Roadmap

- Motivation
 - UIP, Forward Premium Puzzle
 - Conditional Skewness

- Theory
 - “Overshooting/Bubble view”
 - “Undershooting view”

- Empirical evidence
Example of Carry Trade

- Yen-Aussie carry trade
 - Borrow at 0.87% JPY LIBOR 3 months
 “Funding currency”
 - Invest at 7% AUD LIBOR 3 months
 “Investment currency”
 - Hope that JPY doesn’t appreciate too much

- Using currency futures $F_t = S_t e^{i^* - i}$
 - Sell futures if $F_{t,T} > E_t[S_T]$
 - Buy futures if $F_{t,T} < E_t[S_T]$
Empirical: two stylized facts

1. Forward Premium Puzzle – Random Walk

- UIP (in risk-neutral world)
- “Fama regression” \(H_0: \alpha = 0, \beta = 1 \)
 \[
 \frac{S_{t+1} - S_t}{S_t} = \alpha + \beta \frac{F_t - S_t}{S_t} + \varepsilon_{t+1}
 \]
 Data (25 major currencies w.r.t. US$ 1976-2007 median)

<table>
<thead>
<tr>
<th></th>
<th>(\hat{\alpha})</th>
<th>(\hat{\beta})</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0007</td>
<td>-0.682</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>(0.0025)</td>
<td>(0.727)</td>
<td></td>
</tr>
</tbody>
</table>

- Carry trade profitability is due to interest rate diff.
- Difficult to explain high Sharpe ratio as “risk premium”
- Backus et al. (2001), Burnside et al. (2006)
Empirical: two stylized facts

2. Cond. **Skewness** of exchange movements
 - “Going up by the stairs and down by the elevator”
Theory: two views

1. **Bubble (overshooting) view:**
 - Carry trades **delay** currency adjustments
 - Wile E. Coyote Effect *(Abreu-Brunnermeier 2002+03)*
Theory: two views united

2. Undershooting view:
 - Carry trade activity is limited due to funding liquidity risk
 Brunnermeier-Nagel-Pedersen (2008)
 - Both views lead to forward premium puzzle

- Next: United view
Theory: Stylized example

- Positive interest diff for random length
 - \(i^* - i > 0 \) from \(t=0 \) to \(t = t_0 + T' \), where
 - \(t_0 \) is random with \(F(t_0) = 1 - \exp\{-\lambda t_0\} \) with \(\lambda > (i^* - i) \)
 - \(T' \) is “large”
 - \(i^* = i \), otherwise

- Exchange rate
 - \(S(t_0) = S(t + T') = 1 \)
Theory: frictionless benchmark

\[S \]

\[t \]

\[t_0 \]

\[t_0 + T' \]
Theory: frictionless benchmark

- **After knowing** t_0
 - UIP implies $S(t \mid t_0) = Ae^{-(i^*-i)t}$ s.t. $S(t_0 + T' \mid t_0) = 1$
 - Hence, $S(t \mid t_0) = e^{(i^*-i)(t_0 + T' - t)}$

- **Before knowing** t_0
 - $S(t) = S(0)$ due to exponential structure
 - $S(0)$ is given by UIP

\[
\Delta_t \lambda \frac{S(0) - S(t_0 \mid t_0)}{S(0)} S(0) = (1 - \Delta_t \lambda)(i^* - i) \Delta_t S(0)
\]

\[
S(0) = \frac{\lambda}{\lambda - (i^* - i)} e^{(i^* - i)T'}
\]

