W)^2$</td>
</tr>
<tr>
<td>b) log</td>
<td>$\beta = +1$</td>
<td>$\ln(\alpha + W)$</td>
</tr>
<tr>
<td>c) power/CRRA</td>
<td>$\alpha = 0, \beta \neq 1, -1$</td>
<td>$rac{1}{\beta-1}(\beta W)^{(\beta-1)/\beta}$</td>
</tr>
</tbody>
</table>
Certainty Equivalent in CARA-Gaussian Setup

\[U(W) = -\exp(-\rho W), \text{ hence } \rho = -\frac{\partial^2 U(W) / \partial (W)^2}{\partial U(W) / \partial W} \]

\[E[U(W) | \cdot] = \int_{-\infty}^{+\infty} -\exp(-\rho W)f(W|\cdot)dW \]

where \(f(W|\cdot) = \frac{1}{\sqrt{2\pi\sigma^2_W}} \exp\left[-\frac{(W - \mu_W)^2}{2\sigma^2_W}\right] \)

Substituting it in

\[E[U(W) | \cdot] = \frac{1}{\sqrt{2\pi\sigma^2_W}} \int_{-\infty}^{+\infty} -\exp\left(-\frac{\rho z}{2\sigma^2_W}\right)dW \]

where \(z = (W - \mu_W)^2 - 2\rho\sigma^2_W W \)
Certainty Equivalent in CARA-Gaussian Setup

Completing squares \(z = (W - \mu_W - \rho \sigma^2_W)^2 - 2\rho(\mu_W - \frac{1}{2}\rho \sigma^2_W)\sigma^2_W \)

Hence, \(E[U(W) \mid \cdot] = - \exp[-\rho(\mu_W - \frac{1}{2}\rho \sigma^2_W)] \times \)

\[
\times \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2_W}} \exp\left(-\frac{(W - \mu_W - \rho \sigma^2_W)^2}{2\sigma^2_W}\right) dW
\]

Trade-off is represented by

\[
V(\mu_W, \sigma^2_W) = \mu - \frac{1}{2}\rho \sigma^2_W
\]
Certainty Equivalent in CARA-Gaussian Setup
More generally, multinomial random variables \(w \sim \mathcal{N}(0, \Sigma) \) with a positive definite (co)variance matrix \(\Sigma \). More specifically,
\[
E[\exp(w^T A w + b^T w + d)] =
\]
\[
= |I - 2\Sigma A|^{-1/2} \exp\left[\frac{1}{2} b^T (I - 2\Sigma A)^{-1} \Sigma b + d\right],
\]
where
- \(A \) is a symmetric \(m \times m \) matrix,
- \(b \) is an \(m \)-vector, and
- \(d \) is a scalar.
Note that the left-hand side is only well-defined if \((I - 2\Sigma A)\) is positive definite.
Demand for a Risky Asset

- **2 assets**
 - asset
 - bond (numeraire)
 - stock
 - payoff
 - \(v \sim \mathcal{N}(E[v|\cdot], \text{Var}[v|\cdot]) \)
 - endowment
 - \(e_0^i \)
 - \(z^i \)

- **Equation:**
 \[
 P x^i + b^i = P z^i + e_0^i
 \]

- **Final wealth is**
 \[
 W^i = b^i R + x^i v = \left(e_0^i + P(z^i - x^i) \right) R + x^i v
 \]
 - **Mean:** \((e_0^i + P(z^i - x^i)) R + x E[v|\cdot] \)
 - **Variance:** \((x^i)^2 \text{Var}[v|\cdot] \)
Demand for a Risky Asset

\[V(\mu_W, \sigma^2_W) = \mu_W - \frac{1}{2}\rho^i \sigma^2_W \]
\[= (e^i_0 + Pz^i)R + x^i(E[v|\cdot] - PR) - \frac{1}{2}\rho^i \text{Var}[v|\cdot](x^i)^2 \]

First order condition: \(E[v|\cdot] - PR - \rho \text{Var}[v|\cdot]x^i = 0 \)

\[x^i(P) = \frac{E[v|\cdot] - PR}{\rho^i \text{Var}[v|\cdot]} \]

Remarks

- independent of initial endowment (CARA)
- linearly increasing in investor’s expected excess return
- decreasing in investors’ variance of the payoff \(\text{Var}[v|\cdot] \)
- decreasing in investors’ risk aversion \(\rho^i \)
- for \(\rho^i \rightarrow 0 \) investors are risk-neutral and \(x^i \rightarrow +\infty \) or \(-\infty\)
Symmetric Info - Benchmark Model setup:

- \(i \in \{1, \ldots, I\} \) (types of) traders
- CARA utility function with risk aversion coefficient \(\rho^i \)
 (Let \(\eta^i = \frac{1}{\rho^i} \) be trader \(i \)'s risk tolerance.)
- all traders have the same information \(v \sim \mathcal{N}(\mu, \sigma_v^2) \)
- aggregate demand \(\sum_i \frac{E[v] - PR}{\rho^i \text{Var}[v]} = \sum_i \eta^i \tau_v \{ E[v] - PR \} \)

 Let \(\eta := \frac{1}{I} \sum_i \eta^i = \frac{1}{I} \sum_i \frac{1}{\rho^i} \) (harmonic mean)
- market clearing \(\eta \tau_v \{ E[v] - PR \} = X^{\text{supply}} \)

\[
P = \frac{1}{R} \left\{ E[v] - \frac{X^{\text{sup}}}{I \eta \tau_v} \right\}
\]

The expected excess payoff \(Q := E[v] - PR = \frac{1}{\eta \tau_v} \frac{X^{\text{sup}}}{I} \)
Symmetric Info - Benchmark

- Trader i's equilibrium demand is

$$x^i(P) = \frac{\eta^i}{\eta} \frac{X^{\text{sup}}}{I}$$

- Remarks:
 - $\frac{\partial P}{\partial E[v]} = \frac{1}{R} > 0$
 - $\frac{\eta^i}{\eta}$ risk sharing of aggregate endowment

$$\frac{x^{i^*}}{x^{i''^*}} = \frac{\eta^i}{\eta^{i''}}$$

- no endowment effects
REE - Grossman (1976) Model setup:

- $i \in \{1, \ldots, I\}$ traders
- CARA utility function with risk aversion coefficient $\rho^i = \rho$
 (Let $\eta^i = \frac{1}{\rho^i}$ be trader i’s risk tolerance.)
- Information is dispersed among traders
 trader i’s signal is $S^i = \nu + \epsilon^i_S$, where $\epsilon^i_S \sim \text{i.i.d. } \mathcal{N}(0, \sigma^2_\epsilon)$
REE - Grossman (1976)

Step 1: Conjecture price function

\[P = \alpha_0 + \alpha_S \bar{S}, \text{ where } \bar{S} = \frac{1}{I} \sum_{i} S^i \text{ (sufficient statistics)} \]

Step 2: Derive posterior distribution

\[E[v|S^i, P] = E[v|\bar{S}] = \lambda E[v] + (1 - \lambda) \bar{S} = \lambda E[v] + (1 - \lambda) \frac{P - \alpha_0}{\alpha_S} \]

\[\text{Var}[v|S^i, P] = \text{Var}[v|\bar{S}] = \lambda \text{Var}[v] \]

where \(\lambda := \frac{\text{Var}[\epsilon]}{I\text{Var}[v] + \text{Var}[\epsilon]} \)

Step 3: Derive individual demand

\[x^{i,*}(P) = \frac{E[v|S^i, P] - P(1 + r)}{\rho^i \text{Var}[v|S^i, P]} \]

Step 4: Impose market clearing

\[\sum_{i} x^{i,*}(P) = X^{\text{supply}} \]
Informational (Market) Efficiency

- **Empirical Literature**
 - **Form**
 - **Price reflects**
 - *strong* all private and public information
 - *semi strong* all public information
 - *weak* only (past) price information

- **Theoretical Literature**
 - **Form**
 - **Price aggregates/reveals**
 - *fully revealing* all private signals
 - *informational efficient* sufficient statistic of signals
 - *partially revealing* a noisy signal of pooled private info
 - *privately revealing* with one signal reveals suff. stat.
Informational (Market) Efficiency

- \overline{S} sufficient statistic for all individual info sets $\{S^1, ..., S^I\}$.
- Illustration: If one can view price function as
 \[P(\cdot) : \{S^1, ..., S^I\} \xrightarrow{g(\cdot)} \overline{S} \xrightarrow{f(\cdot)} P \]

- if $f(\overline{S})$ is invertible, then price is informationally efficient
- if $f(\cdot)$ and $g(\cdot)$ are invertible, then price is fully revealing
Remarks & Paradoxa

• Grossman (1976) solved it via “full communication equilibria” (Radner 1979’s terminology)
• ‘unique’ info efficient equilibrium (DeMarzo & Skiadas 1998)
• As $I \to \infty$ (risk-bearing capacity), $P \to \frac{1}{R} E[v]$
• **Grossman Paradox:**
 Individual demand does not depend on individual signal S^i's. How can all information be reflected in the price?
• **Grossman-Stiglitz Paradox:**
 Nobody has an incentive to collect information?
• individual demand is independent of wealth (CARA)
• in equilibrium individual demand is independent of price
• equilibrium is not implementable
Noisy REE - Hellwig 1980

