Week 12: Repeated Observations and Panel Data

Brandon Stewart1

Princeton

December 10 and 12, 2018

1These slides are heavily influenced by Matt Blackwell, Adam Glynn, Jens Hainmueller and Erin Hartman.
Where We’ve Been and Where We’re Going...

- Last Week
 - causal inference with unmeasured confounding

- This Week
 - Monday:
 - panel data
 - diff-in-diff
 - fixed effects
 - Wednesday:
 - spillover of material
 - Q&A
 - wrap-up

- The Following Week
 - break!

- Long Run
 - probability \rightarrow inference \rightarrow regression \rightarrow causality

Questions?
1 Set Up
2 Differencing Models
3 Difference-in-Differences
4 Fixed Effects
5 Non-parametric Identification and Fixed Effects
6 (Almost) Twenty Questions
 • Review
 • Topics Beyond the Course
 • Research Practice
 • Opinions and Musings
7 Concluding Thoughts for the Course
8 Appendix: Why Does Weighting Work?
Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...
- Democratic countries are different from non-democracies in ways that we can't measure?
 - they are richer or developed earlier
 - provide benefits more efficiently
 - possess some cultural trait correlated with better health outcomes
- If we have data on countries over time, can we make any progress in spite of these problems?
Ross Data

<table>
<thead>
<tr>
<th>cty_name</th>
<th>year</th>
<th>democracy</th>
<th>infmort_unicef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>1965</td>
<td>0</td>
<td>230</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>1966</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>1967</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>1968</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>1969</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>1970</td>
<td>0</td>
<td>215</td>
</tr>
</tbody>
</table>
Notation for Panel Data

- Units, $i = 1, \ldots, n$
- Time, $t = 1, \ldots, T$
- Slightly different focus than clustered data we covered earlier
 - Panel: we have repeated measurements of the same units
 - Clustering: units are clustered within some grouping.
 - The main difference is what level of analysis we care about (individual, city, county, state, country, etc).
- Time is a typical application, but applies to other groupings:
 - counties within states
 - states within countries
 - people within professions
Nomenclature

Names are used in different ways across fields but generally:

- **Panel data**: large n, relatively short T
- **Time series, cross-sectional (TSCS) data**: smaller n, large T
- We are primarily going to focus on similarities today but there are some differences.
A Baseline Linear Model

\[y_{it} = x_{it}' \beta + a_i + u_{it} \]

- \(x_{it} \) is a vector of (possibly time-varying) covariates
- \(a_i \) is an unobserved time-constant unit effect ("fixed effect")
- \(u_{it} \) are the unobserved time-varying "idiosyncratic" errors
- \(v_{it} = a_i + u_{it} \) is the combined unobserved error:
 \[y_{it} = x_{it}' \beta + v_{it} \]

- Covers the case of separable, linear unmeasured confounding.

We will start by considering performance of estimators assuming this model is true.
Naive Strategy: Pooled OLS

- **Pooled OLS**: pool all observations into one regression
- Treats all unit-periods (each \(it \)) as an iid unit.
- Has two problems:
 1. Heteroskedasticity (see clustering from diagnostics week)
 2. Possible violation of zero conditional mean errors
- Both problems arise out of ignoring the unmeasured heterogeneity inherent in \(a_i \)
Pooled OLS with Ross data

```r
pooled.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur),
                data = ross)
summary(pooled.mod)
```

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| Intercept 9.76405 | 0.34491 | 28.31 | <2e-16 *** |
| democracy -0.95525 | 0.06978 | -13.69 | <2e-16 *** |
| log(GDPcur) -0.22828 | 0.01548 | -14.75 | <2e-16 *** |

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.7948 on 646 degrees of freedom
(5773 observations deleted due to missingness)
Multiple R-squared: 0.5044, Adjusted R-squared: 0.5029
F-statistic: 328.7 on 2 and 646 DF, p-value: < 2.2e-16
Unmeasured Heterogeneity

- Assume that zero conditional mean error holds for the idiosyncratic error:
 \[\mathbb{E}[u_{it}|X] = 0 \]

- But time-constant effect, \(a_i \), is correlated with the \(X \):
 \[\mathbb{E}[a_i|X] \neq 0 \]

- Example: democratic institutions correlated with time-invariant unmeasured aspects of health outcomes, like quality of health system or a lack of ethnic conflict.

- Ignore the heterogeneity \(\rightsquigarrow \) correlation between the combined error and the independent variables:
 \[\mathbb{E}[v_{it}|X] = \mathbb{E}[a_i + u_{it}|X] \neq 0 \]

- Pooled OLS will be biased and inconsistent because zero conditional mean error fails for the combined error.
Set Up

Differencing Models

Difference-in-Differences

Fixed Effects

Non-parametric Identification and Fixed Effects

(Almost) Twenty Questions
 - Review
 - Topics Beyond the Course
 - Research Practice
 - Opinions and Musings

Concluding Thoughts for the Course

Appendix: Why Does Weighting Work?
First Differencing

- First approach: compare changes over time as opposed to levels
- Intuitively, the levels include the unobserved heterogeneity, but changes over time should be free of time-invariant heterogeneity
- Two time periods:
 \[y_{i1} = x'_{i1}\beta + a_i + u_{i1} \]
 \[y_{i2} = x'_{i2}\beta + a_i + u_{i2} \]
- Look at the change in \(y \) over time:
 \[
 \Delta y_i = y_{i2} - y_{i1} \\
 = (x'_{i2}\beta + a_i + u_{i2}) - (x'_{i1}\beta + a_i + u_{i1}) \\
 = (x'_{i2} - x'_{i1})\beta + (a_i - a_i) + (u_{i2} - u_{i1}) \\
 = \Delta x'_{i}\beta + \Delta u_i
 \]
First Differences Model

$$\Delta y_i = \Delta x'_i \beta + \Delta u_i$$

- Coefficient on the levels x_{it} is the same as the coefficient on the changes Δx_i!
- fixed effect/unobserved heterogeneity, a_i drops out (relies on unobserved component being constant over time!)
- If $E[u_{it}|X] = 0$, then, $E[\Delta u_i|\Delta X] = 0$ and zero conditional mean error holds.
- Due to ‘no perfect collinearity’: x_{it} has to change over time for some units. High variance if its slow moving.
- Differencing will reduce the variation in the independent variables and thus increase standard errors.
library(plm)

fd.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross,
 index = c("id", "year"), model = "fd")
summary(fd.mod)

Oneway (individual) effect First-Difference Model
##
Call:
plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),
data = ross, model = "fd", index = c("id", "year"))
##
Unbalanced Panel: n=166, T=1-7, N=649
##
Residuals :
Min. 1st Qu. Median 3rd Qu. Max.
-0.9060 -0.0956 0.0468 0.1410 0.3950
##
Coefficients :
Estimate Std. Error t-value Pr(>|t|)
(intercept) -0.149469 0.011275 -13.2567 < 2e-16 ***
democracy -0.044887 0.024206 -1.8544 0.06429 .
log(GDPcur) -0.171796 0.013756 -12.4886 < 2e-16 ***
##
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1
##
Total Sum of Squares: 23.545
Residual Sum of Squares: 17.762
R-Squared : 0.24561
Adj. R-Squared : 0.24408
F-statistic: 78.1367 on 2 and 480 DF, p-value: < 2.22e-16
1 Set Up