Note for $\lambda < (i^* - i)$, $E(0)$ goes to infinity
Theory: frictions

S

undershooting

t₀

overshooting

t₀ + T'

crash
Theory: frictions

UIP is violated in both “views”

funding friction
synchronization friction

undershooting
overshooting
Theory: “bubble view” first

- common action of \(\kappa \) arbitrageurs
- sequential awareness
 (random \(t_0 \) with \(F(t_0) = 1 - \exp\{\lambda t_0\} \))
- position limits

\[
S_0 \quad \text{random starting point}
\]
\[
t_0 \quad \kappa \text{ traders are aware of the overshooting}
\]
\[
(t_0 + \eta \kappa) \quad \text{all traders are aware of the overshooting}
\]
\[
t_0 + T' \quad 1/\eta
\]

\[
\exp((r-i)(t_0 + T' - t))
\]
Focus on
- “when does currency crash occurs” (carry trade returns are skewed)
- one random variable \(t_0 \), all other variables are CK

Cash Payoffs (difference)
- Exit carry trade at \(t - \Delta \) instead of at \(t \).

\[
S_{t-\Delta} e^{r\Delta} - S_t
\]

where \(S_t = S_0 \) prior to crash vs. \(e^{(i^*-i)(t_0+T'-t)} \) after crash

Risk-neutrality but max/min stock position
- max long position
- max short position
- due to capital constraints, margin requirements etc. (more details later)
Theory: exit condition

- Exit carry trade iff
 \[\Delta_i h(t \mid t_i) \frac{S_0 - e^{(i^* - i)(t_0 + T' - t)}}{S_0} \geq (1 - \Delta_i h(t \mid t_i))(i^* - i)S_0\Delta_i \]

 Suffer currency crash \hspace{2cm} Cash in interest rate differential

 \[h(t \mid t_i) \geq \frac{[i^* - i]}{[1 - e^{(i^* - i)(T' - T)/S_0}]}, \]

 where \(t_0 + T = \text{time of (endogenous) currency crash} \)
 \(T \text{ is known in equilibrium} \)

- RHS is “greed-to-fear ratio”
Sequential Awareness

Distribution of t_0

Distribution of $t_0 + T$
(time of currency crash)

trader t_i

since $t_i \leq t_0 + \eta$
since $t_i \geq t_0$

t_0

$t_0 + T$
Sequential Awareness

Distribution of t_0

since $t_i \leq t_0 + \eta$

Distribution of $t_0 + T$
(time of currency crash)

since $t_i \geq t_0$

trader t_i

trader t_j

$t_j - \eta$

t_j

t_0

$t_0 + T$
Sequential Awareness

Distribution of t_0

- $t_i - \eta$ since $t_i \leq t_0 + \eta$
- t_i since $t_i \geq t_0$

Distribution of $t_0 + T$
(time of currency crash)

- t_0
- t_k
- $t_0 + \bar{\tau}$
Conjecture: immediate attack

⇒ Crash at $t_0 + \eta \kappa$

when κ traders are aware
Conjecture: immediate attack

\[\Rightarrow \text{ Crash at } t_0 + \eta \kappa \]

when \(\kappa \) traders are aware

If \(t_0 < t_i - \eta \kappa \), the bubble would have burst already.
Conjecture: immediate attack

\[\Rightarrow \text{ Crash at } t_0 + \eta \kappa \]

when \(\kappa \) traders are aware

Distribution of \(t_0 \)

\[\lambda / (1 - e^{-\lambda \eta \kappa}) \]

\[t_i - \eta \quad \quad t_i - \eta \kappa \quad \quad t_i \]

If \(t_0 < t_i - \eta \kappa \), the bubble would have burst already.
Conjecture: immediate attack

⇒ Crash at $t_0 + \eta \kappa$

when κ traders are aware

If $t_0 < t_i - \eta \kappa$, the crash would have already happened.
Conjecture: immediate attack

