Week 5: Simple Linear Regression

Brandon Stewart

Princeton

September 28-October 2, 2020

1These slides are heavily influenced by Matt Blackwell, Adam Glynn, Erin Hartman and Jens Hainmueller. Illustrations by Shay O’Brien.
Where We’ve Been and Where We’re Going...

- **Last Week**
 - hypothesis testing
 - what is regression

- **This Week**
 - mechanics and properties of simple linear regression
 - inference and measures of model fit
 - confidence intervals for regression
 - goodness of fit

- **Next Week**
 - mechanics with two regressors
 - omitted variables, multicollinearity

- **Long Run**
 - probability → inference → regression → causal inference
Macrostructure—This Semester

The next few weeks,

- Linear Regression with Two Regressors
- Break Week and Multiple Linear Regression
- Rethinking Regression
- Regression in the Social Sciences
- Causality with Measured Confounding
- Unmeasured Confounding and Instrumental Variables
- Repeated Observations and Panel Data
- Review and Final Discussion
1 Mechanics of OLS

2 Classical Perspective (Part 1, Unbiasedness)
 - Sampling Distributions
 - Classical Assumptions 1–4

3 Classical Perspective: Variance
 - Sampling Variance
 - Gauss-Markov
 - Large Samples
 - Small Samples
 - Agnostic Perspective

4 Inference
 - Hypothesis Tests
 - Confidence Intervals
 - Goodness of fit
 - Interpretation

5 Non-linearities
 - Log Transformations
 - Fun With Logs
 - LOESS
Narrow Goal: Understand `lm()` Output

Call:
\[
\text{lm(formula = sr \sim \text{pop15}, \text{data = LifeCycleSavings})}
\]

Residuals:

<table>
<thead>
<tr>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8.637</td>
<td>-2.374</td>
<td>0.349</td>
<td>2.022</td>
<td>11.155</td>
</tr>
</tbody>
</table>

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | 17.49660 | 2.27972 | 7.675 6.85e-10 *** |
| pop15 | -0.22302 | 0.06291 | -3.545 0.000887 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.03 on 48 degrees of freedom
Multiple R-squared: 0.2075, Adjusted R-squared: 0.191
F-statistic: 12.57 on 1 and 48 DF, p-value: 0.0008866
Reminder

How do we fit the regression line $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$ to the data?

Answer: We will minimize the squared sum of residuals

$$\min_{\beta_0, \beta_1} \sum_{i=1}^{n} u_i^2$$

where $u_i = Y_i - \hat{Y}_i$ is the residual for the ith observation. Residual u_i is “part” of Y_i not predicted by the regression line.

The diagram shows a scatter plot of data points with a fitted linear regression line. The residuals (differences between observed and predicted values) are shown as vertical lines from each data point to the regression line. The goal is to minimize the sum of the squared residuals to find the best fit line.
The Population Quantity

- Broadly speaking we are interested in the conditional expectation function (CEF) in part because it minimizes the mean squared error.

- The CEF has a potentially arbitrary shape but there is always a best linear predictor (BLP) or linear projection which is the line given by:

\[g(X) = \beta_0 + \beta_1 X \]

\[\beta_0 = E[Y] - \frac{\text{Cov}[X, Y]}{V[X]} E[X] \]

\[\beta_1 = \frac{\text{Cov}[X, Y]}{V[X]} \]

- This may not be a good approximation depending on how non-linear the true CEF is. However, it provides us with a reasonable target that always exists.

- Define deviations from the BLP as

\[u = Y - g(X) \]

then, the following properties hold:

1. \(E[u] = 0 \)
2. \(E[Xu] = 0 \)
3. \(\text{Cov}[X, u] = 0 \)
What is OLS?

- The best linear predictor is the line that minimizes

\[(\beta_0, \beta_1) = \arg \min_{b_0, b_1} E[(Y - b_0 - b_1X)^2] \]

- Ordinary Least Squares (OLS) is a method for minimizing the sample analog of this quantity. It solves the optimization problem:

\[(\hat{\beta}_0, \hat{\beta}_1) = \arg \min_{b_0, b_1} \sum_{i=1}^{n} (Y_i - b_0 - b_1X_i)^2 \]

- In words, the OLS estimates are the intercept and slope that minimize the sum of the squared residuals.

- There are many loss functions, but OLS uses the squared error loss which is connected to the conditional expectation function. If we chose a different loss, we would target a different feature of the conditional distribution.
Deriving the OLS estimator

- Let's think about \(n \) pairs of sample observations:
 \((Y_1, X_1), (Y_2, X_2), \ldots, (Y_n, X_n)\)
- Let \(\{b_0, b_1\} \) be possible values for \(\{\beta_0, \beta_1\} \)
- Define the least squares objective function:
 \[
 S(b_0, b_1) = \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)^2.
 \]

How do we derive the LS estimators for \(\beta_0 \) and \(\beta_1 \)? We want to minimize this function, which is actually a very well-defined calculus problem.

1. Take partial derivatives of \(S \) with respect to \(b_0 \) and \(b_1 \).
2. Set each of the partial derivatives to 0.
3. Solve for \(\{b_0, b_1\} \) and replace them with the solutions.

We are going to step through this process together.
Step 1: Take Partial Derivatives

\[S(b_0, b_1) = \sum_{i=1}^{n} (Y_i - b_0 - X_ib_1)^2 \]

\[= \sum_{i=1}^{n} (Y_i^2 - 2Y_ib_0 - 2Y_ib_1X_i + b_0^2 + 2b_0b_1X_i + b_1^2X_i^2) \]

\[\frac{\partial S(b_0, b_1)}{\partial b_0} = \sum_{i=1}^{n} (-2Y_i + 2b_0 + 2b_1X_i) \]

\[= -2 \sum_{i=1}^{n} (Y_i - b_0 - b_1X_i) \]

\[\frac{\partial S(b_0, b_1)}{\partial b_1} = \sum_{i=1}^{n} (-2Y_iX_i + 2b_0X_i + 2b_1X_i^2) \]

\[= -2 \sum_{i=1}^{n} X_i(Y_i - b_0 - b_1X_i) \]
Solving for the Intercept

\[
\frac{\partial S(b_0, b_1)}{\partial b_0} = -2 \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)
\]

\[
0 = -2 \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)
\]

\[
0 = \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)
\]

\[
0 = \sum_{i=1}^{n} Y_i - \sum_{i=1}^{n} b_0 - \sum_{i=1}^{n} b_1 X_i
\]

\[
b_0 n = \left(\sum_{i=1}^{n} Y_i \right) - b_1 \left(\sum_{i=1}^{n} X_i \right)
\]

\[
b_0 = \bar{Y} - b_1 \bar{X}
\]
A Helpful Lemma on Deviations from Means

Lemmas are like helper results that are often invoked repeatedly.