2 Differencing Models

3 Difference-in-Differences

4 Fixed Effects

5 Non-parametric Identification and Fixed Effects

6 (Almost) Twenty Questions
 • Review
 • Topics Beyond the Course
 • Research Practice
 • Opinions and Musings

7 Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?
Motivation: Studying the Minimum Wage

By David Card and Alan B. Krueger

On April 1, 1992, New Jersey's minimum wage rose from $4.25 to $5.05 per hour. To evaluate the impact of the law we surveyed 410 fast-food restuarants in New Jersey and eastern Pennsylvania before and after the rise. Comparisons of employment growth at stores in New Jersey and Pennsylvania (where the minimum wage was constant) provide simple estimates of the effect of the higher minimum wage. We also compare employment changes at stores in New Jersey that were initially paying high wages (above $5) to the changes at lower-wage stores. We find no indication that the rise in the minimum wage reduced employment. (JEL J30, J23)

- Economics conventional wisdom: higher minimum wages decrease low-wage jobs.
- Card and Krueger (1994) study a 1992 New Jersey minimum wage increase ($4.25 to $5.05).
- Idea: compare employment rates in 410 fast-food restaurants in New Jersey and eastern Pennsylvania (where there wasn’t a wage increase) both before and after the change.
- Based on survey data:
 - Wave 1: March 1992, one month before the minimum wage increased
 - Wave 2: December 1992, eight months after increase
Difference-in-Differences

- Often called “diff-in-diff” (DiD), it is a special kind of FD model
- Let x_{it} be an indicator of a unit being “treated” at time t.
- Focus on two-periods where:
 - $x_{i1} = 0$ for all i
 - $x_{i2} = 1$ for the “treated group”
- Assume the model:
 $$y_{it} = \beta_0 + \delta_0 d_t + \beta_1 x_{it} + a_i + u_{it}$$
 - d_t is a dummy variable for the second time period
 - $d_2 = 1$ and $d_1 = 0$
 - β_1 is the quantity of interest: it’s the effect of being treated
Let’s take differences:

\[(y_{i2} - y_{i1}) = \delta_0(1 - 0) + \beta_1(x_{i2} - x_{i1}) + (a_i - a_i) + (u_{i2} - u_{i1})\]

\[(y_{i2} - y_{i1}) = \delta_0 + \beta_1(x_{i2} - x_{i1}) + (u_{i2} - u_{i1})\]

This represents

- \(\delta_0\): the difference in the average outcome from period 1 to period 2 in the untreated group
- \((x_{i2} - x_{i1}) = 1\) for the treated group and 0 for the control group
- \(\beta_1\) represents the additional change in \(y\) over time (on top of \(\delta_0\)) associated with being in the treatment group.
Define $D = 1$ when $x_{i2} - x_{i1} = 1$ and 0 otherwise.
Identification with Difference-in-Differences

Identification Assumption (parallel trends)

\[E[Y_0(1) - Y_0(0) | D = 1] = E[Y_0(1) - Y_0(0) | D = 0] \]

Identification Result

Given parallel trends the ATT is identified as:

\[
E[Y_1(1) - Y_0(1) | D = 1] = \left\{ E[Y(1) | D = 1] - E[Y(1) | D = 0] \right\} - \left\{ E[Y(0) | D = 1] - E[Y(0) | D = 0] \right\}
\]
Identification with Difference-in-Differences

Identification Assumption (parallel trends)

\[E[Y_0(1) - Y_0(0)|D = 1] = E[Y_0(1) - Y_0(0)|D = 0] \]

Proof.

Note that the identification assumption implies

\[E[Y_0(1)|D = 0] = E[Y_0(1)|D = 1] - E[Y_0(0)|D = 1] + E[Y_0(0)|D = 0] \]

plugging in we get

\[
\begin{align*}
\{ E[Y(1)|D = 1] - E[Y(1)|D = 0] \} & - \{ E[Y(0)|D = 1] - E[Y(0)|D = 0] \} \\
= & \{ E[Y_1(1)|D = 1] - E[Y_0(1)|D = 0] \} - \{ E[Y_0(0)|D = 1] - E[Y_0(0)|D = 0] \} \\
= & \{ E[Y_1(1)|D = 1] - (E[Y_0(1)|D = 1] - E[Y_0(0)|D = 1] + E[Y_0(0)|D = 0]) \} \\
- & \{ E[Y_0(0)|D = 1] - E[Y_0(0)|D = 0] \} \\
= & E[Y_1(1) - Y_0(1)|D = 1] + \{ E[Y_0(0)|D = 1] - E[Y_0(0)|D = 0] \} \\
- & \{ E[Y_0(0)|D = 1] - E[Y_0(0)|D = 0] \} \\
= & E[Y_1(1) - Y_0(1)|D = 1]
\end{align*}
\]
Difference-in-Differences Interpretation

- Key idea: comparing the changes over time in the control group to the changes over time in the treated group.
- The differences between these differences is our estimate of the causal effect:

\[
\beta_1 = \Delta y_{\text{treated}} - \Delta y_{\text{control}}
\]

- Why more credible than simply looking at the treatment/control differences in period 2?
 - Unmeasured reasons why the treated group has higher or lower outcomes than the control group
 - \(\sim \) bias due to violation of zero conditional mean error
 - DiD estimates the bias using period 1 and corrects for it.
- DiD works for additive and time-invariant confounding (i.e. satisfies parallel trends)
Does Indiscriminate Violence Incite Insurgent Attacks?

Evidence from Chechnya

Jason Lyall
Department of Politics and the Woodrow Wilson School
Princeton University, New Jersey
Example: Lyall (2009)

- Does Russian shelling of villages cause insurgent attacks?

\[\text{attacks}_{it} = \beta_0 + \beta_1 \text{shelling}_{it} + a_i + u_{it} \]

- We might think that artillery shelling by Russians is targeted to places where the insurgency is the strongest.

- That is, part of the village fixed effect, \(a_i \) might be correlated with whether or not shelling occurs, \(x_{it} \).

- This would cause our pooled estimates to be biased.

- Instead Lyall takes a diff-in-diff approach: compare attacks over time for shelled and non-shelled villages:

\[\Delta \text{attacks}_i = \beta_0 + \beta_1 \Delta \text{shelling}_i + \Delta u_i \]

- Counterintuitive findings: shelled villages experience a 24% reduction in insurgent attacks relative to controls.
Example: Card and Krueger (2000)

- Do increases to the minimum wage depress employment at fast-food restaurants?

\[\text{employment}_{it} = \beta_0 + \beta_1 \text{minimum wage}_{it} + a_i + u_{it} \]

- Each \(i \) here is a different fast food restaurant in either New Jersey or Pennsylvania

- Between \(t = 1 \) and \(t = 2 \) NJ raised its minimum wage

- Employment in fast food might be driven by other state-level policies correlated with minimum wage

- Diff-in-diff approach: regress changes in employment on store being in NJ

\[\Delta \text{employment}_{i} = \beta_0 + \beta_1 NJ_i + \Delta u_i \]

- \(NJ_i \) indicates which stores received the treatment of a higher minimum wage at time period \(t = 2 \)
Parallel Trends?