Crash at $t_0 + \eta \kappa$

Distribution of t_0

$t_i - \eta$
$t_i - \eta \kappa$
t_i
$t_i + \eta \kappa$

$\lambda/(1-e^{\lambda \eta \kappa})$
Conjecture: immediate attack

Crash at $t_0 + \eta \kappa$

Distribution of t_0

\[\lambda/(1-e^{-\lambda \eta \kappa}) \]

crash for sure!
Conjecture: immediate attack

Crash at $t_0 + \eta \kappa$
Conjecture: immediate attack

Crash at $t_0 + \eta \kappa$
Conjecture: immediate attack

Crash at $t_0 + \eta \kappa$

hazard rate of crash

$$h = \frac{\lambda}{1 - \exp\{-\lambda(t_0 + \eta \kappa - t)\}}$$

Distribution of t_0

$\frac{\lambda}{1 - e^{\lambda \eta \kappa}}$

$t_i - \eta$

$t_i - \eta \kappa$

t_i

$t_i + \eta \kappa$

crash for sure!
Conjecture: immediate attack

Crash at $t_0 + \eta \kappa$

hazard rate of the bubble
$h = \lambda/(1 - \exp\{-\lambda(t_i + \eta \kappa - t)\})$

Recall exit condition:
$h(t|t_i) \geq [i^*-i]/[1 - e^{(i^*-i)(T'-T)/S_0}]$

where $T = \eta \kappa$

Distribution of t_0
Conjecture: immediate attack

Crash at $t_0 + \eta \kappa$

hazard rate of the bubble
$h = \lambda/(1 - \exp\{-\lambda(t_i + \eta \kappa - t)\})$

Recall exit condition:
$h(t|t_i) \geq [i^* - i]/[1 - e^{(i^* - i)(T' - T)/S_0}]$

Distribution of t_0

$\lambda/(1 - e^{\lambda \eta \kappa})$

optimal time to attack $t_i + \tau_i$ ⇒ “delayed attack is optimal”
Preliminary results

- Immediate price correction is not an equilibrium
- Mispricing grows over time
Equilibrium delay τ^*

\Rightarrow Crash at $t_0 + T = t_0 + \eta \kappa + \tau^*$

Hazard rate of crash

$h = \lambda / (1 - \exp{-\lambda (t_i + \eta \kappa + \tau' - t)})$

Equilibrium delay τ^*

Greed $(i^* - i) /

Fear \quad 1 - e^{(i^* - i)(T' - T)} / S_0$

$t_i - \eta \quad t_i - \eta \kappa \quad t_i \quad t_i - \eta + \eta \kappa + \tau^* \quad t_i + \tau^* \quad t_i + \eta \kappa + \tau^*$

Conjectured attack

Optimal
Results: delay $\tau^* + \text{crash}$

- Proposition
 - Each speculator only exits its carry trade τ^* periods after learning that the exchange rate is too high, i.e. at $t_i + \tau^*$, where
 \[
 \tau^* = T' - \frac{1}{i^*-i} \left\{ \ln S_0 + \ln \left[1 - \frac{1 - e^{-\lambda \eta \kappa}}{\eta \kappa} (i^*-i) \right] \right\} - \eta \kappa
 \]
 - The exchange rate correction occurs at
 \[
 T = \tau^* + \eta \kappa = T' - \frac{1}{i^*-i} \left\{ \ln S_0 + \ln \left[1 - \frac{1 - e^{-\lambda \eta \kappa}}{\lambda} (i^*-i) \right] \right\}
 \]
 - Size of crash is
 \[
 (i^*-i) \frac{1 - e^{-\lambda \eta \kappa}}{\lambda} S_0
 \]

- Proposition (Comparative Static)
 - Crash size is increasing (i^*-i), η, κ, S_0 (less undershooting, more overshooting)
 - Delay of price correction is increasing in S_0
 - Fear: larger crash size leads to earlier correction
 - Greed: larger (i^*-i) makes carry trades more profitable

- Negative skewness of carry trade returns
Lack of common knowledge

⇒ standard backwards induction can’t be applied

If one interprets η as difference in opinion, lack of common knowledge gets a different meaning too.

κ traders know of overshooting

(same reasoning applies for κ traders)
Synchronizing events

- Most sharp price movements occur without fundamental news
- Example: Dollar/Yen Oct 7/8, 1998

- Fair (2002): no news on most crashes
Synchronizing events

- News may have an impact disproportionate to any intrinsic informational (fundamental) content
 - News can serve as a synchronization device

- Fads & fashion in information
 - Which news should traders coordinate on?