Model setup:

- \(i \in \{1, ..., I\} \) traders
- CARA utility function with risk aversion coefficient \(\rho^i = \rho \)
 (Let \(\eta^i = \frac{1}{\rho^i} \) be trader \(i \)'s risk tolerance.)
- information is dispersed among traders
 trader \(i \)'s signal is \(S^i = \nu + \epsilon^i_S \), where \(\epsilon^i_S \sim^{ind} \mathcal{N}(0, (\sigma^i_\epsilon)^2) \)
- noisy asset supply \(X^{Supply} = u \)
- Let \(\Delta S^i = S^i - E[S^i] \), \(\Delta u = u - E[u] \) etc.
Noisy REE - Hellwig (1980)

Step 1: Conjecture price function

\[P = \alpha_0 + \sum_{i} \alpha_i S^i \Delta S^i + \alpha_u \Delta u \]

Step 2: Derive posterior distribution let’s do it only half way through

\[E[v|S^i, P] = E[v] + \beta_S^i (\alpha) \Delta S^i + \beta_P (\alpha) \Delta P \]

\[\text{Var}[v|S^i, P] = \frac{1}{\tau^i_{v|S^i, P}} \quad \text{(independent of signal realization)} \]

Step 3: Derive individual demand

\[x^{i,*}(P) = \eta^i \tau^i_{v|S^i, P} \{ E[v|S^i, P] - P(1 + r) \} \]
Noisy REE - Hellwig (1980)

Step 4: Impose market clearing

Total demand = total supply (let $r = 0$)

$$
\sum_{i} \eta^{i} \tau^{i}_{\{v|S^{i},P\}}(\alpha) \{ E[v] + \beta^{i}_{S}(\alpha) \Delta S^{i} - \alpha_{0} \beta^{i}_{P}(\alpha) + [\beta^{i}_{P}(\alpha) - 1] P \} = u
$$

...

$$
P (S^{1}, ..., S^{l}, u) = \frac{\sum_{i} \left(\eta^{i} \tau^{i}_{\{v|S^{i},P\}}(\alpha) \right) \left[E[v] - \alpha_{0} \beta^{i}_{P}(\alpha) + \beta^{i}_{S}(\alpha) \Delta S^{i} \right] - E[u] - \Delta u}{\sum_{i} \left(1 - \beta^{i}_{P}(\alpha) \right) \eta^{i} \tau^{i}_{\{v|S^{i},P\}}(\alpha)}
$$
Noisy REE - Hellwig (1980)

Step 5: Impose rationality

\[
\begin{align*}
\alpha_0 &= \frac{\sum_i \left(\eta^i \tau^i_{[v|S^i,P]} (\alpha) \right) \left[E[v] - \alpha_0 \beta^i_p (\alpha) \right] - E[u]}{\sum_i \left(1 - \beta^i_p (\alpha) \right) \eta^i \tau^i_{[v|S^i,P]} (\alpha)} \\
\alpha^i_s &= \frac{\sum_i \left(\eta^i \tau^i_{[v|S^i,P]} (\alpha) \right)}{\sum_i \left(1 - \beta^i_p (\alpha) \right) \eta^i \tau^i_{[v|S^i,P]} (\alpha)} \beta^i_s (\alpha) \\
\alpha^i_u &= \frac{-1}{\sum_i \left(1 - \beta^i_p (\alpha) \right) \eta^i \tau^i_{[v|S^i,P]} (\alpha)} \\
\end{align*}
\]

Solve for root \(\alpha^* \) of the problem \(\alpha = G(\alpha) \).
Noisy REE - Hellwig 1980

Simplify model setup:

- All traders have identical risk aversion coefficient $\rho = 1/\eta$
- Error of all traders’ signals ϵ^i_S are i.i.d.

