Week 6: Linear Regression with Two Regressors

Brandon Stewart

Princeton

October 17, 19, 2016

1These slides are heavily influenced by Matt Blackwell, Adam Glynn and Jens Hainmueller.
Where We’ve Been and Where We’re Going...

Last Week
- mechanics of OLS with one variable
- properties of OLS

This Week
- Monday:
 - adding a second variable
 - new mechanics
- Wednesday:
 - omitted variable bias
 - multicollinearity
 - interactions

Next Week
- multiple regression

Long Run
- probability
- → inference
- → regression

Questions?

Stewart (Princeton)
Where We’ve Been and Where We’re Going...

- **Last Week**
 - mechanics of OLS with one variable
 - properties of OLS
Where We’ve Been and Where We’re Going...

- **Last Week**
 - mechanics of OLS with one variable
 - properties of OLS

- **This Week**
 - Monday:
 - adding a second variable
Where We’ve Been and Where We’re Going...

- Last Week
 - mechanics of OLS with one variable
 - properties of OLS

- This Week
 - Monday:
 - adding a second variable
 - new mechanics

 - Wednesday:
 - omitted variable bias
 - multicollinearity
 - interactions

- Next Week
 - multiple regression

- Long Run
 - probability
 - inference
 - regression

Questions?
Where We’ve Been and Where We’re Going...

- **Last Week**
 - mechanics of OLS with one variable
 - properties of OLS

- **This Week**
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:

- **Next Week**

- **Long Run**
 - probability
 - → inference
 - → regression

Questions?
Where We’ve Been and Where We’re Going…

- Last Week
 - mechanics of OLS with one variable
 - properties of OLS

- This Week
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:
 - omitted variable bias

Next Week

- multiple regression

Long Run

- probability
 - inference
 - regression

Questions?
Where We’ve Been and Where We’re Going...

- **Last Week**
 - mechanics of OLS with one variable
 - properties of OLS

- **This Week**
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:
 - omitted variable bias
 - multicollinearity

- **Next Week**
 - multiple regression

- **Long Run**
 - probability
 - → inference
 - → regression

Questions?

Stewart (Princeton)
Where We’ve Been and Where We’re Going...

- Last Week
 - mechanics of OLS with one variable
 - properties of OLS

- This Week
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:
 - omitted variable bias
 - multicollinearity
 - interactions

Next Week
- multiple regression

Long Run
- probability
- inference
- regression

Questions?
Where We’ve Been and Where We’re Going...

- **Last Week**
 - mechanics of OLS with one variable
 - properties of OLS

- **This Week**
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:
 - omitted variable bias
 - multicollinearity
 - interactions

- **Next Week**
Where We’ve Been and Where We’re Going...

- **Last Week**
 - mechanics of OLS with one variable
 - properties of OLS

- **This Week**
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:
 - omitted variable bias
 - multicollinearity
 - interactions

- **Next Week**
 - multiple regression
Where We’ve Been and Where We’re Going...

- **Last Week**
 - mechanics of OLS with one variable
 - properties of OLS

- **This Week**
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:
 - omitted variable bias
 - multicollinearity
 - interactions

- **Next Week**
 - multiple regression

- **Long Run**
 - probability → inference → regression

Questions?
1 Two Examples
2 Adding a Binary Variable
3 Adding a Continuous Covariate
4 Once More With Feeling
5 OLS Mechanics and Partialing Out
6 Fun With Red and Blue
7 Omitted Variables
8 Multicollinearity
9 Dummy Variables
10 Interaction Terms
11 Polynomials
12 Conclusion
13 Fun With Interactions
Two Examples

Adding a Binary Variable

Adding a Continuous Covariate

Once More With Feeling

OLS Mechanics and Partialing Out

Fun With Red and Blue

Omitted Variables

Multicollinearity

Dummy Variables

Interaction Terms

Polynomials

Conclusion

Fun With Interactions
Why Do We Want More Than One Predictor?

- Summarize more information for descriptive inference
- Improve the fit and predictive power of our model
- Control for confounding factors for causal inference
- Model non-linearities (e.g. $Y = \beta_0 + \beta_1 X + \beta_2 X^2$)
- Model interactive effects (e.g. $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X_1 X_2$)

Stewart (Princeton)

Week 6: Two Regressors

October 17, 19, 2016
Why Do We Want More Than One Predictor?