Lemma (Deviations from the Mean Sum to 0)

\[
\sum_{i=1}^{n} (X_i - \bar{X}) = \left(\sum_{i=1}^{n} X_i \right) - n\bar{X} \\
= \left(\sum_{i=1}^{n} X_i \right) - n \sum_{i=1}^{n} X_i/n \\
= \left(\sum_{i=1}^{n} X_i \right) - \sum_{i=1}^{n} X_i \\
= 0
\]
Solving for the Slope

\[0 = -2 \sum_{i=1}^{n} X_i (Y_i - b_0 - b_1 X_i) \]

\[0 = \sum_{i=1}^{n} X_i (Y_i - b_0 - b_1 X_i) \]

\[0 = \sum_{i=1}^{n} X_i (Y_i - (\bar{Y} - b_1 \bar{X}) - b_1 X_i) \quad \text{(sub in } b_0) \]

\[0 = \sum_{i=1}^{n} X_i (Y_i - \bar{Y} - b_1 (X_i - \bar{X})) \]

\[0 = \sum_{i=1}^{n} X_i (Y_i - \bar{Y}) - b_1 \sum_{i=1}^{n} X_i (X_i - \bar{X}) \]

\[b_1 \sum_{i=1}^{n} X_i (X_i - \bar{X}) = \sum_{i=1}^{n} X_i (Y_i - \bar{Y}) - \bar{X} \sum_{i=1}^{n} (Y_i - \bar{Y}) \quad \text{(add 0)} \]
Solving for the Slope

\[b_1 \sum_{i=1}^{n} X_i(X_i - \bar{X}) = \sum_{i=1}^{n} X_i(Y_i - \bar{Y}) - \bar{X} \sum_{i=1}^{n} (Y_i - \bar{Y}) \]

\[b_1 \sum_{i=1}^{n} X_i(X_i - \bar{X}) = \sum_{i=1}^{n} X_i(Y_i - \bar{Y}) - \sum_{i=1}^{n} \bar{X}(Y_i - \bar{Y}) \]

\[b_1 \left(\sum_{i=1}^{n} X_i(X_i - \bar{X}) - \sum_{i=1}^{n} \bar{X}(X_i - \bar{X}) \right) = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) \quad \text{add 0} \]

\[b_1 \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X}) = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) \]

\[b_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \]
Now we’re done! Here are the OLS estimators:

\[\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} \]

\[\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \]
Intuition of the OLS estimator

- The intercept equation tells us that the regression line goes through the point \((\bar{Y}, \bar{X})\):
 \[
 \bar{Y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{X}
 \]

- The slope for the regression line can be written as the following:
 \[
 \hat{\beta}_1 = \frac{\sum_{i=1}^{n}(X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n}(X_i - \bar{X})^2} = \frac{\text{Sample Covariance between } X \text{ and } Y}{\text{Sample Variance of } X}
 \]

- The higher the covariance between \(X\) and \(Y\), the higher the slope will be.
- Negative covariances \(\rightarrow\) negative slopes;
 positive covariances \(\rightarrow\) positive slopes
- If \(X_i\) doesn’t vary, the denominator is undefined.
- If \(Y_i\) doesn’t vary, you get a flat line.
Mechanical properties of OLS

- Later we’ll see that under certain assumptions, OLS will have nice statistical properties.
- But some properties are mechanical since they can be derived from the first order conditions of OLS.

1. The sample mean of the residuals will be zero:

\[
\frac{1}{n} \sum_{i=1}^{n} \hat{u}_i = 0
\]

2. The residuals will be uncorrelated with the predictor (\(\hat{\text{Cov}}\) is the sample covariance):

\[
\sum_{i=1}^{n} X_i \hat{u}_i = 0 \implies \hat{\text{Cov}}(X_i, \hat{u}_i) = 0
\]

3. The residuals will be uncorrelated with the fitted values:

\[
\sum_{i=1}^{n} \hat{Y}_i \hat{u}_i = 0 \implies \hat{\text{Cov}}(\hat{Y}_i, \hat{u}_i) = 0
\]
OLS slope as a weighted sum of the outcomes

One useful derivation is to write the OLS estimator for the slope as a weighted sum of the outcomes.

\[\hat{\beta}_1 = \sum_{i=1}^{n} W_i Y_i \]

Where here we have the weights, \(W_i \) as:

\[W_i = \frac{(X_i - \bar{X})}{\sum_{i=1}^{n}(X_i - \bar{X})^2} \]

This is important for two reasons. First, it’ll make derivations later much easier. And second, it shows that is just the sum of a random variable. Therefore it is also a random variable.
Lemma 2: OLS as a Weighted Sum of Outcomes

Lemma (OLS as Weighted Sum of Outcomes)

\[
\hat{\beta}_1 = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) / \sum_{i=1}^{n} (X_i - \bar{X})^2
\]

\[
= \frac{\sum_{i=1}^{n} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2} - \frac{\sum_{i=1}^{n} (X_i - \bar{X}) \bar{Y}}{\sum_{i=1}^{n} (X_i - \bar{X})^2}
\]

\[
= \frac{\sum_{i=1}^{n} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2}
\]

\[
= \sum_{i=1}^{n} W_i Y_i
\]

Where the weights, \(W_i\) are:

\[
W_i = \frac{(X_i - \bar{X})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}
\]
We Covered

- A brief review of regression
- Derivation of the OLS estimator
- OLS as a weighted sum of outcomes

Next Time: The Classical Perspective
Where We’ve Been and Where We’re Going...

- **Last Week**
 - hypothesis testing
 - what is regression

- **This Week**
 - mechanics and properties of simple linear regression
 - inference and measures of model fit
 - confidence intervals for regression
 - goodness of fit

- **Next Week**
 - mechanics with two regressors
 - omitted variables, multicollinearity

- **Long Run**
 - probability → inference → regression → causal inference
Mechanics of OLS

Classical Perspective (Part 1, Unbiasedness)
- Sampling Distributions
- Classical Assumptions 1–4

Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective

Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation

Non-linearities
- Log Transformations
- Fun With Logs
- LOESS
Sampling distribution of the OLS estimator

- Remember: OLS is an estimator—it’s a machine that we plug samples into and we get out estimates.

Sample 1: \{ (Y_1, X_1), \ldots, (Y_n, X_n) \} \rightarrow (\hat{\beta}_0, \hat{\beta}_1)_1
Sample 2: \{ (Y_1, X_1), \ldots, (Y_n, X_n) \} \rightarrow (\hat{\beta}_0, \hat{\beta}_1)_2
\vdots
Sample k – 1: \{ (Y_1, X_1), \ldots, (Y_n, X_n) \} \rightarrow (\hat{\beta}_0, \hat{\beta}_1)_{k – 1}
Sample k: \{ (Y_1, X_1), \ldots, (Y_n, X_n) \} \rightarrow (\hat{\beta}_0, \hat{\beta}_1)_k

- Just like the sample mean, sample difference in means, or the sample variance
- It has a sampling distribution, with a sampling variance/standard error, etc.
- Let’s take a simulation approach to demonstrate:
 - See how the line varies from sample to sample
Simulation procedure

1. Draw a random sample of size $n = 30$ with replacement using `sample()`
2. Use `lm()` to calculate the OLS estimates of the slope and intercept
3. Plot the estimated regression line
Population Regression

![Graph showing the relationship between Log GDP per capita growth and Log Settler Mortality]

Stewart (Princeton)
Week 5: Simple Linear Regression
September 28-October 2, 2020
25 / 127
Randomly sample from AJR

![Graph showing the relationship between Log GDP per capita growth and Log Settler Mortality. The graph includes two lines of best fit, one in blue and one in red, indicating a negative correlation.]
You can see that the estimated slopes and intercepts vary from sample to sample, but that the “average” of the lines looks about right.
The Sampling Distribution is a Joint Distribution!