Step 1: Conjecture price function simplifies to

$$\Delta P = \alpha_S \sum_{i} \frac{1}{l} \Delta S^i + \alpha_u \Delta u$$

Step 2: Derive posterior distribution

$$E[v|S^i, P] = E[v] + \beta_S(\alpha) \Delta S^i + \beta_P(\alpha) \Delta P$$

$$\text{Var}[v|S^i, P] = \frac{1}{\tau} \quad \text{(independent of signal realization)}$$

where β’s are projection coefficients.
Noisy REE - Hellwig (1980)

previous fixed point system simplifies to

\[
\alpha_S = \frac{1}{\sum_i (1 - \beta_P(\alpha))} \beta_S(\alpha)
\]

\[
\alpha_u = \frac{-1}{\eta\tau(\alpha) \sum_i (1 - \beta_P(\alpha))}
\]

To determine \(\beta_S\) and \(\beta_P\), invert Co-variance matrix

\[
\Sigma(S^i, P) = \begin{pmatrix}
\sigma_v^2 + \sigma_\varepsilon^2 & \alpha_S(\sigma_v^2 + \frac{1}{l}\sigma_\varepsilon^2) \\
\alpha_S(\sigma_v^2 + \frac{1}{l}\sigma_\varepsilon^2) & \alpha_S^2(\sigma_v^2 + \frac{1}{l}\sigma_\varepsilon^2) + \alpha_u^2\sigma_u^2
\end{pmatrix}
\]

\[
\Sigma^{-1}(S^i, P) = \frac{1}{D} \begin{pmatrix}
\alpha_S^2(\sigma_v^2 + \frac{1}{l}\sigma_\varepsilon^2) + \alpha_u^2\sigma_u^2 & -\alpha_S(\sigma_v^2 + \frac{1}{l}\sigma_\varepsilon^2) \\
-\alpha_S(\sigma_v^2 + \frac{1}{l}\sigma_\varepsilon^2) & \sigma_v^2 + \sigma_\varepsilon^2
\end{pmatrix}
\]

\[
D = \alpha_S^2 \frac{l-1}{l} (\sigma_v^2 + \frac{1}{l}\sigma_\varepsilon^2) \sigma_\varepsilon^2 + \alpha_u^2\sigma_u^2(\sigma_v^2 + \sigma_\varepsilon^2)
\]
Noisy REE - Hellwig (1980)
Since \(\text{Cov} [v, P] = \alpha_S \sigma_v^2 \) and \(\text{Cov} [v, S^i] = \sigma_v^2 \) leads us to

\[
\beta_P = \frac{1}{D} \alpha_S \frac{I - 1}{I} \sigma_v^2 \sigma_\varepsilon^2
\]

\[
\beta_S = \frac{1}{D} \alpha_u \sigma_u^2 \sigma_v^2
\]

For conditional variance (precision) from projection theorem.

\[
\text{Var} [v | S^i, P] = \frac{1}{D} \left[D \sigma_v^2 - \left(\alpha_u^2 \sigma_u^2 + \alpha_S^2 \frac{I - 1}{I} \sigma_\varepsilon^2 \right) \sigma_v^4 \right]
\]

\[
= \frac{1}{D} \left[\alpha_S^2 \frac{I - 1}{I^2} \sigma_\varepsilon^2 + \alpha_u^2 \sigma_u^2 \right] \left(\sigma_\varepsilon^2 \right) \sigma_v^2
\]

Hence,
Noisy REE - Hellwig (1980)

\[\alpha_S = \frac{\alpha_u^2 \sigma_v^2 \sigma_u^2}{(D - \alpha_s \frac{l-1}{l} \sigma_\epsilon^2 \sigma_v^2)l} \]

\[\alpha_u = -\rho \frac{\left(\alpha_u^2 \sigma_u^2 + \alpha_s^2 \frac{l-1}{l^2} \sigma_\epsilon^2 \right) \sigma_\epsilon^2 \sigma_v^2}{(D - \alpha_s \frac{l-1}{l} \sigma_\epsilon^2 \sigma_v^2)l} \]

Trick:

Solve for \(h = -\frac{\alpha_u}{\alpha_S} \). (Recall price signal can be rewritten as \(\frac{P - \alpha_0}{\alpha_S} = \sum_i \frac{1}{i} S + \frac{\alpha_u}{\alpha_S} u \).) [noise signal ratio]

\[h = \frac{\rho \left(h^2 \sigma_u^2 + \frac{l-1}{l^2} \sigma_\epsilon^2 \right) \sigma_\epsilon^2 \sigma_v^2}{h^2 \sigma_v^2 \sigma_u^2} \]

\[h = \rho \sigma_\epsilon^2 + \frac{1}{h^2} \frac{(l - 1) \sigma_\epsilon^4}{l^2 \sigma_u^2} \]

\(\Rightarrow \) unique \(h > \rho \sigma_\epsilon^2 \)

Increasing in \(h \)

Decreasing in \(h \)
Noisy REE - Hellwig (1980)

Remember that h is increasing in ρ.