![Graph showing parallel trends for FTE employment in New Jersey and Pennsylvania over time. The graph displays the number of full-time equivalent employees on the y-axis and time on the x-axis. The data points for New Jersey are represented by red circles, and the data points for Pennsylvania are represented by blue squares. The lines connecting the data points for each state are parallel, indicating that there are no significant differences in the trend of FTE employment between the two states.]
Parallel Trends?

The chart illustrates the FTE Employment over time for New Jersey and Pennsylvania. The x-axis represents time, while the y-axis shows FTE Employment. The chart shows a comparison between the two states, with New Jersey represented by red dots and Pennsylvania by blue squares.

The trend lines for both states appear to be parallel, suggesting that there is no discernible difference in the trend of FTE Employment between the two states over the time period represented in the chart.
First two vertical lines indicate the dates of the Card-Krueger survey. October 1996 line is the federal minimum wage hike which was binding in PA but not NJ.
Threats to Identification

1) Failure of Exogeneity
 Treatment needs to be independent of the idiosyncratic shocks:
 \[\mathbb{E}[(u_{i2} - u_{i1})|x_{i2}] = 0 \]

2) Non-parallel dynamics
 variation in the outcome over time is the same for the treated and control groups (i.e. no omitted time-varying confounders). e.g. Ashenfelter’s dip: people who enroll in job training programs see their earnings decline prior to that training (presumably why they are entering)

3) Changes in Composition of Treatment/Control Groups
 we don’t want composition of sample to change between periods. what if workers move from eastern PA to NJ in search of higher paying jobs?

4) Long-term vs. Short-term Effects
 parallel trends are less credible over a long time horizon, but many policies need time to take effect.
5) Functional Form Dependence

- difference in levels and difference in logs can be quite different (example via Justin Grimmer)
 - imagine a training program for the young
 - employment for the young increases from 20% to 30%
 - employment for the old increases from 5% to 10%
 - positive DiD effect: $(30 - 20) - (10 - 5) = 5$
 - but if you consider log changes:
 \[
 \log(30) - \log(20) - [\log(10) - \log(5)] = \log(1.5) - \log(2) < 0
 \]
 - how do we tell which (if either) yields parallel trends?

6) Endogenous Control Variables

- can add (time-varying) covariates to help with some of above concerns
 - “regression diff-in-diff”
 \[
 y_{i2} - y_{i1} = \delta_0 + z_i'\tau + \beta(x_{i2} - x_{i1}) + (u_{i2} - u_{i1})
 \]
 - but need to be careful that they aren’t affected by the treatment.
Concluding Thoughts on Panel Differencing Models

- Useful toolkit for leveraging panel data, often quite straightforward to explain to people
- Be cautious of assumptions required
 - parallel trends assumptions are most likely to hold over a shorter time-window. Impossible to test.
 - can conduct placebo tests which can build confidence, but hard to provide definitive evidence.
 - some approaches use placebos to correct bias (DDD), but this is just a difference assumption.
- Two questions to ask:
 1. ‘what is the counterfactual?’ or
 2. ‘what variation is used to identify this effect?’
- Personal Gripe: ‘Two-way Fixed Effects’ models often called a DiD or Generalized-DiD design but the parallel trend assumptions are different in important ways.
Set Up

Differencing Models

Difference-in-Differences

Fixed Effects

Non-parametric Identification and Fixed Effects

(Almost) Twenty Questions
- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings

Concluding Thoughts for the Course

Appendix: Why Does Weighting Work?
Basic Model Review

\[y_{it} = x'_{it}\beta + a_i + u_{it} \]

- Recall our standard linear model with unobserved time-invariant confounding
- We discussed a **differencing** approach to this model
- The **Fixed effects model** is an alternative way to remove time-invariant unmeasured confounding
- We will start by assuming the model and discussing properties and in the next section, we will consider non-parametric identification.
Fixed Effects Models

- Core idea is to focus on **within-unit comparisons**: changes in y_{it} and x_{it} relative to their within-group means.
- First note that taking the average of the y’s over time for a given unit leaves us with a very similar model:

$$
\bar{y}_i = \frac{1}{T} \sum_{t=1}^{T} [x'_{it}\beta + a_i + u_{it}]
$$

$$
= \left(\frac{1}{T} \sum_{t=1}^{T} x'_{it} \right) \beta + \frac{1}{T} \sum_{t=1}^{T} a_i + \frac{1}{T} \sum_{t=1}^{T} u_{it}
$$

$$
= \bar{x}'_i \beta + a_i + \bar{u}_i
$$

- Key fact: because it is **time-constant** the mean of a_i is just a_i.
- This regression is sometimes called the “between regression”.

Stewart (Princeton)

Week 12: Repeated Observations

December 10 and 12, 2018
Within Transformation

- The “fixed effects,” “within,” or “time-demeaning” transformation is when we subtract off the over-time means from the original data:

\[(y_{it} - \bar{y}_i) = (x'_{it} - \bar{x}'_i)\beta + (u_{it} - \bar{u}_i)\]

- If we write \(\ddot{y}_{it} = y_{it} - \bar{y}_i\), then we can write this more compactly as:

\[\ddot{y}_{it} = \ddot{x}'_{it}\beta + \ddot{u}_{it}\]

- Degrees of freedom: \(nT - n - k - 1\), which accounts for within transformation (i.e. either use a package like plm or adjust the degrees of freedom manually).

- We are now modeling observations as deviation from their group mean.

- NB: you must demean the \(X\) variables not just the \(Y\) variables.
Fixed Effects with Ross data

fe.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross, index = c("id", "year"),
model = "within")
summary(fe.mod)

Oneway (individual) effect Within Model
##
Call:
plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),
data = ross, model = "within", index = c("id", "year"))
##
Unbalanced Panel: n=166, T=1-7, N=649
##
Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-0.70500 -0.11700 0.00628 0.12200 0.75700
##
Coefficients:
Estimate Std. Error t-value Pr(>|t|)
democracy -0.143233 0.033500 -4.2756 2.299e-05 ***
log(GDPcur) -0.375203 0.011328 -33.1226 < 2.2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
Total Sum of Squares: 81.711
Residual Sum of Squares: 23.012
R-Squared: 0.71838
Adj. R-Squared: 0.53242
F-statistic: 613.481 on 2 and 481 DF, p-value: < 2.22e-16
Strict Exogeneity

- FE models are valid if $E[u|X] = 0$: all errors are uncorrelated with covariates in every period:

$$E[\bar{u}_{it} | \bar{X}] = E[u_{it} | \bar{X}] - E[\bar{u}_i | \bar{X}] = 0 - 0 = 0$$

- This is because the composite errors, \bar{u}_{it} are function of the errors in every time period through the average, \bar{u}_i

- This rules out, for instance, lagged dependent variables, since $y_{i,t-1}$ has to be correlated with $u_{i,t-1}$. Thus it can’t be a covariate for y_{it}.
What if there is a covariate that doesn't vary over time?
Then \(x_{it} = \bar{x}_i \) and \(\dot{x}_{it} = 0 \) for all periods \(t \).
If the time-demeaned covariate is always 0, then it will be perfectly collinear with the intercept and will violate full rank. R/Stata and the like will drop it from the regression.

Basic message: any time-constant variable gets “absorbed” by the fixed effect. It has nothing to contribute because the comparison is within the units.

