Post-treatment conditioning

Han Zhang
1 Intro to DAG

2 Identification in DAG

3 Endogenous selection bias ((Post-) Outcome Collider)

4 Overcontrol bias

5 Condition on pre-treatment colliders
Two representations of causal analysis

- Counterfactual: \(y^1 \) and \(y^0 \)
- DAG: graphical representations of the theorized data-generating process.
Elements

- **Node**: random variables.
 - Can be observed or unobserved. Just variables that the theory believe to be relevant.
 - Rectangle means unobserved.
- **Edge (arrow)**: directly causal effect between two variables.
 - Only direct relations. E.g., the effect of X on Y is through T.
 - Missing edges between nodes encode exclusion restrictions.

\[
\begin{align*}
X & \rightarrow T \rightarrow Y \\
\text{rectangle } X & \rightarrow T \rightarrow Y
\end{align*}
\]
Elements

- **Path**: a sequence of edges connecting two variables (Do not consider direction)
- **Causal path**: following the directions and from treatment to outcome. $T \rightarrow Y$ and $T \rightarrow C \rightarrow Y$.
- **Noncausal path**: E.g., $T \rightarrow C \leftarrow U \rightarrow Y$. Brings spurious associations between treatment and outcomes.

![Diagram](image-url)
History

- Path analysis
- Often assume linear relationships
- Hard to represent interaction
DAG (Directed Acyclic Graph)

- DAG encodes all marginal (unconditional) and conditional independence relations
- There is no parametric assumptions now.
DAG helps to make sure whether the causal relations can be identified.

identification: given ideal data (non response errors etc.), whether the causal relationship can be recovered in a DAG; if so, under what condition.

Estimation: choose real statistical models (regression, matching ...).
Examine whether $T \perp Y$
Confounding bias
Condition on C eliminates confounding bias
E.g., $A \perp\!\!\!\!\!\!\!\!\!\perp B$, but $A \perp\!\!\!\!\!\!\!\!\!\perp B \mid C$.

![Diagram showing mutual dependence and conditional independence](image)
When you have unobserved variables U, $T \rightarrow Y$ remain unidentified.
What does experiments do

- Randomization breaks the links from other variables to treatment/outcomes.

![Diagram]

- C
- U
- T
- Y
Randomization breaks the links from other variables to treatment/outcomes.
Mutual Causation

- Endogenous selection bias
- Condition on \(C \) create endogenous selection bias.

![Diagram showing mutual causation](image)

Figure 4
Mutual Causation

- \(A \perp B, \quad p(A, B) = p(A)p(B) \).

- \(A \not\perp B \mid C \iff p(A, B \mid C) \neq p(A \mid C)p(B \mid C), \) or

- \(p(A \mid B, C) \neq p(A \mid C) \) (giving \(B \) as information influence conditional probability of \(A \) given \(C \))

- Conditioning on \(C \) gives wrong implication that \(A, B \) are causally related.
Mutual Causation

- \(A \perp B, p(A, B) = p(A)p(B) \).

- \(A \not\perp B \mid C \iff p(A, B \mid C) \neq p(A \mid C)p(B \mid C) \), or

- \(p(A \mid B, C) \neq p(A \mid C) \) (giving \(B \) as information influence conditional probability of \(A \) given \(C \))

- Conditioning on \(C \) gives wrong implication that \(A, B \) are causally related.

- Example: \(A \) is exam difficulty; \(B \) is student intelligence; \(C \) is test scores.

- Knowing low test score, we can infer \(A \) from \(p(A \mid C) \) that the exam will possibly be hard; but with further information of student intelligence, \(p(A \mid B, C) \neq p(A \mid C) \) typically.
Mediation

- Overcontrol bias
 - $A \not\perp B$, $p(A, B) \neq p(A)p(B)$.
 - $A \perp B \mid C$, or
 - But this only means that the direct effect of A on B is zero; the total effect is not zero.

- Condition on C create overcontrol bias.

- More about interpretation of total/direct effect.

Figure 2

(a) A and B are associated by causation. The marginal association between A and B identifies the causal effect of A on B. (b) A and B are conditionally independent given C. The conditional association between A and B given C does not identify the causal effect of A on B (overcontrol bias).
1 Intro to DAG

2 Identification in DAG

3 Endogenous selection bias ((Post-) Outcome Collider)

4 Overcontrol bias

5 Condition on pre-treatment colliders
1. Intro to DAG

2. Identification in DAG

3. Endogenous selection bias ((Post-) Outcome Collider)

4. Overcontrol bias

5. Condition on pre-treatment colliders
A path between two variables, A and B, does not transmit association and is said to be blocked (closed, or d-separated) if

- the path contains a noncollider, C, that has been conditioned on
 - $A \to C \to B$ (mediation)
 - $A \leftarrow C \to B$ (confounding)

or if

- the path contains a collider, C, and neither the collider nor any of its descendants have been conditioned on.

Goal: try to find an observed set of variables as conditions that:

- block all noncausal paths between treatment and outcome.
- do not block any causal paths between treatment and outcome.
1. Intro to DAG

2. Identification in DAG

3. Endogenous selection bias ((Post-) Outcome Collider)

4. Overcontrol bias

5. Condition on pre-treatment colliders
1. Intro to DAG

2. Identification in DAG

3. Endogenous selection bias ((Post-) Outcome Collider)

4. Overcontrol bias

5. Condition on pre-treatment colliders
Sample truncation bias

Effect of education on income (truncated to only contain low earners); U are other observed errors (embedded in conventional control variables).

Other examples

- social movement: only sample protests that have 1,000 participants.
Nonresponse bias

A divorced father’s income, I, and the amount of child support he pays, P, both influence whether a father responds to the study, R.