Back to α_S

$$\alpha_S = \frac{\alpha^2_u \sigma^2_v \sigma^2_u}{D - \alpha_s \frac{l-1}{l} \sigma^2_{\varepsilon} \sigma^2_v}$$

multiply by denominator

$$\alpha_S D = \alpha^2_u \sigma^2_v \sigma^2_u + \alpha^2_S \frac{l-1}{l} \sigma^2_{\varepsilon} \sigma^2_v \iff \alpha_S =$$

$$\frac{1}{D} \left[\alpha^2_u \sigma^2_v \sigma^2_u + \alpha^2_S \frac{l-1}{l} \sigma^2_{\varepsilon} \sigma^2_v \right]$$

Sub in $D = ...$

$$\alpha_S = \frac{\frac{\alpha^2_u}{\alpha^2_S} \sigma^2_v \sigma^2_u + \frac{l-1}{l} \sigma^2_{\varepsilon} \sigma^2_v}{\frac{l-1}{l} \left(\sigma^2_v + \frac{1}{l} \sigma^2_{\varepsilon} \right)\sigma^2_{\varepsilon} + \frac{\alpha^2_u}{\alpha^2_S} \sigma^2_u \left(\sigma^2_v + \sigma^2_{\varepsilon} \right)}$$

\Rightarrow unique α_S.

This proves existence and uniqueness of the NREE!
Characterization of NREE

Recall that \(Var \left[v \mid S^i, P \right] = \frac{1}{D} \left[\alpha_S^2 \frac{l-1}{l^2} \sigma_\varepsilon^2 + \alpha_u^2 \sigma_u^2 \right] \sigma_\varepsilon^2 \sigma_v^2 \)

and \(\alpha_S = \frac{1}{D} \left[\alpha_u^2 \sigma_u^2 + \alpha_S^2 \frac{l-1}{l} \sigma_\varepsilon^2 \right] \sigma_v^2 \)

Hence, \(\alpha_S = Var \left[v \mid S^i, P \right] \frac{\left[\alpha_u^2 \sigma_u^2 + \alpha_S^2 \frac{l-1}{l} \sigma_\varepsilon^2 \right]}{\left[\alpha_S^2 \frac{l-1}{l^2} \sigma_\varepsilon^2 + \alpha_u^2 \sigma_u^2 \right] \sigma_v^2} \) (notice \(l^2 \) square)

\[\alpha_S = Var \left[v \mid S^i, P \right] \frac{1}{\sigma_\varepsilon^2} \left[\frac{l^2}{l-1} h^2 \sigma_u^2 + l \sigma_\varepsilon^2 \right] \]

\[Var \left[v \mid S^i, P \right] \frac{1}{\sigma_\varepsilon^2} \left[\frac{l^2}{l-1} h^2 \sigma_u^2 + \sigma_\varepsilon^2 + (l-1) \sigma_\varepsilon^2 \right] \]

\[\alpha_S = Var \left[v \mid S^i, P \right] \frac{1}{\sigma_\varepsilon^2} \left[1 + \frac{(l-1) \sigma_\varepsilon^2}{\sigma_\varepsilon^2 + \frac{l^2}{l-1} h^2 \sigma_u^2} \right] \]

\[= Var \left[v \mid S^i, P \right] \tau_\varepsilon \left[1 + (l - 1) \frac{\tau_u}{\tau_u + \frac{l^2}{l-1} h^2 \tau_\varepsilon} \right] \]

\[\underbrace{\tau_u + \frac{l^2}{l-1} h^2 \tau_\varepsilon} \]

\[:= \theta \]

\[\alpha_S = Var \left[v \mid S^i, P \right] \tau_\varepsilon \left[1 + \theta \right] \theta \text{ is decreasing in } \rho \ (h \text{ is increasing)} \]
Characterization of NREE

$$\text{Var} \left[\nu \mid S^i, P \right] = \frac{1}{D} \left[\alpha_S^2 \frac{l-1}{l^2} \sigma_e^2 + \alpha_u^2 \sigma_u^2 \right] \sigma_e^2 \sigma_v^2 = \frac{\alpha_S^2 \frac{l-1}{l^2} \sigma_e^2 + \alpha_u^2 \sigma_u^2}{\alpha_S^2 \frac{l-1}{l} \left(\sigma_v^2 + \frac{1}{l} \sigma_e^2 \right) \sigma_e^2 + \alpha_u^2 \sigma_u^2 \left(\sigma_v^2 + \sigma_e^2 \right)} = \frac{\frac{l-1}{l^2} \sigma_e^2 + h^2 \sigma_u^2}{h^2 \frac{l-1}{l} \left(\sigma_v^2 + \frac{1}{l} \sigma_e^2 \right) \sigma_e^2 + h^2 \left(\sigma_v^2 + \sigma_e^2 \right)} = \ldots$$