Can include interactions between time-constant and time-varying variables, but lower order term of the time-constant variables get absorbed by fixed effects too.
Time-constant variables

- Pooled model with a time-constant variable, proportion Islamic:

```r
library(lmtest)
p.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam,
          data = ross, index = c("id", "year"), model = "pooling")
coeftest(p.mod)
```

```r
##
## t test of coefficients:
##
##               Estimate Std. Error t value  Pr(>|t|)  
## (Intercept)  10.306078   0.359520 28.6663 < 2.2e-16 ***
## democracy   -0.802338   0.077668 -10.3303 < 2.2e-16 ***
## log(GDPcur)  -0.254974   0.016071 -15.8659 < 2.2e-16 ***
## islam        0.003433   0.000910   3.7709  0.000179 ***
##               ---
## Signif. codes:  0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
```
Time-constant variables

- FE model, where the islam variable drops out, along with the intercept:

```r
fe.mod2 <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam,
              data = ross, index = c("id", "year"), model = "within")
coeftest(fe.mod2)

##
## t test of coefficients:
##
##                               Estimate Std. Error  t value Pr(>|t|)
## democracy                   -0.129693   0.035865  -3.6162 0.0003332 ***
## log(GDPcur)                  -0.379997   0.011849 -32.0707 < 2.2e-16 ***
## ---                           
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
```
Alternate Computation: Least Squares Dummy Variable

As an alternative to the within transformation, we can also include a series of \(n - 1 \) dummy variables for each unit:

\[
y_{it} = \mathbf{x}_{it}' \beta + d_{i}^{(1)} \alpha_1 + d_{i}^{(2)} \alpha_2 + \cdots + d_{i}^{(n)} \alpha_n + u_{it}
\]

Here, \(d_{i}^{(1)} \) is a binary variable which is 1 if \(i = 1 \) and 0 otherwise—just a unit dummy.

Gives the exact same estimates/standard errors as with time-demeaning

- Advantage: easy to implement in base R (so is the de-meaning but you have to recompute standard errors by changing the degrees of freedom manually).
- Disadvantage: computationally difficult with large data sets, since we have to run a regression with \(n + k \) variables.

Why are these equivalent? (remember partialing out strategy and Frisch-Waugh-Lovell theorem)
Example with Ross data

```r
library(lmtest)
lsdv.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur) +
               as.factor(id), data = ross)
coeftest(lsdv.mod)[1:6,]
coeftest(fe.mod)[1:2,]
```

```
##            Estimate Std. Error   t value  Pr(>|t|)
## (Intercept) 13.7644887  0.26597312  51.751427 1.008329e-198
## democracy   -0.1432331  0.03349977  -4.275644 2.299393e-05
## log(GDPcur)  -0.3752030  0.01132772  -33.122568 3.494887e-126
## as.factor(id)AGO  0.2997206  0.16767730   1.787485 7.448861e-02
## as.factor(id)ALB -1.9309618  0.19013955  -10.155498 4.392512e-22
## as.factor(id)ARE -1.8762909  0.17020738  -11.023558 2.386557e-25

##            Estimate Std. Error   t value  Pr(>|t|)
## democracy   -0.1432331  0.03349977  -4.275644 2.299393e-05
## log(GDPcur)  -0.3752030  0.01132772  -33.122568 3.494887e-126
```
Key assumptions:
- Strict exogeneity: $E[u_{it}|X, a_i] = 0$
- Time-constant unmeasured heterogeneity, a_i

Together \implies fixed effects and first differences are unbiased and consistent

With $T = 2$ the estimators produce identical estimates, but not more generally although they have the same target estimand.

So which one is better when $T > 2$? Which one is more efficient?
- if u_{it} uncorrelated \rightsquigarrow FE is more efficient
- if $u_{it} = u_{i,t-1} + e_{it}$ with e_{it} iid (random walk) \rightsquigarrow FD is more efficient.

In between, not clear which is better (although if using FD, the errors are serially correlated and need correction).

Large differences between FE and FD should make us worry about assumptions.

Note that when the second dimension isn’t time, fixed effects will be relevant more often.
Set Up

Differencing Models

Difference-in-Differences

Fixed Effects

Non-parametric Identification and Fixed Effects

(Almost) Twenty Questions

Review
Topics Beyond the Course
Research Practice
Opinions and Musings

Concluding Thoughts for the Course

Appendix: Why Does Weighting Work?
Moving Beyond Linear Separable Confounding

- One reason we like DAGs is that the identification results don’t have to start with a statement like, assume the following linear model:

\[y_{it} = x'_{it} \beta + a_i + u_{it} \]

- What assumptions have we made so far?
 - constant effects
 - linearity
 - strict exogeneity

- We’ve seen the trouble with constant effects before, it goes back to Lecture 10 and results on regression with heterogenous treatment effects more generally.
Another assumption we have been making is that our interest is in a single contemporaneous effect: $x_{it}^\prime \beta$

What if we want to consider the history of a treatment or the effect of a treatment regime (i.e. a treatment that varies over time)?

Opens up new estimands, but have to think about how time-varying confounders affect treatment assignment.

Examples of static and dynamic causal inference problems:
Core Conundrum

There is a (possibly irresolvable) tension: modeling causal dynamics between treatment and outcomes OR addressing unobserved time-invariant confounders. Three great recent papers:

- A Framework for Dynamic Causal Inference in Political Science
 - Matthew Blackwell
 - University of Rochester

 Dynamic strategies are an essential part of politics. In the context of campaigns, for example, candidates continuously readapt their campaign strategy in response to polls and opponent actions. Traditional causal inference methods, however, assume that these dynamic decisions are made all at once, an assumption that forces a choice between behavioral bias and post-treatment bias. Thus, these methods are called "single-shot." Causal inference methods are inappropriate for dynamic processes like campaigns. I resolve this dilemma by shaping models from heterogeneity, thereby preserving a holistic framework for dynamic causal inference. I thus use the method to estimate the effects of an intensive campaign process on a candidate's decision to "Jump." Testing on U.S. national elections (1980-2016), I find, in contrast to the previous literature, that, while negative advertising is an effective strategy for newcomers, I also describe an out of sample approach to sensitivity analysis.

- How to Make Causal Inferences with Time-Series Cross-Sectional Data under Selection on Observables
 - Matthew Blackwell
 - Harvard University
 - Adam N. Glynn
 - Emory University

 R
c
 Iterated measurements of the same countries, people, or groups over time are key to many fields of political science. These measurement error is sometimes called time-varying contextual (TVC) bias. We discuss various methods to control for time-varying contextual bias and direct effects of lagged treatments. Unfortunately, popular methods for TVC data can produce misleading results when lagged effects underlie strong assumptions. In this paper, we present an approach that considers causal quantities of interest in these settings and clarifies how well-identified models like the autoregressive distributed lag model can produce biased estimates because their control assumptions due to post-treatment conditions. We then describe two estimation strategies that avoid these post-treatment biases—inverse propensity weighting and structural nested means models—and show the simulations that they can capture form standard approaches in small sample settings. We illustrate these methods in a study of how welfare spending affects immigration.