- When “synchronized attack” fails, the crash is even further postponed
Synchronizing events

- Exchange rate drop as a synchronizing event
 - through psychological resistance line
 - by more than, say 5%

- Exogenous price drop
 - after a price drop
 - if mispricing is ripe
 \implies crash occurs and price drops further
 - if mispricing is not ripe yet
 \implies exchange rate bounces back and the mispricing is strengthened for some time
“Bubble view” – take aways

- Bubbles
 - Dispersion of opinion among arbitrageurs causes a synchronization problem which makes coordinated price corrections difficult
 - Arbitrageurs time the market and continue carry trades
 - Exchange rate distortions persist and crashes are larger
 - Wile E. Coyote effect
 - Sknewness

- Crashes
 - can be triggered by unanticipated news without any fundamental content, since
 - it might serve as a synchronization device.

- Crash is larger for larger interest rate differential

- Even more extreme view: “Carry trades CAUSE bubbles”
Roadmap

- Motivation
 - UIP, Forward Premium Puzzle
 - Skewness

- Theory
 - “Overshooting/Bubble view”
 - “Undershooting view”

- Empirical evidence
“Underreaction view”

UIP is violated in both “views”

funding friction

synchronization friction

undershooting

overshooting
Illiquidity arises due to frictions which
- prevent fund flows to investors with expertise
- limits optimal risk sharing

Causes of frictions
- asymmetric information
 - market breakdowns/credit rationing, market for lemons
- non-verifiable info - incomplete contracts/markets

Funding liquidity frictions = limits to arbitrage

Speed of arbitrage (dynamic)
- experts only build up capital slowly ...
Flavors of Funding Liquidity

- **Margin funding risk**
 - Margin has to be covered by HF’s own capital
 - Margins increase at times of crisis

- **Rollover risk**
 - Inability to roll over short-term commercial paper

- **Redemption risk**
 - Outflow of funds for HF's and banks
Funding constraint

- So far, simple position limits
 - to ensure that not a single market participant alone can cause crash

- Now, more specific
 - Margins
 - Buy AUS on margins $m_{AUS}^+ = \text{VaR}(AUS)$
 - Borrow JPY on margins $m_{JPY}^- = \text{VaR}(JPY)$
 \[
 \sum_j x_t^{j+} m_t^{j+} + x_t^{j-} m_t^{j-} \leq W_t
 \]
 - With cross-margining (portfolio margining)
 \[
 M(x_t^1, \ldots, x_t^J) \leq W_t
 \]
Funding constraint

- Exchange margins
- Regulatory Capital Requirements
 - Basel accord: banks
 - SEC Net Capital Rule: brokers
 - Regulation T: customers of brokers
Balance Sheet Channel

- **Borrowers’ balance sheet** — Brunnermeier-Pedersen (2008)

 - **Loss spiral**
 - Net wealth > αx
 - for asym. info reasons
 - (constant or increasing leverage ratio)
 - Bernanke-Gertler, ...

 - **Margin spiral**
 - (forces to deleverage)

- Both spirals reinforce each other

Source: Brunnermeier & Pedersen (2008)
Margin spirals

Margins/Haircuts:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment grade</td>
<td>0-3</td>
<td>3-7</td>
</tr>
<tr>
<td>High yield</td>
<td>0-5</td>
<td>10+</td>
</tr>
<tr>
<td>Leveraged Loan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior</td>
<td>10-12</td>
<td>15-20</td>
</tr>
<tr>
<td>2nd lien</td>
<td>15-20</td>
<td>20-30</td>
</tr>
<tr>
<td>Mezzanine</td>
<td>18-25</td>
<td>30+</td>
</tr>
<tr>
<td>ABS and CDO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>2-4</td>
<td>8-10</td>
</tr>
<tr>
<td>AA</td>
<td>4-7</td>
<td>20</td>
</tr>
<tr>
<td>A</td>
<td>8-15</td>
<td>30</td>
</tr>
<tr>
<td>BBB</td>
<td>10-20</td>
<td>50</td>
</tr>
<tr>
<td>Equity</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Citigroup, IMF Stability report 2007
Margin Spiral