“price precision”

$$\frac{1}{\text{Var} \left[\nu \mid S^i, P \right]} = \tau_v + \tau_\epsilon + (l - 1) \theta \tau_\epsilon$$

Interpretation

$$\theta = (l - 1) \frac{\tau_u}{\tau_u + \frac{\tau_u^2}{l-1} h^2 \tau_\epsilon} \quad \text{measure of info efficiency}$$

$$\sigma_u^2 \to \infty \quad (\tau_u \to 0): \, \theta \to 0 \text{ price is uninformative (Walrasian equ.)}$$

$$\sigma_u^2 \to 0 \quad (\tau_u \to \infty): \, \theta \to 1 \text{ price is informationally efficient}$$
Remarks to Hellwig (1980)

- Since $\alpha^2_u \neq 0$, $\beta_S \neq 0$, i.e. agents condition on their signal as risk aversion of trader increases the informativeness of price θ declines.
- Price informativeness increases in precision of signal τ_ε and declines in the amount of noise trading σ^2_u.
- Negative supply shock leads to a larger price increase compared to a Walrasian equilibrium, since traders wrongly partially attribute it to a good realization of v.
- Diamond and Verrecchia (1981) is similar except that endowment shocks of traders serve as asymmetric information.
Endogenous Info Acquisition
Model setup:

- $i \in \{1, \ldots, I\}$ traders
- CARA utility function with risk aversion coefficient ρ
 (Let $\eta = \frac{1}{\rho}$ be traders’ risk tolerance.)
- no information aggregation - two groups of traders
 - informed traders who have the same signal $S = v + \epsilon_S$
 with $\epsilon_S \sim \mathcal{N}(0, \sigma^2_{\epsilon})$
 - uninformed traders have no signal
- FOCUS on information acquisition
Noisy REE - Grossman-Stiglitz

Step 1: Conjecture price function

\[P = \alpha_0 + \alpha_S \Delta S + \alpha_u \Delta u \]

Step 2: Derive posterior distribution

- for informed traders:
 \[E[v|S, P] = E[v|S] = E[v] + \frac{\tau_\varepsilon}{\tau_v + \tau_\varepsilon} \Delta S \]
 \[\tau[v|S] = \tau_v + \tau_\varepsilon \]

- for uninformed traders:
 \[E[v|P] = E[v] + \frac{\alpha_S \sigma_v^2}{\alpha_S^2 (\sigma_v^2 + \sigma_\varepsilon^2) + \alpha_u^2 \sigma_\varepsilon^2} \Delta P \]
 \[\tau[v|P] = \tau_v + \frac{\tau_u}{\tau_u + h^2 \tau_\varepsilon} \tau_\varepsilon \]

where \(h = -\frac{\alpha_u}{\alpha_S} \)

\(:= \phi \in [0,1] \)

After some algebra we get

\[E[v|P] = E[v] + \frac{1}{\alpha_S} \frac{\phi \tau_\varepsilon}{\tau_v + \phi \tau_\varepsilon} \Delta P \]
Noisy REE - Grossman-Stiglitz

Step 3: Derive individual demand

\[
x^I(P, S) = \eta^I [\tau_v + \tau_\epsilon] \left[E[v] + \frac{\tau_\epsilon}{\tau_v + \tau_\epsilon} \Delta S - P \right]
\]

\[
x^U(P) = \eta^U [\tau_v + \phi \tau_\epsilon] \left[E[v] + \frac{1}{\alpha_S} \frac{\phi \tau_\epsilon}{\tau_v + \phi \tau_\epsilon} \Delta P - P \right]
\]

Step 4: Impose market clearing

Aggregate demand, for a mass of \(\lambda^I\) informed traders and \((1 - \lambda^I)\) uninformed

\[
\begin{align*}
\lambda^I \eta^I [\tau_v + \tau_\epsilon] \left[E[v] + \frac{\tau_\epsilon}{\tau_v + \tau_\epsilon} \Delta S - P \right] + \\
\left(1 - \lambda^I\right) \eta^U [\tau_v + \phi \tau_\epsilon] \left[E[v] + \frac{1}{\alpha_S} \frac{\phi \tau_\epsilon}{\tau_v + \phi \tau_\epsilon} \Delta P - P \right] &= u
\end{align*}
\]
Noisy REE - Grossman-Stiglitz

\[P(S, u) = \frac{(\nu^l + \nu^U) E[v] + \nu^l \frac{\tau_{\varepsilon}}{\tau_v + \tau_{\varepsilon}} \Delta S - \frac{1}{\alpha_S} \frac{\Phi \tau_{\varepsilon}}{\tau_v - \phi \tau_{\varepsilon}} \alpha_0 \nu^U - E[u] - \Delta u}{\nu U \left(1 - \frac{1}{\alpha_S} \frac{\Phi \tau_{\varepsilon}}{\tau_v - \phi \tau_{\varepsilon}} \right) + \nu^l} \]