- When Should We Use Unit Fixed Effects Regression Models for Causal Inference with Longitudinal Data?
 - Koosuke Imai
 - In Song Kim

 Forthcoming in American Journal of Political Science

INTRODUCTION

Many inquiries in political science involve the study of repeated measurements of the same countries, people, or groups at several points in time. This type of data, sometimes called time-series cross-sectional (TSCS) data, is common in political science. The response of the treatment to changes in one dimension (country, person, or group, etc.) is measured at several points in time. Unit fixed effects (UFE) regression models have been proposed as a result of this. UFE models also have desirable properties that make them a popular choice for researchers. However, they do not take into account the temporal correlation of the time points, which can lead to underestimation of the causal effects.

The causal effects of time-varying interventions (TVI) are often of interest in political science. TVI interventions can be interventions that vary over time, such as changes in government policies or changes in political leadership. In political science, TVI interventions are often of interest because they can have immediate and long-term effects on the outcomes of interest. For example, a change in government policy can affect the political landscape in a country, which can have long-lasting effects on political outcomes.

There are various methods to estimate the causal effects of time-varying interventions. These methods can be classified into two main categories: fixed effects and structural nested mean models (SNMMs). Fixed effects models control for time-invariant unobservables by including time-varying control variables. SNMMs, on the other hand, assume a structural form for the outcomes and control for time-invariant unobservables. These methods are computationally intensive and require careful specification of the structural form of the outcomes.

One of the key assumptions of fixed effects models is that the treatment is not related to the outcome at the same time point. This assumption is often violated in the real world, leading to biased estimates. SNMMs, on the other hand, control for time-invariant unobservables by including time-varying control variables.

The main contribution of this paper is to provide a framework for estimating causal effects of time-varying interventions. We focus on two methods: (1) structural nested mean models or SNMMs (Robins 1997) and (2) marginalized structural models (MSMs) with inverse probability of treatment weighting (IPTW). We also provide a comparison of these methods and discuss their strengths and weaknesses.

Our primary contribution is to provide an introduction to two methods that can estimate the causal effects of time-varying interventions. We focus on two methods that control for time-invariant unobservables: (1) structural nested mean models (SNMMs) and (2) marginalized structural models (MSMs) with inverse probability of treatment weighting (IPTW). These methods are computationally intensive and require careful specification of the structural form of the outcomes.

We are going to focus on addressing unobserved time-invariant confounders using the last paper.

Next several slides are based on slides graciously provided by In Song Kim and Koosuke Imai.

Stewart (Princeton)
Directed Acyclic Graph (DAG)

Non-parametric identification assumptions for fixed effects:

\[Y_{it} = g(X_{it}, U_i, \epsilon_{it}) \quad \text{and} \quad \epsilon_{it} \perp \perp \{X_i, U_i\} \]

Assumptions:

1. No unobserved time-varying confounders
2. Past outcomes do not directly affect current outcome
3. Past outcomes do not directly affect current treatment
4. Past treatments do not directly affect current outcome
the result implies that the counterfactual outcome for a treated observation in a given time period is estimated using the observed outcomes of different time periods of the same unit. Since such a comparison is valid only when no causal dynamics exist, this finding underscores the important limitation of linear regression models with unit fixed effects.

- Imai and Kim (Forthcoming)
What Ideal Experiment Corresponds to the Fixed Effects Model?

- Experiment that satisfies the model assumptions:
 1. randomize X_{i1} given U_i
 2. randomize X_{i2} given X_{i1} and U_i
 3. randomize X_{i3} given $X_{i2}, X_{i1},$ and U_i
 4. and so on

- Experiment that does not satisfy the model assumptions:
 1. randomize X_{i1}
 2. randomize X_{i2} given X_{i1} and Y_{i1}
 3. randomize X_{i3} given $X_{i2}, X_{i1}, Y_{i1},$ and Y_{i2}
 4. and so on

- Now let’s consider each assumption in turn.
Past Outcomes Don’t Directly Affect Current Outcome

- Strict exogeneity still holds.
- Past outcomes do not confound $X_{it} \rightarrow Y_{it}$ given U_i.
- No need to adjust for past outcomes.
- Should use cluster robust standard errors for inference.

Conclusion: The assumption can be relaxed.
Past Treatments Don’t Directly Affect Current Outcome

- Need to adjust for past treatments
- Strict exogeneity holds given past treatments and U_i
- Impossible to adjust for an entire treatment history and U_i at the same time
- Adjust for a small number of past treatments \sim often arbitrary
- Conclusion: The assumption can be partially relaxed
Past Outcomes Don’t Directly Affect Current Treatment

- Correlation between error term and future treatments
- Violation of strict exogeneity
- No adjustment is sufficient
- Implication: No dynamic causal relationships between treatment and outcome variables
- Conclusion: The assumption cannot be relaxed
Can’t We Just Adjust for Time-Varying Confounders?

\[Y_{it} = \alpha_i + \beta X_{it} + \gamma^\top Z_{it} + \epsilon_{it} \]

- past outcomes cannot directly affect current treatment
- past outcomes cannot indirectly affect current treatment through \(Z_{it} \)
But What If I Have Causal Dynamics?

- Absence of unobserved time-invariant confounders U_i
- Past treatments can directly affect current outcome
- Past outcomes can directly affect current treatment

- Comparison across units within the same time rather than across different time periods within the same unit
- Can identify the average effect of an entire treatment sequence
- Trade-off \Rightarrow no free lunch
Imai and Kim (Forthcoming) offer a matching framework for fixed effects models which exploits an equivalence to weighted unit fixed effects estimators (see \texttt{wfe} package in \texttt{R} as well).

The paper clarifies assumptions for fixed effects and first difference estimators.

Follow-up working paper by Imai, Kim and Wang extends to two-way fixed effects estimator.

Tradeoff:
1) unobserved time-invariant confounders \leadsto fixed effects
2) causal dynamics between treatment and outcome \leadsto selection-on-observables
1. Set Up
2. Differencing Models
3. Difference-in-Differences
4. Fixed Effects
5. Non-parametric Identification and Fixed Effects
6. (Almost) Twenty Questions
 - Review
 - Topics Beyond the Course
 - Research Practice
 - Opinions and Musings
7. Concluding Thoughts for the Course
8. Appendix: Why Does Weighting Work?
Q: What conditions do we need to infer causality?

A: A clear estimand, an identification strategy and an estimation strategy.
Identification Strategies in This Class

- Experiments (ignorability via randomization)
- Selection on Observables (conditional ignorability)
- Natural Experiments (ignorability via quasi-randomization)
- Instrumental Variables (instrument + exclusion restriction)
- Regression Discontinuity (continuity assumption)
- Difference-in-Differences (parallel trends)
- Fixed Effects (time-invariant unobserved heterogeneity, strict ignorability)

Essentially everything assumes: consistency/SUTVA (no interference between units, variation in the treatment is irrelevant) and positivity (there is some chance of all getting treatment)
Some Estimation Strategies

- Stratification
- Regression (and relatives)
- Matching (not covered)
- Weighting (not covered)
Q: Can you review how to read DAGs?
A: Sure²

²Courtesy of Erin Hartman’s slides for this.
DAGs encode non-parametric structural models.

\[X = f_X(U) \]

\[Y = f_Y(X, U) \]
A path p is blocked by a set of nodes Z if and only if:

1. p contains a chain of nodes $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ such that the middle node B is in Z or
2. p contains a collider $A \rightarrow B \leftarrow C$ such that the collision node B is not in Z and no descendant of B is in Z

If Z blocks every path between two nodes X and Y, then X and Y are d-separated, conditional on Z, and thus are conditionally independent given Z.
Q: Can you review how instrumental variables deal with issues of confounding?