While both the intercept and the slope vary, they vary together.
In the last few weeks we derived the properties of the sampling distribution for the sample mean, \bar{X}_n.

Under essentially only the **iid assumption** (plus finite mean and variance) we derived the large sample distribution as

$$
\bar{X}_n \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)
$$

- This means the estimator is unbiased for the population mean: $E[\bar{X}_n] = \mu$.
- has sampling variance: σ^2/n
- and standard error: σ/\sqrt{n}

This in turn gave us confidence intervals and hypothesis tests.

We will use the same strategy here!
Our goal

- What is the sampling distribution of the OLS slope?
 \[\hat{\beta}_1 \sim ?(?, ?) \]

- We need fill in those ?s.

- We’ll start with the mean of the sampling distribution. Is the estimator centered at the true value, \(\beta_1 \)?
Classical Model: OLS Assumptions Preview

1. **Linearity in Parameters**: The population model is linear in its parameters and correctly specified.

2. **Random Sampling**: The observed data represent a random sample from the population described by the model.

3. **Variation in X**: There is variation in the explanatory variable.

4. **Zero conditional mean**: Expected value of the error term is zero conditional on all values of the explanatory variable.

5. **Homoskedasticity**: The error term has the same variance conditional on all values of the explanatory variable.

6. **Normality**: The error term is independent of the explanatory variables and normally distributed.
Hierarchy of OLS Assumptions

Identification
Data Description

Variation in X

Unbiasedness
Consistency

Variation in X
Random Sampling
Linearity in Parameters
Zero Conditional Mean

Gauss-Markov (BLUE)
Asymptotic Inference
(z and χ^2)

Variation in X
Random Sampling
Linearity in Parameters
Zero Conditional Mean
Homoskedasticity

Classical LM (BUE)
Small-Sample Inference
(t and F)

Variation in X
Random Sampling
Linearity in Parameters
Zero Conditional Mean
Homoskedasticity
Normality of Errors
OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

\[Y_i = \beta_0 + \beta_1 X_i + u_i \]

- Note that it can be nonlinear in variables
 - OK: \(Y_i = \beta_0 + \beta_1 X_i + u_i \) or \(Y_i = \beta_0 + \beta_1 X_i^2 + u_i \) or \(Y_i = \beta_0 + \beta_1 \log(X_i) + u \)
 - Not OK: \(Y_i = \beta_0 + \beta_1^2 X_i + u_i \) or \(Y_i = \beta_0 + \exp(\beta_1)X_i + u_i \)

- \(\beta_0, \beta_1 \): Population parameters — fixed and unknown
- \(u_i \): Unobserved random variable with \(E[u_i] = 0 \) — captures all other factors influencing \(Y_i \) other than \(X_i \)

- We assume this to be the structural model, i.e., the model describing the true process generating \(Y_i \)
OLS Assumption II

Assumption (II. Random Sampling)

The observed data:

\[(y_i, x_i) \text{ for } i = 1, \ldots, n\]

represent an i.i.d. random sample of size \(n\) following the population model.

Data examples consistent with this assumption:

- A cross-sectional survey where the units are sampled randomly

Potential Violations:

- Time series data (regressor values may exhibit persistence)
- Sample selection problems (sample not representative of the population)
OLS Assumption III

Assumption (III. Variation in X; a.k.a. No Perfect Collinearity)

The observed data:

$$x_i \text{ for } i = 1, \ldots, n$$

are not all the same value.

Satisfied as long as there is some variation in the regressor X in the sample.

Why do we need this?

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n}(x_i - \bar{x})^2}$$

This assumption is needed just to calculate $\hat{\beta}$.

Only assumption needed for using OLS as a pure data summary.
Stuck in a moment

- Why does this matter? How would you draw the line of best fit through this scatterplot, which is a violation of this assumption?
Assumption (IV. Zero Conditional Mean)

The expected value of the error term is zero conditional on any value of the explanatory variable:

\[
E[u_i | X_i = x] = 0
\]

- \(E[u_i | X] = 0\) implies a slightly weaker condition \(\text{Cov}(X, u) = 0\)
- Given random sampling, \(E[u | X] = 0\) also implies \(E[u_i | x_i] = 0\) for all \(i\)
Violating the zero conditional mean assumption

Assumption 4 violated

Assumption 4 not violated
Violating the zero conditional mean assumption

Assumption 4 Violated

Assumption 4 Not Violated
With Assumptions 1-4, we can show that the OLS estimator for the slope is unbiased, that is $E[\hat{\beta}_1] = \beta_1$.

Let’s prove it!
Lemma 3: Weighted Combinations of X_i

Lemma ($\sum_i W_iX_i = 1$)

\[
\sum_{i=1}^{n} W_iX_i = \sum_{i=1}^{n} \frac{X_i(X_i - \bar{X})}{\sum_{j=1}^{n}(X_j - \bar{X})^2}
\]

\[
= \frac{1}{\sum_{j=1}^{n}(X_j - \bar{X})^2} \sum_{i=1}^{n} X_i(X_i - \bar{X})
\]

\[
= \frac{1}{\sum_{j=1}^{n}(X_j - \bar{X})^2} \left[\sum_{i=1}^{n} X_i(X_i - \bar{X}) - \sum_{i=1}^{n} \bar{X}(X_i - \bar{X}) \right]
\]

\[
= \frac{1}{\sum_{j=1}^{n}(X_j - \bar{X})^2} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})
\]

\[
= 1
\]
Lemma 4: Estimation Error

Lemma

\[\hat{\beta}_1 = \sum_{i=1}^{n} W_i Y_i \]

\[= \sum_{i=1}^{n} W_i (\beta_0 + \beta_1 X_i + u_i) \]

\[= \beta_0 \left(\sum_{i=1}^{n} W_i \right) + \beta_1 \left(\sum_{i=1}^{n} W_i X_i \right) + \sum_{i=1}^{n} W_i u_i \]

\[= \beta_1 + \sum_{i=1}^{n} W_i u_i \]

\[\hat{\beta}_1 - \beta_1 = \sum_{i=1}^{n} W_i u_i \]
Unbiasedness Proof

\[E[\hat{\beta}_1 - \beta_1 | X] = E \left[\sum_{i=1}^{n} W_i u_i | X \right] \]

\[= \sum_{i=1}^{n} E[W_i u_i | X] \]

\[= \sum_{i=1}^{n} W_i E[u_i | X] \]

\[= \sum_{i=1}^{n} W_i 0 \]

\[= 0 \]

Using iterated expectations we can show that it is also unconditionally biased \(E[\hat{\beta}_1] = E[E[\hat{\beta}_1 | X]] = E[\beta_1] = \beta_1. \)
Consistency

- Recall the estimation error,

\[\hat{\beta}_1 = \beta_1 + \sum_{i=1}^{n} W_i u_i \]

- Under iid sampling we have

\[\sum_{i=1}^{n} W_i u_i = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) u_i}{\sum_{i=1}^{n} (X_i - \bar{X})} \xrightarrow{p} \frac{\text{Cov}[X_i, u_i]}{\text{V}[X_i]} \]

- Under A4 (zero conditional mean error) we have the slightly weaker property \(\text{Cov}[X_i, u_i] = 0 \) so as long as \(\text{V}[X] > 0 \), then we have,

\[\hat{\beta}_1 \xrightarrow{p} \beta_1 \]
We Covered

- The first four assumptions of the classical model
- We showed that these four were sufficient to establish unbiasedness and consistency.
- We even proved it to ourselves!