Hence, \(h = -\frac{\alpha_u}{\alpha_S} = \left[\nu^l \frac{\tau_{\varepsilon}}{\tau_v + \tau_{\varepsilon}} \right]^{-1} = \frac{1}{\lambda^l \eta^l \tau_{\varepsilon}}. \)

Hence, \(\phi = \frac{\tau_u \tau_{\varepsilon}}{\tau_v \tau_{\varepsilon} + \frac{1}{(\lambda^l \eta^l)^2}}. \)

Remarks:

- As \(\text{Var}[u] \downarrow 0, \phi \uparrow 1 \)
- If signal is more precise (\(\tau_{\varepsilon} \) is increasing) then \(\phi \) increases (since informed traders are more aggressive)
- Increases in \(\lambda^l \) and \(\eta^l \) also increase \(\phi \)
Noisy REE - Grossman-Stiglitz

Step 5: Impose rationality

Solve for coefficients

\[
\alpha_0 = E[v] - \frac{1}{\nu^I + \nu^U} E[u]
\]

\[
\alpha_S = \frac{1}{\nu^U \left(1 - \frac{1}{\alpha_S \frac{\phi \tau_\epsilon}{\tau_V - \phi \tau_\epsilon}}\right)} + \nu^I \frac{\tau_\epsilon}{\tau_V + \tau_\epsilon} \nu^I = \frac{\lambda^I \eta^I + \lambda^U \eta^U \phi}{\nu^I + \nu^U} \tau_\epsilon
\]

\[
\alpha_U = -\frac{1}{\nu^I + \nu^U} \left(1 + \frac{\lambda^U \tau_U}{\lambda^I \tau_I} \phi\right)
\]

Finally let’s calculate

\[
\frac{\tau[v|S]}{\tau[v|P]} = \frac{\tau_V + \tau_\epsilon}{\tau_V + \phi \tau_\epsilon} = 1 + \frac{(1 - \phi) \tau_\epsilon}{\tau_V + \phi \tau_\epsilon}
\]
Information Acquisition Stage - Grossman-Stiglitz (1980)

- Aim: endogenize λ

- Recall

\[x^i = \eta^i \tau_{Q|S} E[Q|S], \text{ where } Q = \nu - RP \text{ is excess payoff} \]

- Final wealth is

\[W^i = \eta^i Q \tau_{Q|S} E[Q|S] + (P u^i + e^i_0) R \]

(CARA \Rightarrow we can ignore second term)

Note W^i is product of two normally distributed variables

Use Formula of Slide 7 or follow following steps:

Conditional on S, wealth is normally distributed.

\[
E[W|S] = \eta \tau_{Q|S} E[Q|S]^2
\]

\[
Var[W|S] = \eta^2 \tau_{Q|S} E[Q|S]^2
\]

- the expected utility conditional on S

\[
E[U(W)|S] = -\exp\left\{-\frac{1}{\eta} \frac{1}{2} \eta \tau_{Q|S} E[Q|S]^2 - \frac{1}{2} \eta \tau_{Q|S} E[Q|S]^2 \right\}
\]
Information Acquisition Stage - Grossman-Stiglitz (1980)

\[E[U(W)|S] = -\exp\left\{-\frac{1}{2}\tau_{Q|S}E[Q|S]^2\right\} \]

Integrate over possible \(S \) to get the ex-ante utility.

W.l.o.g. we can assume that \(S = Q + \epsilon \).