A: We use only the units whose treatment status was effectively randomized by the instrument (because they are compliers).
Q: What are degrees of freedom and how do they play into standard errors?

A: Let’s consider the anatomy of a standard error.
Anatomy of the Standard Error

Imagine we have a regression of Y on a variable of interest X and a vector of other variables Z.

\[
\hat{\text{Var}}(\hat{\beta}_X) = \frac{1}{(n-k-1)} \sum_{i=1}^{n} \hat{u}_i^2 \\
(1 - R^2_{X \sim Z}) \sum_{i=1}^{n} (X_i - \bar{X})^2
\]

- the numerator is our estimator for σ_u^2 the unknown error variance. It is formed by the degrees of freedom correction times the sum of the squared residuals.
- the denominator includes one minus the R^2 from the regression of X_i on Z_i
- we complete the denominator by multiplying a measure of the variation in X_i, the sum of squared deviations from the mean.

\[
\hat{\text{SE}}(\hat{\beta}_X) = \sqrt{\hat{\text{Var}}(\hat{\beta}_X)}
\]
Q: When conducting an experiment, should we avoid OLS and always go for difference in means?

A: Regression adjustment of experiments can be helpful for improving precision. We don’t need it for confounding, but it can improve our standard errors to adjust for pre-treatment covariates that are highly predictive of the output. If done correctly and in moderate-to-large samples, this can dramatically improve your standard errors. Even better though is blocking which is adjustment by design.

Further Reading:

Set Up

Differencing Models

Difference-in-Differences

Fixed Effects

Non-parametric Identification and Fixed Effects

(Across) Twenty Questions
 - Review
 - Topics Beyond the Course
 - Research Practice
 - Opinions and Musings

Concluding Thoughts for the Course

Appendix: Why Does Weighting Work?
Q: Can you discuss the difference between having an instrument and having a mediator?

A: If we think of the treatment as the mediator of the instrument, it is by the exclusion restriction a total mediator (the direct effect is 0).
Q: How do propensity scores and matching fit into all of this?

A: They are different ways of conditioning on variables in a selection on observables strategy. Importantly: they are tools for estimation not tools for identification.
Propensity Score as a Low-Dimensional Summary

- **Summary:** The propensity score is the probability of treatment given some covariates X.
- Stratification is hard when X has many dimensions.
- **Curse of dimensionality:** there will be very few, if any, units in a given stratum of X_i.
- We can instead stratify on a low-dimensional summary, the propensity score:

$$e(x) = \mathbb{P}[D_i = 1 | X_i = x]$$

- Rosenbaum and Rubin (1983) showed that:

$$D_i \perp \! \! \! \perp (Y_i(0), Y_i(1)) | X_i \implies D_i \perp \! \! \! \perp (Y_i(0), Y_i(1)) | e(X_i)$$

- \implies stratifying on e_i is the same in expectation as stratifying on the full X_i.
- The true propensity score is actually a balancing score, which means that $D_i \perp X_i | e(X_i)$.
Propensity score specifics

- What variables do we include in the propensity score model?
 - Any set of variables that blocks all the backdoor paths from D_i to Y_i.
- Check balance within strata of \hat{e}_i. Covariates should be balanced:
 \[
 f(X_i|D_i = 1, \hat{e}_i) = f(X_i|D_i = 0, \hat{e}_i)
 \]
- Can also use automated/nonparametric tools for estimating \hat{e}_i.
- How do we use propensity scores?
 - Propensity score can be used in many contexts: weighting, matching, regression or even just stratification.
 - It also shows up in a number of more advanced methods for heterogeneous treatment effects, causal inference in longitudinal data etc.
 - Typically it is a tool to achieve balance.
 - NB: propensity scores only achieve balance in expectation.
Matching as Non-Parametric Preprocessing
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
Three Approaches to Matching

- There are many approaches to matching. We will cover just three for the sake of time.
- This isn’t a statement that these are the best three, just a set which are straightforward to learn.
- Which is the best method? The one that produces the best balance!

Next few slides based on slides by Gary King and Rich Nielsen
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess (Matching)**
 - Distance(X_i, X_j) = $\sqrt{(X_i - X_j)'S^{-1}(X_i - X_j)}$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance > caliper

2. **Checking** Measure imbalance, tweak, repeat, . . .

3. **Estimation** Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess** (Matching)
 - Temporarily coarsen X as much as you’re willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, $C(X)$
 - Sort observations into strata, each with unique values of $C(X)$
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned

2. **Checking**
 - Determine matched sample size, tweak, repeat, . . .
 - Easier, but still iterative

3. **Estimation**
 - Difference in means or a model
 - Need to weight controls in each stratum to equal treateds
Coarsened Exact Matching

Education

Don't trust anyone over 30
The Big 40
Senior Discounts
Retirement
Old
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. **Preprocess (Matching)**
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$
 - Distance(X_i, X_j) = $|\pi_i - \pi_j|$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance > caliper

2. **Checking** Measure imbalance, tweak, repeat, . . .

3. **Estimation** Difference in means or a model
Q: Could you discuss hierarchical models?

A: Sure. Generally speaking, they are a way of borrowing information.
Eight Schools Data

<table>
<thead>
<tr>
<th>School</th>
<th>Est. Effect</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>-3</td>
<td>16</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>9</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>G</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>H</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

Policy Question: What is the effect size in School A?
Eight Schools Background

- ETS analyzes special coaching program on test scores
- 8 separate parallel experiments in different high schools
- Outcome was the score on a special administration of SAT-V with scores varying between 200 and 800 ($\mu = 500, \sigma = 100$)
- SAT is designed to be resistant to short-term efforts intended to boost performance, but each school thought it was a success.
- No prior reason to believe that one program would be more effective than the others
- Treatment effects estimated controlling for PSAT-M and PSAT-V scores
- A bit over the 30 students in each school
- For the sake of scale: an 8-point increase in the score indicates about 1 more test item was answered correctly.

(Analysis is from Rubin 1981, treatment via Gelman et al 2015)
What do we know?

- Unbiased estimate: 28 points
- Hypothesis test fails to reject hypothesis that true effect is the same for all of them
- Should we analyze them all together? All separately?
- It is the “same course” in every school, but they are different schools.
Options for Analysis

There are two clear options:

1. **an unpooled analysis** in which we use separate estimates for every school - in this case directly from the table
 - 2 moderate effects, 4 small effects and 2 small negative effects
 - standard errors are large, 95% intervals overlap substantially

2. **a pooled analysis** that generates a single estimate for all schools
 - assume that all effects are exactly the same
 - we get the single effect size and standard error with inverse variance weighting of the unpooled estimates.

\[
\begin{align*}
\bar{y}_j &= \frac{\sum_{j=1}^{8} \frac{1}{\sigma_j^2} \bar{y}_j}{\sum_{j=1}^{8} \frac{1}{\sigma_j^2}} \\
\sigma^2 &= \left(\sum_{j=1}^{8} \frac{1}{\sigma_j^2} \right)^{-1}
\end{align*}
\]

- the pooled estimate is 7.7 with standard error of 4.1. Thus the confidence interval is \([-0.5, 15.9]\)
Problems with Separate and Pooled Analysis