Where We’ve Been and Where We’re Going...

- **Last Week**
 - hypothesis testing
 - what is regression

- **This Week**
 - mechanics and properties of simple linear regression
 - inference and measures of model fit
 - confidence intervals for regression
 - goodness of fit

- **Next Week**
 - mechanics with two regressors
 - omitted variables, multicollinearity

- **Long Run**
 - probability → inference → regression → causal inference
Mechanics of OLS

Classical Perspective (Part 1, Unbiasedness)
- Sampling Distributions
- Classical Assumptions 1–4

Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective

Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation

Non-linearities
- Log Transformations
- Fun With Logs
- LOESS
Now we know that, under Assumptions 1-4, we know that

\[\hat{\beta}_1 \sim ?(\beta_1, ?) \]

That is we know that the sampling distribution is centered on the true population slope, but we don’t know the population variance.
Sampling variance of estimated slope

- In order to derive the sampling variance of the OLS estimator,
 1. Linearity
 2. Random (iid) sample
 3. Variation in \(X_i \)
 4. Zero conditional mean of the errors
 5. Homoskedasticity
Variance of OLS Estimators

How can we derive $\text{Var}[\hat{\beta}_0]$ and $\text{Var}[\hat{\beta}_1]$? Let’s make the following additional assumption:

Assumption (V. Homoskedasticity)

The conditional variance of the error term is constant and does not vary as a function of the explanatory variable:

$$\text{Var}[u|X] = \sigma_u^2$$

- This implies $\text{Var}[u] = \sigma_u^2$
 - all errors have an identical error variance ($\sigma_{u_i}^2 = \sigma_u^2$ for all i)
- Taken together, Assumptions I–V imply:
 $$E[Y|X] = \beta_0 + \beta_1X$$
 $$\text{Var}[Y|X] = \sigma_u^2$$

- Violation: $\text{Var}[u|X = x_1] \neq \text{Var}[u|X = x_2]$ called heteroskedasticity.
- Assumptions I–V are collectively known as the *Gauss-Markov assumptions*
Heteroskedasticity
Deriving the sampling variance

$$V[\hat{\beta}_1 | X] = ??$$

$$V[\hat{\beta}_1 | X] = V \left[\sum_{i=1}^{n} W_i u_i | X \right]$$

$$= \sum_{i=1}^{n} W_i^2 V [u_i | X] \quad \text{(A2: iid)}$$

$$= \sum_{i=1}^{n} W_i^2 \sigma_u^2 \quad \text{(A5: homoskedastic)}$$

$$= \sigma_u^2 \sum_{i=1}^{n} \left(\frac{(X_i - \bar{X})}{\sum_{i'=1}^{n} (X_{i'} - \bar{X})^2} \right)^2$$

$$= \frac{\sigma_u^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$
Variance of OLS Estimators

Theorem (Variance of OLS Estimators)

Given OLS Assumptions I–V (Gauss-Markov Assumptions):

\[
V[\hat{\beta}_1 \mid X] = \frac{\sigma^2_u}{\sum_{i=1}^n (x_i - \bar{x})^2}
\]

\[
V[\hat{\beta}_0 \mid X] = \sigma^2_u \left\{ \frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right\}
\]

where \(V[u \mid X] = \sigma^2_u \) (the error variance).
Understanding the sampling variance

\[V[\hat{\beta}_1|X_1, \ldots, X_n] = \frac{\sigma_u^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \]

What drives the sampling variability of the OLS estimator?

- The higher the variance of \(Y_i|X_i \), the higher the sampling variance
- The lower the variance of \(X_i \), the higher the sampling variance
- As we increase \(n \), the denominator gets large, while the numerator is fixed and so the sampling variance shrinks to 0.
Variance in X Reduces Standard Errors
Estimating the Variance of OLS Estimators

How can we estimate the unobserved error variance $\text{Var}[u] = \sigma_u^2$? We can derive an estimator based on the residuals:

$$\hat{u}_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

Recall: The errors u_i are NOT the same as the residuals \hat{u}_i.

Intuitively, the scatter of the residuals around the fitted regression line should reflect the unseen scatter about the true population regression line.

We can measure scatter with the mean squared deviation:

$$\text{MSD}(\hat{u}) \equiv \frac{1}{n} \sum_{i=1}^{n} (\hat{u}_i - \bar{\hat{u}})^2 = \frac{1}{n} \sum_{i=1}^{n} \hat{u}_i^2$$
Estimating the Variance of OLS Estimators

By construction, the regression line is closer since it is drawn to fit the sample we observe.

Specifically, the regression line is drawn so as to minimize the sum of the squares of the distances between it and the observations.

So the spread of the residuals \(MSD(\hat{u}) \) will slightly underestimate the error variance \(\text{Var}[u] = \sigma_u^2 \) on average.

In fact, we can show that with a single regressor \(X \) we have:

\[
E[MSD(\hat{u})] = \frac{n - 2}{n} \sigma_u^2 \quad \text{(degrees of freedom adjustment)}
\]

Thus, an unbiased estimator for the error variance is:

\[
\hat{\sigma}_u^2 = \frac{n}{n - 2} MSD(\hat{u}) = \frac{n}{n - 2} \frac{1}{n} \sum_{i=1}^{n} \hat{u}_i = \frac{1}{n - 2} \sum_{i=1}^{n} \hat{u}_i^2
\]

We plug this estimate into the variance estimators for \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \).
Where are we?

- Under Assumptions 1-5, we know that
 \[\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2_u}{\sum_{i=1}^n (X_i - \bar{X})^2} \right) \]

- Now we know the mean and sampling variance of the sampling distribution.

- How does this compare to other estimators for the population slope?
OLS is BLUE :(

Theorem (Gauss-Markov)

Given OLS Assumptions I–V, the OLS estimator is **BLUE**, i.e. the

1. **Best**: Lowest variance in class
2. **Linear**: Among Linear estimators
3. **Unbiased**: Among Linear Unbiased estimators
4. **Estimator**.

- A **linear** estimator is one that can be written as $\hat{\beta} = W'y$
- Assumptions 1-5 are called the “Gauss Markov Assumptions”
- Result fails to hold when the assumptions are violated!
Gauss-Markov Theorem

All estimators

unbiased

linear

OLS is efficient in the class of unbiased, linear estimators.
OLS is BLUE—best linear unbiased estimator.
Where are we?

- Under Assumptions 1-5, we know that
 \[\hat{\beta}_1 \sim \left(\beta_1, \frac{\sigma_u^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \right) \]

- And we know that \[\frac{\sigma_u^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \] is the lowest variance of any linear estimator of \(\beta_1 \)

- What about the last question mark? What’s the form of the distribution?
Large-sample distribution of OLS estimators

- Remember that the OLS estimator is the sum of independent r.v.’s:

\[
\hat{\beta}_1 = \sum_{i=1}^{n} W_i Y_i
\]

- Mantra of the Central Limit Theorem:
 “the sums and means of random variables tend to be Normally distributed in large samples.”