- Summarize more information for descriptive inference

\[Y = \beta_0 + \beta_1 X + \beta_2 X^2 \]

\[Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X_1 X_2 \]
Why Do We Want More Than One Predictor?

- Summarize more information for descriptive inference
- Improve the fit and predictive power of our model
Why Do We Want More Than One Predictor?

- Summarize more information for descriptive inference
- Improve the fit and predictive power of our model
- Control for confounding factors for causal inference
Why Do We Want More Than One Predictor?

- Summarize more information for descriptive inference
- Improve the fit and predictive power of our model
- Control for confounding factors for causal inference
- Model non-linearities (e.g. $Y = \beta_0 + \beta_1 X + \beta_2 X^2$)
- Model interactive effects (e.g. $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X_1 X_2$)
Why Do We Want More Than One Predictor?

- Summarize more information for descriptive inference
- Improve the fit and predictive power of our model
- Control for confounding factors for causal inference
- Model non-linearities (e.g. $Y = \beta_0 + \beta_1 X + \beta_2 X^2$)
- Model interactive effects (e.g. $Y = \beta_0 + \beta_1 X + \beta_2 X_2 + \beta_3 X_1 X_2$)
Example 1: Cigarette Smokers and Pipe Smokers
Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- \(Y \): Deaths per 1,000 Person-Years.
- \(X_1 \): 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

\[
\hat{\text{Death Rate}} = 17 - 4 \times \text{Cigarette Smoker}
\]

What do we conclude?

The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 - 4) for cigarette smokers. So cigarette smoking lowers the death rate by 4 deaths per 1,000 person-years.

When we “control” for age (in years) we find:

\[
\hat{\text{Death Rate}} = 14 + 4 \times \text{Cigarette Smoker} + 10 \times \text{Age}
\]

Why did the sign switch? Which estimate is more useful?
Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- **Y**: Deaths per 1,000 Person-Years.

We fit the regression and find:

\[
\hat{\text{Death Rate}} = 17 - 4 \text{ Cigarette Smoker}
\]

What do we conclude?

The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 - 4) for cigarette smokers. So cigarette smoking lowers the death rate by 4 deaths per 1,000 person-years.

When we "control" for age (in years) we find:

\[
\hat{\text{Death Rate}} = 14 + 4 \text{ Cigarette Smoker} + 10 \text{ Age}
\]

Why did the sign switch?

Which estimate is more useful?
Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- X_1: 0 if person is pipe smoker; 1 if person is cigarette smoker.

We fit the regression and find:

$$\hat{\text{Death Rate}} = 17 - 4 \text{ Cigarette Smoker}$$

What do we conclude?

The average death rate is 17 deaths per 1,000,000 person-years for pipe smokers and 13 (17 - 4) for cigarette smokers. So cigarette smoking lowers the death rate by 4 deaths per 1,000 person-years.

When we “control” for age (in years) we find:

$$\hat{\text{Death Rate}} = 14 + 4 \text{ Cigarette Smoker} + 10 \text{ Age}$$

Why did the sign switch? Which estimate is more useful?
Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- X_1: 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

$\hat{\text{Death Rate}} = 17 - 4 \times \text{Cigarette Smoker}$

What do we conclude?

The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 - 4) for cigarette smokers. So cigarette smoking lowers the death rate by 4 deaths per 1,000 person-years.

When we “control” for age (in years) we find:

$\hat{\text{Death Rate}} = 14 + 4 \times \text{Cigarette Smoker} + 10 \times \text{Age}$

Why did the sign switch? Which estimate is more useful?
Example 1: Cigarette Smokers and Pipe Smokers
Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- X_1: 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

\[
\hat{\text{Death Rate}} = 17 - 4 \times \text{Cigarette Smoker}
\]

What do we conclude?

The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 - 4) for cigarette smokers. So cigarette smoking lowers the death rate by 4 deaths per 1,000 person-years.

When we “control” for age (in years) we find:

\[
\hat{\text{Death Rate}} = 14 + 4 \times \text{Cigarette Smoker} + 10 \times \text{Age}
\]

Why did the sign switch? Which estimate is more useful?
Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- \(Y \): Deaths per 1,000 Person-Years.
- \(X_1 \): 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

\[
\text{Death Rate} = 17 - 4 \text{ Cigarette Smoker}
\]

What do we conclude?