- The two approaches radically different results for school A: 28.4 (s.e. 14.9) vs. 7.7 (s.e. 4.1)

- Under a Bayesian framework, the separate analysis implies the probability statement “the probability is \(\frac{1}{2}\) that the true effect in A is more than 28.4”

- This seems . . . dubious given the other results (remember we had no reason to believe one school would perform stronger than the others)

- The pooled analysis implies the statement “the probability is \(\frac{1}{2}\) that the true effect in A is less than 7.7”, it also implies that “the probability is \(\frac{1}{2}\) that the true effect in A is less than the true effect in C”

- Again these seem unlikely given the data
Borrowing Information

- We want an estimate that combines information from the 8 experiments without assuming that all the effects are equal.
- Rubin suggests a middle path: a hierarchical model in which we:
 1. assume that each school’s true effect is drawn a Normal distribution with some unknown mean and standard deviation.
 2. assume that the observed effect in each school is sampled from a normal distribution with a mean equal to its true effect and standard deviation given in the table.
- This model contains both the separate and pooled estimates as limiting special cases. If we force the standard deviation of the true effects to be zero, then all school get the same estimate, if we let it go to infinity we get the separate estimates.
The Model

\[\bar{y}_j | \theta_j \sim \text{Normal}(\theta_j, \sigma_j^2) \]
\[\theta_j | \mu, \tau \sim \text{Normal}(\mu, \tau^2) \]
\[p(\mu, \tau) = p(\mu | \tau)p(\tau) \propto p(\tau) \]

Known: \(\bar{y}_j, \sigma_j^2 \)
Unknown: \(\tau, \mu, \theta \)
Some Mechanics

How do the calculations work conditional on some values of the hyperparameters?

The θs are latent variables which have a distribution. In Bayesian statistics we call this the posterior distribution.

$$\theta_j | \mu, \tau, y \sim N(\hat{\theta}_j, V_j)$$

$$\hat{\theta}_j = \frac{\frac{1}{\sigma_j^2} \bar{y}_j + \frac{1}{\tau^2} \mu}{\frac{1}{\sigma_j^2} + \frac{1}{\tau^2}}$$

$$V_j = \frac{1}{\frac{1}{\sigma_j^2} + \frac{1}{\tau^2}}$$
What is Happening?

- We are **borrowing information** between the schools.
- Alternatively, we are **regularizing** estimates of the individual effects towards their grand mean.
- This captures our intuition that while School A might have a larger effect, it is perhaps an overestimate.
- The form shows us that the amount of shrinkage is **relative to our certainty about the estimate** and how much we believe the individual effects matter.
- Our final guess is that the median effect for school A is about 10 points with 50% probability between 7 and 16.
Results
Results
Results

![Graph showing posterior standard deviations vs. tau with multiple curves representing different categories labeled H, A, F, E, G.](image-url)
Results
The Great Thing About Eight Schools

- This is a microcosm of hierarchical modeling
- Works well when we have a decent number of groups and the individual group sample sizes are lowish
- Allows us to capture variability in our treatment effects, variances etc.
- Allows us to model dependence in our error terms
Q: How do we determine power?

A: A combination of the effect size, the variance and the sample size. Unfortunately, only one of which we know. See the DeclareDesign suite of packages for this and so much more!
Q: Could we discuss more examples of missteps/misuses of certain statistical techniques/methods in papers published in prominent journals? I think seeing how other researchers have made mistakes and why mistakes arise could be helpful for diagnosing similar mistakes in our own work?

A: I think the biggest and most frequent mistakes I see are:

- not being clear about the estimand
- mistaking not significant results for a finding of zero effect (need equivalence tests)
- lack of clarity about the counterfactual and common support
Q: When should you pick your statistical strategy? How do you balance pre-planning research / literature reviews with potential problems with data/causal assumptions? How much data exploration should you do up front compared to exploration throughout the question? If you have a causal question or idea but aren't sure of data, how should you go about searching for potential data and making sure assumptions are reasonable?

A: Let’s chat.
Q: What do you believe will be the biggest applications for social statistics in the future?

A: Let’s chat.
Q: What are your favorite resources for learning tricky concepts?

I’ve used the following procedure many times:

1. Identify approx. the best textbook (often can do this via syllabi hunting)
2. Read the relevant textbook material
3. Derive the equations/math
4. Try to explain it to someone else
1 Set Up

2 Differencing Models

3 Difference-in-Differences

4 Fixed Effects

5 Non-parametric Identification and Fixed Effects

6 (Almost) Twenty Questions
 - Review
 - Topics Beyond the Course
 - Research Practice
 - Opinions and Musings

7 Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?
Where are you?

You’ve been given a powerful set of tools
Your New Weapons

- **Basic probability theory**
 - Probability axioms, random variables, marginal and conditional probability, building a probability model
 - Expected value, variances, independence
 - CDF and PDF (discrete and continuous)

- **Properties of Estimators**
 - Bias, Efficiency, Consistency
 - Central limit theorem

- **Univariate Inference**
 - Interval estimation (normal and non-normal Population)
 - Confidence intervals, hypothesis tests, p-values
 - Practical versus statistical significance
Your New Weapons

Simple Regression
- regression to approximate the conditional expectation function
- idea of conditioning
- kernel and loess regressions
- OLS estimator for bivariate regression
- Variance decomposition, goodness of fit, interpretation of estimates, transformations

Multiple Regression
- OLS estimator for multiple regression
- Regression assumptions
- Properties: Bias, Efficiency, Consistency
- Standard errors, testing, p-values, and confidence intervals
- Polynomials, Interactions, Dummy Variables
- F-tests
- Matrix notation
Your New Weapons

- **Diagnosing and Fixing Regression Problems**
 - Non-normality
 - Outliers, leverage, and influence points, Robust Regression
 - Non-linearities and GAMs
 - Heteroscedasticity and Clustering

- **Causal Inference**
 - Frameworks: potential outcomes and DAGs
 - Measured Confounding
 - Unmeasured Confounding
 - Methods for repeated data

- And you learned how to use R: you’re not afraid of trying something new!
Using these Tools

So, Admiral Ackbar, now that you’ve learned how to run these regressions we can just use them blindly, right?
IT'S A TRAP!
Beyond Linear Regressions

You need more training
Beyond Linear Regressions

There is so much more to learn! Take classes, read books!
Thanks!

Thanks so much for an amazing semester.

Fill out your evaluations!
1. Set Up
2. Differencing Models
3. Difference-in-Differences
4. Fixed Effects
5. Non-parametric Identification and Fixed Effects
6. (Almost) Twenty Questions
 - Review
 - Topics Beyond the Course
 - Research Practice
 - Opinions and Musings
7. Concluding Thoughts for the Course
8. Appendix: Why Does Weighting Work?
Weighting with the Propensity Score

Intuition

- Treated and control samples are unrepresentative of the overall population.
- Leads to imbalance in the covariates.
- Reweight them to be more representative.
Survey samples

- Useful to review survey samples to understand the logic
- Finite population: \(\{1, \ldots, N\} \)
- Suppose that we wanted estimate the population mean of \(Y_i \):

\[
\bar{Y}_N = \frac{1}{N} \sum_{i=1}^{N} Y_i
\]

- We have a sample of size \(n \), where \(Z_i = 1 \) indicates that \(i \) is included in the sample.
- Unequal sampling probability: \(\mathbb{P}(Z_i = 1) = \pi_i \)
 - \(\rightsquigarrow \) sample is not representative.
 - \(\sum_{i=1}^{N} \pi_i = n \)
Survey weights

- Sample mean is biased:

\[
\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{N} Z_i Y_i \right] = \frac{1}{n} \sum_{i=1}^{n} \pi_i Y_i
\]

- Inverse probability weighting: To correct, weight each unit by the reciprocal of the probability of being included in the sample: \(Y_i / \pi_i \).