- True here as well, so we know that in large samples:

\[
\frac{\hat{\beta}_1 - \beta_1}{SE[\hat{\beta}_1]} \sim N(0, 1)
\]

- Can also replace \(SE\) with an estimate:

\[
\frac{\hat{\beta}_1 - \beta_1}{SE[\hat{\beta}_1]} \sim N(0, 1)
\]
Where are we?

Under Assumptions 1-5 and in large samples, we know that

\[\hat{\beta}_1 \sim N \left(\beta_1, \frac{\sigma_u^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right) \]
Sampling distribution in small samples

What if we have a small sample? What can we do then?

Can’t get something for nothing, but we can make progress if we make another assumption:

1. Linearity
2. Random (iid) sample
3. Variation in X_i
4. Zero conditional mean of the errors
5. Homoskedasticity
6. Errors are conditionally Normal
OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, \(u \perp X \), and is normally distributed with mean zero and variance \(\sigma_u^2 \):

\[
u \sim N(0, \sigma_u^2), \quad \text{which implies} \quad Y|X \sim N(\beta_0 + \beta_1X, \sigma_u^2)
\]

Note: This also implies homoskedasticity and zero conditional mean.

- Together Assumptions I–VI are the classical linear model (CLM) assumptions.
- The CLM assumptions imply that OLS is BUE (i.e. minimum variance among all linear or non-linear unbiased estimators)
- Non-normality of the errors is a serious concern in small samples. We can partially check this assumption by looking at the residuals (more in coming weeks)
- Variable transformations can help to come closer to normality
- Reminder: we don’t need normality assumption in large samples
Sampling distribution of OLS slope

- If we have Y_i given X_i is distributed $N(\beta_0 + \beta_1 X_i, \sigma_u^2)$, then we have the following at any sample size:

$$\frac{\hat{\beta}_1 - \beta_1}{SE[\hat{\beta}_1]} \sim N(0, 1)$$

- Furthermore, if we replace the true standard error with the estimated standard error, then we get the following:

$$\frac{\hat{\beta}_1 - \beta_1}{\hat{SE}[\hat{\beta}_1]} \sim t_{n-2}$$

- The standardized coefficient follows a t distribution $n - 2$ degrees of freedom. We take off an extra degree of freedom because we had to estimate one more parameter than just the sample mean.

- All of this depends on Normal errors!
Where are we?

- Under Assumptions 1-5 and in large samples, we know that
 \[
 \hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma_u^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right)
 \]

- Under Assumptions 1-6 and in any sample, we know that
 \[
 \frac{\hat{\beta}_1 - \beta_1}{SE[\hat{\beta}_1]} \sim t_{n-2}
 \]
Hierarchy of OLS Assumptions

- **Identification**
 - Data Description
 - Variation in X

- **Unbiasedness**
 - Consistency
 - Variation in X
 - Random Sampling
 - Linearity in Parameters
 - Zero Conditional Mean

- **Gauss-Markov (BLUE)**
 - Asymptotic Inference (z and χ^2)
 - Variation in X
 - Random Sampling
 - Linearity in Parameters
 - Zero Conditional Mean
 - Homoskedasticity

- **Classical LM (BUE)**
 - Small-Sample Inference (t and F)
 - Variation in X
 - Random Sampling
 - Linearity in Parameters
 - Zero Conditional Mean
 - Homoskedasticity
 - Normality of Errors
Regression as parametric modeling

Let’s summarize the parametric view we have taken thus far.

- Gauss-Markov assumptions:
 - (A1) linearity, (A2) i.i.d. sample, (A3) variation in X, (A4) zero conditional mean error, (A5) homoskedasticity.
 - basically, assume the model is right

- OLS is BLUE, plus (A6) normality of the errors and we get small sample SEs and BUE.

- What is the basic approach here?
 - A1 defines a linear model for the outcome:
 $$Y_i = \beta_0 + \beta_1 X_i + u_i$$
 - A2 and A4 let us write the CEF as function of X_i alone.
 $$E[Y_i|X_i] = \mu_i = \beta_0 + \beta_1 X_i$$
 - A5-6, define a probabilistic model for the conditional distribution:
 $$Y_i|X_i \sim \mathcal{N}(\mu_i, \sigma^2)$$
 - A3 covers the edge-case that the βs are indistinguishable.
Agnostic views on regression

- These assumptions assume we know a lot about how Y_i is ‘generated’.
- Justifications for using OLS (like BLUE/BUE) often invoke these assumptions which are unlikely to hold exactly.
- Alternative: take an agnostic view on regression.
 - use OLS without believing these assumptions.
 - lean on two things: A2 i.i.d. sample, asymptotics (large-sample properties)
- Lose the distributional assumptions and focus on approximating the best linear predictor.
- If the true CEF happens to be linear, the best linear predictor is it.
Unbiasedness Result

- One of the results most people know is that OLS is unbiased, but unbiased for what?
- It is unbiased for the CEF under the assumption that the model is correctly specified.
- However, this could be a quite poor approximation to the true CEF if there is a great deal of non-linearity.
- We will often use OLS as a means to approximate the CEF, but don’t forget that it is just an approximation!
- We will return in a few weeks to how you diagnose this approximation.
For now we are going to move forward with the classical worldview and we will return to some alternative approaches later in the semester once we are comfortable with the matrix representation of regression.

This will lead to techniques like robust standard errors which don’t rely on the assumptions of homoskedasticity (but have other tradeoffs!)

For now, just remember that regression is a linear approximation to the CEF!
We Covered

- Sampling Variance
- Gauss Markov
- Large Sample and Small Sample Properties

Next Time: Inference
Where We’ve Been and Where We’re Going...

- **Last Week**
 - hypothesis testing
 - what is regression

- **This Week**
 - mechanics and properties of simple linear regression
 - inference and measures of model fit
 - confidence intervals for regression
 - goodness of fit

- **Next Week**
 - mechanics with two regressors
 - omitted variables, multicollinearity

- **Long Run**
 - probability \rightarrow inference \rightarrow regression \rightarrow causal inference
Mechanics of OLS

Classical Perspective (Part 1, Unbiasedness)
- Sampling Distributions
- Classical Assumptions 1–4

Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective

Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation

Non-linearities
- Log Transformations
- Fun With Logs
- LOESS
Where are we?

- Under Assumptions 1-5 and in large samples, we know that

$$\hat{\beta}_1 \sim N \left(\beta_1, \frac{\sigma_u^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \right)$$

- Under Assumptions 1-6 and in any sample, we know that

$$\frac{\hat{\beta}_1 - \beta_1}{SE[\hat{\beta}_1]} \sim t_{n-2}$$
Null and alternative hypotheses review

- **Null:** \(H_0 : \beta_1 = 0 \)
 - The null is the straw man we want to knock down.
 - With regression, almost always null of no relationship

- **Alternative:** \(H_a : \beta_1 \neq 0 \)
 - Claim we want to test
 - Could do one-sided test, but you shouldn’t

Notice these are statements about the population parameters, not the OLS estimates.
Test statistic

- Under the null of $H_0 : \beta_1 = c$, we can use the following familiar test statistic:

$$T = \frac{\hat{\beta}_1 - c}{\text{SE}[\hat{\beta}_1]}$$

- Under the null hypothesis:
 - large samples: $T \sim \mathcal{N}(0, 1)$
 - any size sample with normal errors: $T \sim t_{n-2}$
 - conservative to use t_{n-2} anyways since t_{n-2} is approximately normal in large samples.