The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 - 4) for cigarette smokers.

So cigarette smoking lowers the death rate by 4 deaths per 1,000 person-years.

When we "control" for age (in years) we find:

\[
\text{Death Rate} = 14 + 4 \text{ Cigarette Smoker} + 10 \text{ Age}
\]

Why did the sign switch?

Which estimate is more useful?
Example 1: Cigarette Smokers and Pipe Smokers
Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- X_1: 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

$\text{Death Rate} = 17 - 4 \text{ Cigarette Smoker}$

What do we conclude?

The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 - 4) for cigarette smokers. So cigarette smoking lowers the death rate by 4 deaths per 1,000 person-years.

When we “control” for age (in years) we find:

$\hat{\text{Death Rate}} = 14 + 4 \text{ Cigarette Smoker} + 10 \text{ Age}$

Why did the sign switch? Which estimate is more useful?
Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- X_1: 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

$$\hat{\text{Death Rate}} = 17 - 4 \text{ Cigarette Smoker}$$

What do we conclude?

- The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 - 4) for cigarette smokers.
Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- X_1: 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

$$\hat{\text{Death Rate}} = 17 - 4 \text{ Cigarette Smoker}$$

What do we conclude?

- The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 ($17 - 4$) for cigarette smokers.
- So cigarette smoking lowers the death rate by 4 deaths per 1,000 person years.
Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- X₁: 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

\[
\hat{\text{Death Rate}} = 17 - 4 \text{ Cigarette Smoker}
\]

What do we conclude?

- The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 - 4) for cigarette smokers.
- So cigarette smoking lowers the death rate by 4 deaths per 1,000 person years.
Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- **Y**: Deaths per 1,000 Person-Years.
- **X_1**: 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

$$\hat{\text{Death Rate}} = 17 - 4 \times \text{Cigarette Smoker}$$

What do we conclude?

- The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 ($17 - 4$) for cigarette smokers.
- So cigarette smoking lowers the death rate by 4 deaths per 1,000 person years.

When we “control” for age (in years) we find:
Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- X_1: 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

$$\hat{\text{Death Rate}} = 17 - 4 \text{ Cigarette Smoker}$$

What do we conclude?

- The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 - 4) for cigarette smokers.
- So cigarette smoking lowers the death rate by 4 deaths per 1,000 person years.

When we “control” for age (in years) we find:

$$\hat{\text{Death Rate}} = 14 + 4 \text{ Cigarette Smoker} + 10 \text{ Age}$$
Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- **Y**: Deaths per 1,000 Person-Years.
- **X₁**: 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

\[
\hat{\text{Death Rate}} = 17 - 4 \text{ Cigarette Smoker}
\]

What do we conclude?

- The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 - 4) for cigarette smokers.
- So cigarette smoking lowers the death rate by 4 deaths per 1,000 person years.

When we “control” for age (in years) we find:

\[
\hat{\text{Death Rate}} = 14 + 4 \text{ Cigarette Smoker} + 10 \text{ Age}
\]

Why did the sign switch?
Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- X_1: 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

$$\hat{\text{Death Rate}} = 17 - 4 \text{ Cigarette Smoker}$$

What do we conclude?

- The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 - 4) for cigarette smokers.
- So cigarette smoking lowers the death rate by 4 deaths per 1,000 person-years.

When we “control” for age (in years) we find:

$$\hat{\text{Death Rate}} = 14 + 4 \text{ Cigarette Smoker} + 10 \text{ Age}$$

Why did the sign switch? Which estimate is more useful?
Example 2: Berkeley Graduate Admissions
Berkeley gender bias?

Graduate admissions data from Berkeley, 1973

Acceptance rates:
- Men: 8442 applicants, 44% admission rate
- Women: 4321 applicants, 35% admission rate

Evidence of discrimination toward women in admissions?

This is a marginal relationship

What about the conditional relationship within departments?
Berkeley gender bias?

- Graduate admissions data from Berkeley, 1973

Acceptance rates:
- Men: 8442 applicants, 44% admission rate
- Women: 4321 applicants, 35% admission rate

Evidence of discrimination toward women in admissions? This is a marginal relationship

What about the conditional relationship within departments?
Berkeley gender bias?

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:
Berkeley gender bias?

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:
 - Men: 8442 applicants, 44% admission rate
Berkeley gender bias?