- Horvitz-Thompson estimator is unbiased:

\[
\mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} \frac{Z_i Y_i}{\pi_i} \right] = \frac{1}{N} \sum_{i=1}^{N} \frac{\mathbb{E}[Z_i] Y_i}{\pi_i} = \frac{1}{N} \sum_{i=1}^{N} \frac{\pi_i Y_i}{\pi_i} = \bar{Y}_N
\]

- Reweights the sample to be representative of the population.
Back to causal effects

- With a completely randomized experiment, we can just use the simple differences in means:

\[
E[Y_i|D_i = 1] - E[Y_i|D_i = 0] = E[Y_i(1)] - E[Y_i(0)]
\]

- With no unmeasured confounders, we need to adjust for \(X_i\).

\[
E[Y_i(d)] = E[E[Y_i(d)|X_i]] \\
= \sum_{x \in X} E[Y_i(d)|X_i = x]P(X_i = x) \\
= \sum_{x \in X} E[Y_i(d)|D_i = d, X_i = x]P(X_i = x) \\
= \sum_{x \in X} E[Y_i|D_i = d, X_i = x]P(X_i = x)
\]

- With subclassification, we binned \(X_i\), calculated within-bin differences and then averaged across the bins, just like this.
Searching for the weights

\[\mathbb{E}[Y_i(d)] = \sum_{x \in X} \mathbb{E}[Y_i|D_i = d, X_i = x] \mathbb{P}(X_i = x) \]

- Compare this to the the within treatment group average:

\[\mathbb{E}[Y_i|D_i = d] = \sum_{x \in X} \mathbb{E}[Y_i|D_i = d, X_i = x] \mathbb{P}(X_i = x|D_i = d) \]

\[= \sum_{x \in X} \mathbb{E}[Y_i|D_i = d, X_i = x] \frac{\mathbb{P}(D_i = d|X_i = x) \mathbb{P}(X_i = x)}{\mathbb{P}(D_i = d)} \]

How should we reweight the data from an observational study?

- If we were to reweight the data by \(W_i = 1/\mathbb{P}(D_i = d|X_i) \), then we would break the relationship between \(D_i \) and \(X_i \).
Weights

- Single binary covariate. Define the weight function:

\[
w(d, x) = \frac{1}{e(x)^d(1 - e(x))^{1-d}}
\]

- To get the weight for \(i\), plug in observed treatment, covariate:

\[W_i = w(D_i, X_i)\]

- If \((D_i, X_i) = (1, 1)\):

\[W_i = \frac{1}{e(1)} = \frac{1}{\mathbb{P}(D_i = 1|X_i = 1)}\]

- If \((D_i, X_i) = (0, 0)\):

\[W_i = \frac{1}{1 - e(0)} = \frac{1}{\mathbb{P}(D_i = 0|X_i = 0)}\]
Example

<table>
<thead>
<tr>
<th></th>
<th>$X_i = 0$</th>
<th>$X_i = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_i = 0$</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>$D_i = 1$</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

- $P(D_i = 1|X_i = 0) = 0.5$
- $P(D_i = 1|X_i = 1) = 0.75$
- Weights:

<table>
<thead>
<tr>
<th></th>
<th>$X_i = 0$</th>
<th>$X_i = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_i = 0$</td>
<td>1/0.5</td>
<td>1/0.25</td>
</tr>
<tr>
<td>$D_i = 1$</td>
<td>1/0.5</td>
<td>1/0.75</td>
</tr>
</tbody>
</table>

- Weighted data (the pseudo-population):

<table>
<thead>
<tr>
<th></th>
<th>$X_i = 0$</th>
<th>$X_i = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_i = 0$</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>$D_i = 1$</td>
<td>8</td>
<td>12</td>
</tr>
</tbody>
</table>

- $P(W(D_i = 1|X_i = x) = 0.5$ for all x
Properties of reweighted data

- Let’s calculate the **weighted probability** that \(D_i = 1 \).

\[
\mathbb{P}_W[D_i = 1|X_i = x] = \frac{w(1, x) \cdot \mathbb{P}[D_i = 1|X_i = x]}{\omega^*} = \frac{\mathbb{P}[D_i = 1|X_i = x]}{\omega^*} = \frac{1}{\omega^*}.
\]

- \(\omega^* \) is a normalization factor to make sure probabilities sum to 1.
- **Important point:** \(\mathbb{P}_W(D_i = 1|X_i = 1) = \mathbb{P}_W(D_i = 1|X_i = 0) = \frac{1}{\omega^*} \)
- \(\sim D_i \) independent of \(X_i \) in the reweighted data.
Overall mean

- What is the weighted mean for the treated group?
- Use a similar approach to survey weights, where D_i is the “sampling indicator”:
 \[
 \bar{Y}_i^w = \frac{1}{N} \sum_{i=1}^{N} D_i W_i Y_i
 \]
- $W_i Y_i$ is the weighted outcome, D_i is there to select out the treated observations.
- We want to see what the conditional weighted mean identifies:
 \[
 \mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} W_i D_i Y_i \right] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[W_i D_i Y_i] = \mathbb{E}[W_i D_i Y_i]
 \]
Proving unbiasedness

- Weighted mean of treated units is mean of potential outcome:

\[
\mathbb{E}[W_i D_i Y_i] = \mathbb{E} \left[\frac{D_i Y_i}{e(X_i)} \right] \tag{Weight Def.}
\]

\[
= \mathbb{E} \left[\frac{D_i Y_i(1)}{e(X_i)} \right] \tag{Consistency}
\]

\[
= \mathbb{E} \left[\mathbb{E} \left[\frac{D_i Y_i(1)}{e(X_i)} \bigg| X_i \right] \right] \tag{Iterated Expectations}
\]

\[
= \mathbb{E} \left[\frac{\mathbb{E}[D_i|X_i] \mathbb{E}[Y_i(1)|X_i]}{e(X_i)} \right] \tag{n.u.c.}
\]

\[
= \mathbb{E} \left[\frac{e(X_i) \mathbb{E}[Y_i(1)|X_i]}{e(X_i)} \right] \tag{Propensity Score Definition}
\]

\[
= \mathbb{E}[Y_i(1)] \tag{Iterated Expectations}
\]
Putting it all together

- The same logic would give us the mean potential outcomes under control:

\[
E \left[\frac{(1 - D_i) Y_i}{1 - e(X_i)} \right] = E[Y_i(0)]
\]

- These two facts provide an estimator for the average treatment effect:

\[
\hat{\tau} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{D_i Y_i}{e(X_i)} - \frac{(1 - D_i) Y_i}{1 - e(X_i)} \right)
\]

- The above two results give us that this estimator is unbiased.

- This is sometimes called the **Horvitz-Thompson** estimator due to the close connection to the survey sampling estimator.