- Thus, under the null, we know the distribution of T and can use that to formulate a rejection region and calculate p-values.

- By default, R shows you the test statistic for $\beta_1 = 0$ and uses the t distribution.
Rejection region

- Choose a level of the test, α, and find rejection regions that correspond to that value under the null distribution:
 \[
 \mathbb{P}(-t_{\alpha/2,n-2} < T < t_{\alpha/2,n-2}) = 1 - \alpha
 \]

- This is exactly the same as with sample means and sample differences in means, except that the degrees of freedom on the t distribution have changed.

![Diagram showing rejection regions for a t-distribution with critical values at $-t = -1.96$ and $t = 1.96$.](image)
The interpretation of the p-value is the same: the probability of seeing a test statistic at least this extreme if the null hypothesis were true.

Mathematically:

\[P \left(\left| \frac{\hat{\beta}_1 - c}{SE[\hat{\beta}_1]} \right| \geq |T_{obs}| \right) \]

If the p-value is less than \(\alpha \) we would reject the null at the \(\alpha \) level.
Confidence intervals

- Very similar to the approach with sample means. By the sampling distribution of the OLS estimator, we know that we can find t-values such that:

$$
P \left(- t_{\alpha/2, n-2} \leq \frac{\hat{\beta}_1 - \beta_1}{\hat{SE}[\hat{\beta}_1]} \leq t_{\alpha/2, n-2} \right) = 1 - \alpha
$$

- If we rearrange this as before, we can get an expression for confidence intervals:

$$
P \left(\hat{\beta}_1 - t_{\alpha/2, n-2} \hat{SE}[\hat{\beta}_1] \leq \beta_1 \leq \hat{\beta}_1 + t_{\alpha/2, n-2} \hat{SE}[\hat{\beta}_1] \right) = 1 - \alpha
$$

- Thus, we can write the confidence intervals as:

$$
\hat{\beta}_1 \pm t_{\alpha/2, n-2} \hat{SE}[\hat{\beta}_1]
$$

- We can derive these for the intercept as well:

$$
\hat{\beta}_0 \pm t_{\alpha/2, n-2} \hat{SE}[\hat{\beta}_0]
$$
Returning to our simulation example we can simulate the sampling distributions of the 95% confidence interval estimates for $\hat{\beta}_1$ and $\hat{\beta}_0$.
When we repeat the process over and over, we expect 95% of the confidence intervals to contain the true parameters. Note that, in a given sample, one CI may cover its true value and the other may not.
Prediction error

- How do we judge how well a line fits the data?
- One way is to find out how much better we do at predicting Y once we include X into the regression model.
- Prediction errors without X: best prediction is the mean, so our squared errors, or the total sum of squares (SS_{tot}) would be:

$$SS_{tot} = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

- Once we have estimated our model, we have new prediction errors, which are just the sum of the squared residuals or SS_{res}:

$$SS_{res} = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
Sum of Squares

Total Prediction Errors

Log GDP per capita growth vs. Log Settler Mortality

Week 5: Simple Linear Regression
Sum of Squares

Residuals

Log GDP per capita growth vs. Log Settler Mortality

Stewart (Princeton)
R-square

- By definition, the residuals have to be smaller than the deviations from the mean, so we might ask the following: how much lower is the SS_{res} compared to the SS_{tot}?
- We quantify this question with the coefficient of determination or R^2. This is the following:

$$R^2 = \frac{SS_{tot} - SS_{res}}{SS_{tot}} = 1 - \frac{SS_{res}}{SS_{tot}}$$

- This is the fraction of the total prediction error eliminated by providing information on X.
- Alternatively, this is the fraction of the variation in Y is “explained by” X.
- $R^2 = 0$ means no relationship
- $R^2 = 1$ implies perfect linear fit
Is R-squared useful?

\[R^2 = 0.66 \]
Is R-squared useful?
Is R-squared useful?
Interpreting a Regression

Let’s have a quick chat about interpretation.

\[Y = \beta_0 + \beta_1 X \]

- β_0: Intercept
- β_1: Slope

- Y: % African Americans in State Legislature
- X: % African American Population

\[Y = -1.3 + 0.36 X \]
State Legislators and African American Population

Interpretations of increasing quality:

> summary(lm(beo ~ bpop, data = D))

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|--------------|----------|------------|---------|----------|
| (Intercept) | -1.3149 | 0.3277 | -4.01 | 0.000264 *** |
| bpop | 0.3585 | 0.0252 | 14.23 | < 2e-16 *** |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.317 on 39 degrees of freedom
Multiple R-squared: 0.8385, Adjusted R-squared: 0.8344
F-statistic: 202.6 on 1 and 39 DF, p-value: < 2.2e-16

“In states where an additional .01 proportion of the population is African American, we observe on average .035 proportion more African American state legislators (between .03 and .04 with 95% confidence).”

 stil not perfect, the best will be subject matter specific. is fairly clear it is non-causal, gives uncertainty.)
I almost didn’t include the last example in the slides. It is hard to give ground rules that cover all cases. Regressions are a part of marshaling evidence in an argument which makes them naturally specific to context.

1. Give a short, but precise interpretation of the association using interpretable language and units
2. If the association has a causal interpretation explain why, otherwise do not imply a causal interpretation.
3. Provide a meaningful sense of uncertainty
4. Indicate the practical significance of the finding for your argument.
Goal Check: Understand `lm()` Output

Call:

```r
lm(formula = sr ~ pop15, data = LifeCycleSavings)
```

Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuals</td>
<td>-8.637</td>
<td>-2.374</td>
<td>0.349</td>
<td>2.022</td>
<td>11.155</td>
</tr>
</tbody>
</table>

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|---------|---------|
| (Intercept) | 17.49660 | 2.27972 | 7.675 | 6.85e-10 *** |
| pop15 | -0.22302 | 0.06291 | -3.545 | 0.000887 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.03 on 48 degrees of freedom
Multiple R-squared: 0.2075, Adjusted R-squared: 0.191
F-statistic: 12.57 on 1 and 48 DF, p-value: 0.0008866
We Covered

- Hypothesis tests
- Confidence intervals
- Goodness of fit measures

Next Time: Non-linearities
Where We’ve Been and Where We’re Going...

- **Last Week**
 - hypothesis testing
 - what is regression

- **This Week**
 - mechanics and properties of simple linear regression
 - inference and measures of model fit
 - confidence intervals for regression
 - goodness of fit

- **Next Week**
 - mechanics with two regressors
 - omitted variables, multicollinearity

- **Long Run**
 - probability → inference → regression → causal inference
Mechanics of OLS

Classical Perspective (Part 1, Unbiasedness)
- Sampling Distributions
- Classical Assumptions 1–4

Classical Perspective: Variance
- Sampling Variance
- Gauss-Markov
- Large Samples
- Small Samples
- Agnostic Perspective

Inference
- Hypothesis Tests
- Confidence Intervals
- Goodness of fit
- Interpretation

Non-linearities
- Log Transformations
- Fun With Logs
- LOESS
Non-linear CEFs

- When we say that CEFs are linear with regression, we mean *linear in parameters* but by including transformations of our variables we can make non-linear shapes of pre-specified functional forms.
- Many of these *non-linear transformations* are made by creating multiple variables out of a single X and so will have to wait for future weeks.
- The function $\log(\cdot)$ is one common transformation that has only one parameter.
- This is particularly useful for *positive* and *right-skewed* variables.
Why does everyone keep logging stuff??