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:
 - Men: 8442 applicants, 44% admission rate
 - Women: 4321 applicants, 35% admission rate
Berkeley gender bias?

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:
 - Men: 8442 applicants, 44% admission rate
 - Women: 4321 applicants, 35% admission rate
- Evidence of discrimination toward women in admissions?
Berkeley gender bias?

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:
 - Men: 8442 applicants, 44% admission rate
 - Women: 4321 applicants, 35% admission rate
- Evidence of discrimination toward women in admissions?
- This is a marginal relationship
Berkeley gender bias?

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:
 - Men: 8442 applicants, 44% admission rate
 - Women: 4321 applicants, 35% admission rate
- Evidence of discrimination toward women in admissions?
- This is a marginal relationship
- What about the conditional relationship within departments?
Berkeley gender bias?

- Within departments:

<table>
<thead>
<tr>
<th>Dept</th>
<th>Men Applied</th>
<th>Men Admitted</th>
<th>Women Applied</th>
<th>Women Admitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>825</td>
<td>62%</td>
<td>108</td>
<td>82%</td>
</tr>
</tbody>
</table>

Within departments, women do somewhat better than men! How? Women apply to more challenging departments.

Marginal relationships (admissions and gender) \neq conditional relationship given third variable (department)
Berkeley gender bias?

- Within departments:

<table>
<thead>
<tr>
<th>Dept</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Applied</td>
<td>Admitted</td>
</tr>
<tr>
<td>A</td>
<td>825</td>
<td>62%</td>
</tr>
</tbody>
</table>

Within departments, women do somewhat better than men! How? Women apply to more challenging departments.

Marginal relationships (admissions and gender) \neq conditional relationship given third variable (department)
Berkeley gender bias?

- Within departments:

<table>
<thead>
<tr>
<th>Dept</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Applied</td>
<td>Admitted</td>
</tr>
<tr>
<td>A</td>
<td>825 62%</td>
<td>108 82%</td>
</tr>
<tr>
<td>B</td>
<td>560 63%</td>
<td>25 68%</td>
</tr>
</tbody>
</table>

Within departments, women do somewhat better than men! How? Women apply to more challenging departments.

Marginal relationships (admissions and gender) \(\neq \) conditional relationship given third variable (department)
Berkeley gender bias?

- Within departments:

<table>
<thead>
<tr>
<th>Dept</th>
<th>Men Applied</th>
<th>Men Admitted</th>
<th>Women Applied</th>
<th>Women Admitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>825</td>
<td>62%</td>
<td>108</td>
<td>82%</td>
</tr>
<tr>
<td>B</td>
<td>560</td>
<td>63%</td>
<td>25</td>
<td>68%</td>
</tr>
<tr>
<td>C</td>
<td>325</td>
<td>37%</td>
<td>593</td>
<td>34%</td>
</tr>
</tbody>
</table>
Berkeley gender bias?

- Within departments:

<table>
<thead>
<tr>
<th>Dept</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Applied</td>
<td>Admitted</td>
</tr>
<tr>
<td>A</td>
<td>825</td>
<td>62%</td>
</tr>
<tr>
<td>B</td>
<td>560</td>
<td>63%</td>
</tr>
<tr>
<td>C</td>
<td>325</td>
<td>37%</td>
</tr>
<tr>
<td>D</td>
<td>417</td>
<td>33%</td>
</tr>
<tr>
<td>E</td>
<td>191</td>
<td>28%</td>
</tr>
<tr>
<td>F</td>
<td>373</td>
<td>6%</td>
</tr>
</tbody>
</table>
Berkeley gender bias?

- Within departments:

<table>
<thead>
<tr>
<th>Dept</th>
<th>Applied</th>
<th>Admitted</th>
<th>Applied</th>
<th>Admitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>825</td>
<td>62%</td>
<td>108</td>
<td>82%</td>
</tr>
<tr>
<td>B</td>
<td>560</td>
<td>63%</td>
<td>25</td>
<td>68%</td>
</tr>
<tr>
<td>C</td>
<td>325</td>
<td>37%</td>
<td>593</td>
<td>34%</td>
</tr>
<tr>
<td>D</td>
<td>417</td>
<td>33%</td>
<td>375</td>
<td>35%</td>
</tr>
<tr>
<td>E</td>
<td>191</td>
<td>28%</td>
<td>393</td>
<td>24%</td>
</tr>
<tr>
<td>F</td>
<td>373</td>
<td>6%</td>
<td>341</td>
<td>7%</td>
</tr>
</tbody>
</table>

- Within departments, women do somewhat better than men!
Berkeley gender bias?