![Diagram showing causal relationships between income, child support, and response]

Figure 6

- Nonresponse is causally determined by both treatment and outcome.
- List deletions of non-responding subjects implies conditioning on R.
- Does multiple imputation also introduce nonresponse bias?
Sample selection bias

B, topping the Billboard charts (treatment); R, inclusion in the Rolling Stone 500 (outcome); S, sample selection

Figure 7
Heckman selection bias

\(M \), motherhood (treatment); \(W_R \), unobserved reservation wage; \(W_O \), offer wage (outcome); \(E \), employment; \(\epsilon \), error term on offer wage

(a): many dataset restricted attention to employed women (conditioning on colliders): an association between motherhood and wages even if the causal effect of motherhood on wages is in fact zero.

(b): motherhood may indeed have an effect on offer wages (e.g., because of mothers’ differential productivity compared with childless women or because of employer discrimination)

Even if \(W_R \) is measured, there is still a collider \(W_O \).
1. Intro to DAG

2. Identification in DAG

3. Endogenous selection bias ((Post-) Outcome Collider)

4. Overcontrol bias

5. Condition on pre-treatment colliders
1. Intro to DAG
2. Identification in DAG
3. Endogenous selection bias ((Post-) Outcome Collider)
4. Overcontrol bias
5. Condition on pre-treatment colliders
Censoring: only dependent variables are observed

(compare with) Truncated: no information at all is available for the non-selected observations.

Choices

- handle censoring using duration models (survival analysis, event history models).
- discard
- P: poverty (treatment)

- D: divorce rates (outcome)

- C: censoring/attrition.

- U: unmeasured factors, such as marital distress.
- P: poverty (treatment)

- D: divorce rates (outcome)

- C: censoring/attrition.

- U: unmeasured factors, such as marital distress.

Figure 9
- S: schooling (treatment)

- W: wages (outcome)

- U: ability (unobserved)

- Q: measure test score of ability (such as IQ), as a proxy for U.
- S: schooling (treatment)

- W: wages (outcome)

- U: ability (unobserved)

- Q: measure test score of ability (such as IQ), as a proxy for U.
(a) U is unobserved; the causal path is not blocked and the effect of S on W is unidentified.

(b) Q is an imperfect measure;

(c) Q is a collider; exogenous selection bias

(d) Q has a causal impact on outcome W. Say employers use Q as hiring criteria; overcontrol bias.
(a): U is unobserved; the causal path is not blocked and the effect of S on W is unidentified.
(a): U is unobserved; the causal path is not blocked and the effect of S on W is unidentified.

(b): Q is an imperfect measure;

d, (c): Q is a collider; exogenous selection bias

d, (d): Q has a causal impact on outcome W. Say employers use Q as hiring criteria; overcontrol bias.
(a): U is unobserved; the causal path is not blocked and the effect of S on W is unidentified.

(b): Q is an imperfect measure;

(c): Q is a collider; exogenous selection bias
(a): U is unobserved; the causal path is not blocked and the effect of S on W is unidentified.

(b): Q is an imperfect measure;

(c): Q is a collider; exogenous selection bias

(d): Q has a causal impact on outcome W. Say employers use Q as hiring criteria; overcontrol bias.
Mediation analysis

Randomized class-size experiment:

- T: class size in first grade
- Y: high school graduation
- M: boosting student achievement in third grade
- U: unobserved causes of mediator variables

Treatment is randomized but the mediation is not.
Mediation analysis

Randomized class-size experiment:

- T: class size in first grade
- Y: high school graduation
- M: boosting student achievement in third grade
- U: unobserved causes of mediator variables

Treatment is randomized but the mediation is not.

Figure 11
Mediation analysis

Randomized class-size experiment:

(a): total effect between T and Y is unidentified if condition on M.

(b):
- total effect is identified
- total effect = direct + indirect effects
- directed effect (effect of T on Y net of other factors) is unidentified (due to collider).
- Wrongly claim that there is indirect effect.

Treatment is randomized but the mediation is not.
Randomized class-size experiment:

- (a): total effect between T and Y is unidentified if condition on M.
- (b): total effect is identified
 - total effect = direct + indirect effects
 - directed effect (effect of T on Y net of other factors) is unidentified (due to collider).
 - Wrongly claim that there is indirect effect.

Treatment is randomized but the mediation is not.
1. Intro to DAG

2. Identification in DAG

3. Endogenous selection bias ((Post-) Outcome Collider)

4. Overcontrol bias

5. Condition on pre-treatment colliders
1. Intro to DAG

2. Identification in DAG

3. Endogenous selection bias ((Post-) Outcome Collider)

4. Overcontrol bias

5. Condition on pre-treatment colliders
Pre-treatment Collider

- Spread of behaviors
- $Y_{i,t}$ is civic engagement of individual i at time t. Can be extended to other things (say, musical taste, smoking behaviors..)
- pre-treatment collider $F_{i,j}$: existence of friendship ties.
- U_i, U_j are individual attributes that shapes friendship ties (homophily) as well as outcome.
Pre-treatment Collider

- Spread of behaviors
- $Y_{i,t}$ is civic engagement of individual i at time t. Can be extended to other things (say, musical taste, smoking behaviors..)
- pre-treatment collider $F_{i,j}$: existence of friendship ties.
- U_i, U_j are individual attributes that shapes friendship ties (homophily) as well as outcome.

Figure 12
Pre-treatment Collider

- Without a priori theory, hard to distinguish colliders from confounding variables.

- X: 1) pre-treatment and 2) associated with both treatment and outcome.
summary

- Do not condition on post-treatment variables (colliders and intermediates)
- pre-treatment colliders
 - do not condition when it is not a confounder.