Logs linearize exponential growth.

- linear: grows by a fixed amount.
- exponential: grows by a fixed percent.
How? Let’s look.
First, here’s a graph showing exponential growth.

We’re going to use $y = 2^x$, but any other exponent will work.

<table>
<thead>
<tr>
<th>x</th>
<th>$y=(2^x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
</tbody>
</table>
What happens when we take the log of \(y \)?

\[
\log y = z \quad \text{e}^z = y
\]

We're going to use \(y = 2^x \), but any other exponent will work.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>

Stewart (Princeton)
The log transformation changes the interpretation of β_1:

- Regress $\log(Y)$ on $X \rightarrow \beta_1$ approximates percent increase in our prediction of Y associated with one unit increase in X.
- Regress Y on $\log(X) \rightarrow \beta_1$ approximates increase in Y associated with a percent increase in X.
- Note that these approximations work only for small increments.
- In particular, they do not work when X is a discrete random variable.
\(\hat{\beta}_1 = 1.23 \quad \rightarrow \quad \text{One additional soldier killed predicts 1.23 additional soldiers wounded} \)
Wounded (Scale in Levels)

- World War II
- Civil War, North
- World War I
- Vietnam War
- Civil War, South
- Korean War
- Okinawa
- Operation Iraqi Freedom, Iraq
- Iwo Jima
- Revolutionary War
- War of 1812
- Aleutian Campaign
- D-Day
- Philippines War
- Indian Wars
- Spanish American War
- Terrorism, World Trade Center
- Yemen, USS Cole
- Terrorism Khobar Towers, Saudi Arabia
- Persian Gulf
- Terrorism Oklahoma City
- Persian Gulf, Op Desert Shield/Storm
- Russia North Expedition
- Moro Campaigns
- China Boxer Rebellion
- Panama
- Dominican Republic
- Israel Attack/USS Liberty
- Lebanon
- Texas War Of Independence
- South Korea
- Grenada
- China Yangtze Service
- Mexico
- Nicaragua
- Barbary Wars
- Russia Siberia Expedition
- Dominican Republic
- China Civil War
- Terrorism Riyadh, Saudi Arabia
- North Atlantic Naval War
- Franco–Amer Naval War
- Operation Enduring Freedom, Afghanistan
- Mexican War
- Operation Enduring Freedom, Afghanistan Theater
- Haiti
- Texas Border Cortina War
- Nicaragua
- Italy Trieste
- Japan

Number of Wounded
Wounded (Logarithmic Scale)

World War II
Civil War, North
World War I
Vietnam War
Civil War, South
Korean War
Okinawa
Operation Iraqi Freedom, Iraq
Iwo Jima
Revolutionary War
War of 1812
Aleutian Campaign
D-Day
Philippines War
Indian Wars
Spanish American War
Terrorism, World Trade Center
Yemen, USS Cole
Terrorism Khobar Towers, Saudi Arabia
Persian Gulf
Terrorism Oklahoma City
Persian Gulf, Op Desert Shield/Storm
Russia North Expedition
Moro Campaigns
China Boxer Rebellion
Panama
Dominican Republic
Israel Attack/USS Liberty
Lebanon
Texas War Of Independence
South Korea
Grenada
China Yangtze Service
Mexico
Nicaragua
Barbary Wars
Russia Siberia Expedition
Dominican Republic
China Civil War
Terrorism Riyadh, Saudi Arabia
North Atlantic Naval War
Franco–Amer Naval War
Operation Enduring Freedom, Afghanistan
Mexican War
Operation Enduring Freedom, Afghanistan Theater
Haiti
Texas Border Cortina War
Nicaragua
Italy Trieste
Japan

Log(Number of Wounded)

Number of Wounded

2 4 6 8 10 12

Log(Number of Wounded)
Regression: Log-Level

\[
\hat{\beta}_1 = 0.0000237 \quad \rightarrow \quad \text{One additional soldier killed predicts 0.0023 percent increase in the number of soldiers wounded}
\]
Regression: Log-Log

\[\hat{\beta}_1 = 0.797 \rightarrow \text{A percent increase in deaths predicts } 0.797 \text{ percent increase in the wounded} \]
Four Most Commonly Used Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Equation</th>
<th>β_1 Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-Level</td>
<td>$Y = \beta_0 + \beta_1 X$</td>
<td>$\Delta Y = \beta_1 \Delta X$</td>
</tr>
<tr>
<td>Log-Level</td>
<td>$\log(Y) = \beta_0 + \beta_1 X$</td>
<td>$%\Delta Y = 100\beta_1 \Delta X$</td>
</tr>
<tr>
<td>Level-Log</td>
<td>$Y = \beta_0 + \beta_1 \log(X)$</td>
<td>$\Delta Y = (\beta_1/100)%\Delta X$</td>
</tr>
<tr>
<td>Log-Log</td>
<td>$\log(Y) = \beta_0 + \beta_1 \log(X)$</td>
<td>$%\Delta Y = \beta_1 %\Delta X$</td>
</tr>
</tbody>
</table>
Why Does This Approximation Work?

A useful thing to know is that for small x,

$$\log(1 + x) \approx x$$
$$\exp(x) \approx 1 + x$$

This can be derived from a series expansion of the log function. Numerically, when $|x| \leq .1$, the approximation is within 0.001.
Why Does This Approximation Work?

Take two numbers $a > b > 0$. The percentage difference between a and b is

$$p = 100 \left(\frac{a - b}{b} \right)$$

We can rewrite this as

$$\frac{a}{b} = 1 + \frac{p}{100}$$

Taking natural logs

$$\log(a) - \log(b) = \log \left(1 + \frac{p}{100} \right)$$

Applying our approximation and multiplying by 100 we find,

$$p \approx 100 (\log(a) - \log(b))$$
Be Careful: Log-Level with binary X

Assume we have: $\log(Y) = \beta_0 + \beta_1 X$ where X is binary with values 1 or 0. Assume $\beta_1 > .2$. What is the problem with saying that a one unit increase in X is associated with a $\beta_1 \cdot 100$ percent change in Y?

Log approximation is inaccurate for large changes like going from $X = 0$ to $X = 1$. Instead the percent change in Y when X goes from 0 to 1 needs to be computed using:

$$100(\frac{Y_{X=1} - Y_{X=0}}{Y_{X=0}}) = 100\left(\frac{Y_{X=1}}{Y_{X=0}} - 1\right) = 100\left(\exp(\beta_1) - 1\right)$$

Recall: $\log(Y_{X=1}) - \log(Y_{X=0}) = \log(Y_{X=1}/Y_{X=0}) = \beta_1$.