- Within departments:

<table>
<thead>
<tr>
<th>Dept</th>
<th>Applied</th>
<th>Admitted</th>
<th>Applied</th>
<th>Admitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>825</td>
<td>62%</td>
<td>108</td>
<td>82%</td>
</tr>
<tr>
<td>B</td>
<td>560</td>
<td>63%</td>
<td>25</td>
<td>68%</td>
</tr>
<tr>
<td>C</td>
<td>325</td>
<td>37%</td>
<td>593</td>
<td>34%</td>
</tr>
<tr>
<td>D</td>
<td>417</td>
<td>33%</td>
<td>375</td>
<td>35%</td>
</tr>
<tr>
<td>E</td>
<td>191</td>
<td>28%</td>
<td>393</td>
<td>24%</td>
</tr>
<tr>
<td>F</td>
<td>373</td>
<td>6%</td>
<td>341</td>
<td>7%</td>
</tr>
</tbody>
</table>

- Within departments, women do somewhat better than men!
- How? Women apply to more challenging departments.
Berkeley gender bias?

- Within departments:

<table>
<thead>
<tr>
<th>Dept</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Applied</td>
<td>Admitted</td>
</tr>
<tr>
<td>A</td>
<td>825</td>
<td>62%</td>
</tr>
<tr>
<td>B</td>
<td>560</td>
<td>63%</td>
</tr>
<tr>
<td>C</td>
<td>325</td>
<td>37%</td>
</tr>
<tr>
<td>D</td>
<td>417</td>
<td>33%</td>
</tr>
<tr>
<td>E</td>
<td>191</td>
<td>28%</td>
</tr>
<tr>
<td>F</td>
<td>373</td>
<td>6%</td>
</tr>
</tbody>
</table>

- Within departments, women do somewhat better than men!
- How? Women apply to more challenging departments.
- Marginal relationships (admissions and gender) ≠ conditional relationship given third variable (department)
Simpson’s paradox

Overall a positive relationship between Y_i and X_i here
Overall a positive relationship between Y_i and X_i here
But within strata defined by Z_i, the opposite
Simpson’s paradox

Simpson’s paradox arises in many contexts—particularly where there is selection on ability. It is a particular problem in medical or demographic contexts, e.g., kidney stones, low-birth weight paradox. Cochran’s 1968 study is also a case of Simpson’s paradox; he originally sought to compare cigarette to cigar smoking, he found that cigar smokers had higher mortality rates than cigarette smokers, but at any age level, cigarette smokers had higher mortality than cigar smokers.
Simpson’s paradox

- Simpson’s paradox arises in many contexts—particularly where there is selection on ability.
Simpson’s paradox

- Simpson’s paradox arises in many contexts—particularly where there is selection on ability.
- It is a particular problem in medical or demographic contexts, e.g. kidney stones, low-birth weight paradox.

Cochran’s 1968 study is also a case of Simpson’s paradox; he originally sought to compare cigarette to cigar smoking, he found that cigar smokers had higher mortality rates than cigarette smokers, but at any age level, cigarette smokers had higher mortality than cigar smokers.
Simpson’s paradox

- Simpson’s paradox arises in many contexts particularly where there is selection on ability.
- It is a particular problem in medical or demographic contexts, e.g. kidney stones, low-birth weight paradox.
- Cochran’s 1968 study is also a case of Simpson’s paradox, he originally sought to compare cigarette to cigar smoking, he found that cigar smokers had higher mortality rates than cigarette smokers, but at any age level, cigarette smokers had higher mortality than cigar smokers.
Simpson’s paradox

• Simpson’s paradox arises in many contexts—particularly where there is selection on ability.
• It is a particular problem in medical or demographic contexts, e.g. kidney stones, low-birth weight paradox.
• Cochran’s 1968 study is also a case of Simpson’s paradox, he originally sought to compare cigarette to cigar smoking, he found that cigar smokers had higher mortality rates than cigarette smokers, but at any age level, cigarette smokers had higher mortality than cigar smokers.