CME’s Margins for S&P 500 Futures

- Black Monday: 10/19/87
- US/Iraq war
- LTCM
- 1989 mini crash
- Asian crisis
1. **Volatility of collateral increases**
 - Permanent price shock is accompanied by higher future volatility (e.g. ARCH)
 - Realization how difficult it is to value structured products
 - Value-at-Risk shoots up
 - Margins/haircuts increase = collateral value declines
 - Funding liquidity dries up
 - Note: all “expert buyers” are hit at the same time, SV 92

2. **Adverse selection of collateral**
 - As margins/ABCP rate increase, selection of collateral worsens
Margin Spiral – Increased Vol.

\[v_t = v_{t-1} + \Delta v_t = v_{t-1} + \sigma_t \varepsilon_t \]
\[\sigma_{t+1} = \sigma + \theta |\Delta v_t| \]
Margin - VaR

\[\pi = \Pr (- \Delta S_{t+1} \leq m_t) = 1 - \Phi \left(\frac{m_t}{\sigma_{t+1}} \right) \]

\[m_t = \sigma_{t+1} \Phi^{-1}(1-\pi) \]

Recall that due to ARCH effect

\[\sigma_{t+1} = \sigma + \theta |\Delta v_t| \]

if financiers (margin setters)

- Do not observe liquidity shocks
- Liquidity shocks are rare then
 \[\sigma_{t+1} = \sigma + \theta |\Delta S_t| \]

Positions \[x^+_t \leq \mathcal{W}_t / m^+_t \]
$$x_1 < W_1/m_1 = W_1/\left(\sigma + \bar{\theta}|\Delta p_1|\right)$$

customers’ supply
Results

- Backward bending demand curves
 - Due to forced deleveraging
- Discontinuous prices – fragility
- Amplification - spiral
Deleveraging of I-Banks

Leverage and Total Assets Growth
Asset weighted, 1992Q3-2008Q1. Source: SEC

Source: Adrian-Shin (2008)

Evidence for margin spiral
Skewness: unwinding of carry trades

- Early unwinding of carry trades
 - since funding constraint binds
 - crowded trades
- Adverse fundamental movement
 - good news on funding currency
 - losses for carry trade speculators on other trades (VIX)
- Funding liquidity tightens — forces unwinding of carry trades
- Note asymmetry: good news for investment currency relaxes constraint
- Conditional skewness of exchange rate

- Ex-ante: funding liquidity risk
 - Pricing kernel is given by shadow cost of binding funding constraint (not risk aversion given by utility function)
Undershooting view - takeaways

- **Skewness** is due to forced unwinding of carry trades (sign of congestion)
 - Note carry trades are leveraged positions
- **Undershooting** is due to danger of potential future unwinding of carry trades
 - Limits to arbitrage – funding liquidity risk
 - Pricing kernel is given by shadow costs of funding liquidity (Lagrange multiplier $\phi_{t+1} = 1 + $ expected profit from extra $)
 \[
 S_t = E\left[\frac{\phi_{t+1}}{E[\phi_{t+1}]} S_{t+1} \right] \quad \text{for } \phi_t = 1
 \]
 - **Not** by risk aversion – curvature of utility function
 - Hint: difference hedging demand – since adverse shocks lead to unwinding, cautious ex-ante
More related theoretical research

- Afonso (2007)
 - AB framework applied to currency attacks

- Plantin-Shin (2008)
 - Carry trades cause bubble
 - Margin spiral à la BP(2008) needed
 - Strategic complements + trading friction
 - Assumes no exchange rate jumps
 - assumed underreaction

- Farhi-Gabaix (2008)
 - Skewness is due to rare (fundamental) events
Empirical Analysis is next

- New set of slides ...