A one unit change in X (ie. going from 0 to 1) is associated with a $100(\exp(\beta_1) - 1)$ percent increase in Y.
Interpreting a Logged Outcome

- On the last few slides, there was a bit that was a little dodgy.
- When we log the outcome, we are no longer approximating $E[Y|X]$; we are approximating $E[\log(Y)|X]$.
- Jensen’s inequality gives us information on this relation: $f(E[X]) \leq E[f(X)]$ for any convex function $f()$.
- In practice, this means we are no longer characterizing the expectation of Y and it is technically inaccurate to talk about Y ‘on average’ changing in a certain way.
- What are we characterizing? The geometric mean.
Geometric Mean

\[\exp(E(\log(Y))) = \exp \left(\frac{1}{N} \sum_{i=1}^{N} \log(Y_i) \right) \]

\[= \exp \left(\frac{1}{N} \log(\prod_{i=1}^{N} Y_i) \right) \]

\[= \exp \left(\log \left(\left(\prod_{i=1}^{N} Y_i \right)^{\frac{1}{N}} \right) \right) \]

\[= \left(\prod_{i=1}^{N} Y_i \right)^{\frac{1}{N}} \]

\[= \text{Geometric Mean}(Y) \]

The geometric mean is a robust measure of central tendency.
THE INTERGENERATIONAL ELASTICITY OF WHAT? THE CASE FOR REDEFINING THE WORKHORSE MEASURE OF ECONOMIC MOBILITY

Pablo A. Mitnik*
David B. Grusky*

Abstract

The intergenerational elasticity (IGE) has been assumed to refer to the expectation of children’s income when in fact it pertains to the geometric mean of children’s income. We show that mobility analyses based on the conventional IGE have been widely misinterpreted, are subject to selection bias, and cannot disentangle the different channels for transmitting economic status across generations. The solution to these problems—estimating the IGE of expected income or earnings—returns the field to what it has long meant to estimate. Under this approach, intergenerational persistence is found to be substantially higher, thus raising the possibility that the field’s stock results are misleading.

Keywords

intergenerational economic mobility, elasticity of expected income, selection bias, gender, marriage and economic mobility
Core Idea

Classic approach:

\[E(\log(Y) | X) = \beta_0 + \beta_1 \log(X) \]

Mean of log offspring income \(Y \) given parent income \(X \)

Intergenerational elasticity (IGE)

MG proposal:

\[\log(E(Y | X)) = \alpha_0 + \alpha_1 \log(X) \]

Log of mean offspring income \(Y \) given parent income \(X \)

Intergenerational elasticity of the expectation (IGEE)
Geometric Mean is Closer to the Median Than the Mean

Subgroup: 1st quartile of childhood income
+ 1 family beyond axis

Subgroup: 2nd quartile of childhood income
+ 2 families beyond axis

Subgroup: 3rd quartile of childhood income
+ 8 families beyond axis

Subgroup: 4th quartile of childhood income
+ 11 families beyond axis

Offspring family income (thousands of 2016 dollars)
Our Response

COMMENT: SUMMARIZING INCOME MOBILITY WITH MULTIPLE SMOOTH QUANTILES INSTEAD OF PARAMETERIZED MEANS

Ian Lundberg*
Brandon M. Stewart*

*Department of Sociology and Office of Population Research, Princeton University, Princeton, NJ, USA
Corresponding Author: Ian Lundberg, ilundberg@princeton.edu
DOI: 10.1177/0081175020931126

Single-number summaries that capture the relationship of socioeconomic outcomes across generations are a cornerstone of economic mobility research. Studies often focus on the intergenerational elasticity (IGE) of income: the coefficient β_1 on parent log income in a model predicting offspring log income (e.g., Aaronson and Mazumder 2008; Björklund and Jäntti 1997; Solon 2004). A large β_1 is often interpreted as evidence that incomes persist to a substantial degree across generations.

Images from this section are from this paper or earlier drafts of it.
Two Implicit Choices

(1) Summary Statistics for the Conditional Distribution
(gets you down to one number per value of x)

and

(2) Assume or Learn a Functional Form
(potentially simplifies the set of summary statistics to a single number)
Visualizing the MG Proposal

Graph:
- **Outcome:** Offspring Income
- **Predictor:** Parent Income

Key Points:
- Geometric Mean
- Arithmetic Mean
- Mitnik and Grusky Proposal
- Classic Intergenerational Elasticity

Legend:
- Bar plots indicating parent income density
- Median

Axes:
- **Y-axis:** $0k - $300k
- **X-axis:** $0k - $200k
Single Summary Statistics Necessarily Mask Information

1. Near equality
2. Distributed
3. A few high earners

Income (thousands of dollars)
Density

Stewart (Princeton)
The Mean is a Normative Choice

- **A. Log**
 - Very sensitive to low incomes
 - Goes to negative infinity when income = 0

- **B. Linear**
 - More income equally valuable at top and bottom

- **C. Inverse hyperbolic sine**
 - Like log, but well-behaved when income = 0

- **D. Log(Income + $5,000)**
 - Concavity between linear and log
A New Proposal

Stewart (Princeton)

Week 5: Simple Linear Regression

Outcome: Offspring Income

$0k
$100k
$200k
$300k

Predictor: Parent Income

90th percentile
75th percentile
50th percentile
25th percentile
10th percentile

$0k $100k $200k

Parent income density

Median
Single Number Summaries

- A key selling point of the conventional IGE, the MG proposal and regression more broadly is the single-number summary.
- Any such summary necessitates a loss of information.
- Even with more complex functional forms, we can always calculate such a summary. For instance here, median is (on average) $4k higher when parent income is $10k higher.
- We obtain this by simply plugging in the 50th percentile at each offspring income, adding $10k to each parent income and taking the average.
- If you are willing to commit to a quantity of interest, you can usually estimate it directly.
- At their best, single-number summaries are a way that the reader can calculate any approximation to a variety of quantities they are interested in. At their worst, they are a way for authors to abdicate responsibility for choosing a clear quantity of interest.
Broader Implications (Lee, Lundberg and Stewart)

Traditional Approach to Visualize Covid–19 Death Rates in US Counties
Covid data from NYTimes github as of 2020/09/07
Demographic data from American Community Survey 2014–2018 5–year estimate

Covid–19 Death Rates in US Counties
Covid data from NYTimes github as of 2020/09/07
Demographic data from American Community Survey 2014–2018 5–year estimate
1. Mechanics of OLS
2. Classical Perspective (Part 1, Unbiasedness)
 - Sampling Distributions
 - Classical Assumptions 1–4
3. Classical Perspective: Variance
 - Sampling Variance
 - Gauss-Markov
 - Large Samples
 - Small Samples
 - Agnostic Perspective
4. Inference
 - Hypothesis Tests
 - Confidence Intervals
 - Goodness of fit
 - Interpretation
5. Non-linearities
 - Log Transformations
 - Fun With Logs
 - LOESS
So what is ggplot2 doing?
LOESS

- We can combine the nonparametric kernel method idea of using only local data with a parametric model
- Idea: fit a linear regression within each band
- Locally weighted scatterplot smoothing (LOWESS or LOESS):
 1. Pick a subset of the data that falls in the interval \([x - h, x + h]\)
 2. Fit a line to this subset of the data (= local linear regression), weighting the points by their distance to \(x\) using a kernel function
 3. Use the fitted regression line to predict the expected value of \(E[Y|X = x_0]\)
LOESS Example
We Covered

- Interpretation with logged independent and dependent variables
- The geometric mean!
This Week in Review

- OLS!
- Classical regression assumptions!
- Inference!
- Logs!

Going Deeper:

Next week: Linear Regression with Two Variables!