Normal density \(\phi(S) = \sqrt{\frac{\tau}{2\pi}} \exp\left\{-\frac{1}{2}\tau S[\Delta S]^2\right\} \)

\[
E[U(W)] = -\int_S \sqrt{\frac{\tau[S]}{2\pi}} \exp\left\{-\frac{1}{2}\left[\tau_{Q|S}E[Q|S]^2 + \tau S (\Delta S)^2\right]\right\} \text{d}S
\]

Term in square bracket is

\[
\left(\tau_Q + \tau_\epsilon\right) \left(E[Q] + \frac{\tau_\epsilon}{\tau_Q + \tau_\epsilon} \Delta S\right)^2 + \frac{\tau_Q\tau_\epsilon}{\tau_Q + \tau_\epsilon} (\Delta S)^2
\]

simplifies to

\[
\tau_Q E[Q]^2 + \tau_\epsilon (\Delta S + E[Q])^2
\]
Information Acquisition Stage - Grossman-Stiglitz (1980)

Hence, \(E [U(W)] =
- \exp \left\{ - \frac{\tau Q E[Q]^2}{2} \right\} \int_S \sqrt{\frac{\tau S}{2\pi}} \exp\left\{ - \frac{1}{2} \left[\tau \epsilon \left(\Delta S + E[Q]\right)^2 \right] \right\} ds
\]

Define \(y := \sqrt{\tau \epsilon} (\Delta S + E[Q]) \)

\[
E [U(W)] = - \exp \left\{ - \frac{\tau Q E[Q]^2}{2} \right\} \sqrt{\frac{\tau S}{\tau \epsilon}} \int_S \sqrt{\frac{\tau \epsilon}{2\pi}} \exp\left\{ - \frac{1}{2} y^2 \right\} ds
\]

Letting \(k = - \exp \left\{ - \frac{\tau Q E[Q]^2}{2} \right\} \sqrt{\tau Q} \) and noting that \(\tau S = \frac{\tau Q \tau \epsilon}{\tau Q + \tau \epsilon} \), we have

\[
E [U(W)] = \frac{k}{\sqrt{\tau [Q|S]}} = \frac{k}{\sqrt{\tau Q + \tau \epsilon}}
\]
Willingness to Pay for Signal

General Problem (No Price Signal)

- Without price signal and signal S, agent's expected utility

$$E[U(W)] = \frac{k}{\sqrt{\tau Q}}$$

- If the agent buys a signal at a price of m_S his expected utility is

$$E[U(W - m_S)] = E[- \exp(-\rho(W - m_S))] = E[- \exp(-\rho(W)) \exp(\rho m_S)] = \frac{k}{\sqrt{\tau[Q|S]}} \exp(\rho m_S)$$

- Agent is indifferent when

$$\frac{k}{\sqrt{\tau Q}} = \frac{k}{\sqrt{\tau[Q|S]}} \exp(\rho m_S)$$

$$\Rightarrow$$ willingness to pay

$$m_S = \eta \ln \left(\sqrt{\frac{\tau[Q|S]}{\tau Q}} \right)$$

- Willingness to pay depends on the improvement in precision.
Information Acquisition Stage - Grossman-Stiglitz (1980)

- Every agent has to be indifferent between being informed or not.

\[
\text{cost of signal } c = \eta \ln \left(\sqrt{\frac{\tau[v|S]}{\tau[v|P]}} \right) = \eta \ln \left(\sqrt{\frac{\tau v + \tau \varepsilon}{\tau v + \phi \tau \varepsilon}} \right)
\]

(previous slide)

This determines \(\phi = \frac{\tau_u \tau \varepsilon}{\tau_u \tau \varepsilon + \left(\frac{1}{\lambda I \eta} \right)} \), which in turn pins down \(\lambda^I \).

- Comparative Statics (using IFT)
 - \(c \uparrow \Rightarrow \phi \downarrow \)
 - \(\eta \uparrow \Rightarrow \phi \uparrow \) (extreme case: risk-neutrality)
 - \(\tau \varepsilon \uparrow \Rightarrow \phi \uparrow \)
 - \(\sigma_u^2 \uparrow \Rightarrow \phi \uparrow \) (number of informed traders \(\uparrow \))
 - \(\sigma_u^2 \downarrow 0 \Rightarrow \) no investor purchases a signal
Information Acquisition Stage

- Further extensions:
 - purchase signals with different precisions (Verrecchia 1982)
 - Optimal sale of information
 - photocopied (newsletter) or individualistic signal (Admati & Pfleiderer)
 - indirect versus direct (Admati & Pfleiderer)
Endogenizing Noise Trader Demand

- endowment shocks or outside opportunity shocks that are correlated with asset
- welfare analysis
 - more private information \rightarrow adverse selection
 - more public information \rightarrow Hirshleifer effect (e.g. genetic testing)
- see papers by Spiegel, Bhattacharya & Rohit, and Vives (2006)
Tips & Tricks

- risk-neutral competitive fringe observing limit order book L
 $p = E[v | L(\cdot)]$
 - separates risk-sharing from informational aspects