Instance of a more general problem called the ecological inference fallacy
Basic idea

- Old goal: estimate the mean of Y as a function of some independent variable, X:

$$E[Y_i|X_i]$$
Basic idea

- Old goal: estimate the mean of Y as a function of some independent variable, X:
 $$
 \mathbb{E}[Y_i|X_i]
 $$
- For continuous X’s, we modeled the CEF/regression function with a line:
 $$
 Y_i = \beta_0 + \beta_1 X_i + u_i
 $$
Basic idea

- Old goal: estimate the mean of Y as a function of some independent variable, X:
 \[\mathbb{E}[Y_i | X_i] \]

- For continuous X’s, we modeled the CEF/regression function with a line:
 \[Y_i = \beta_0 + \beta_1 X_i + u_i \]

- New goal: estimate the relationship of two variables, Y_i and X_i, conditional on a third variable, Z_i:
 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]
Basic idea

- Old goal: estimate the mean of Y as a function of some independent variable, X:
 \[\mathbb{E}[Y_i|X_i] \]

- For continuous X’s, we modeled the CEF/regression function with a line:
 \[Y_i = \beta_0 + \beta_1 X_i + u_i \]

- New goal: estimate the relationship of two variables, Y_i and X_i, conditional on a third variable, Z_i:
 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]

- β’s are the population parameters we want to estimate
Why control for another variable

- Descriptive
Why control for another variable

- **Descriptive**
 - get a sense for the relationships in the data.

- **Predictive**
 - We can usually make better predictions about the dependent variable with more information on independent variables.

- **Causal**
 - Block potential confounding, which is when X doesn’t cause Y, but only appears to because a third variable Z causally affects both of them.

 X_i: ice cream sales on day i
 Y_i: drowning deaths on day i
 Z_i: ??
Why control for another variable

- **Descriptive**
 - get a sense for the relationships in the data.
 - describe more precisely our quantity of interest
Why control for another variable

- Descriptive
 - get a sense for the relationships in the data.
 - describe more precisely our quantity of interest

- Predictive
Why control for another variable

- **Descriptive**
 - get a sense for the relationships in the data.
 - describe more precisely our quantity of interest

- **Predictive**
 - We can usually make better predictions about the dependent variable with more information on independent variables.
Why control for another variable

- **Descriptive**
 - get a sense for the relationships in the data.
 - describe more precisely our quantity of interest

- **Predictive**
 - We can usually make better predictions about the dependent variable with more information on independent variables.

- **Causal**
Why control for another variable

- **Descriptive**
 - get a sense for the relationships in the data.
 - describe more precisely our quantity of interest

- **Predictive**
 - We can usually make better predictions about the dependent variable with more information on independent variables.

- **Causal**
 - Block potential *confounding*, which is when X doesn’t cause Y, but only appears to because a third variable Z causally affects both of them.
Why control for another variable

- **Descriptive**
 - get a sense for the relationships in the data.
 - describe more precisely our quantity of interest

- **Predictive**
 - We can usually make better predictions about the dependent variable with more information on independent variables.

- **Causal**
 - Block potential confounding, which is when X doesn’t cause Y, but only appears to because a third variable Z causally affects both of them.
 - X_i: ice cream sales on day i
Why control for another variable

- **Descriptive**
 - get a sense for the relationships in the data.
 - describe more precisely our quantity of interest

- **Predictive**
 - We can usually make better predictions about the dependent variable with more information on independent variables.

- **Causal**
 - Block potential **confounding**, which is when X doesn’t cause Y, but only appears to because a third variable Z causally affects both of them.
 - X_i: ice cream sales on day i
 - Y_i: drowning deaths on day i
Why control for another variable

- **Descriptive**
 - get a sense for the relationships in the data.
 - describe more precisely our quantity of interest

- **Predictive**
 - We can usually make better predictions about the dependent variable with more information on independent variables.

- **Causal**
 - Block potential *con founding*, which is when X doesn’t cause Y, but only appears to because a third variable Z causally affects both of them.
 - X_i: ice cream sales on day i
 - Y_i: drowning deaths on day i
 - Z_i: ??
Two Examples

Adding a Binary Variable

Adding a Continuous Covariate

Once More With Feeling

OLS Mechanics and Partialing Out

Fun With Red and Blue

Omitted Variables

Multicollinearity

Dummy Variables

Interaction Terms

Polynomials

Conclusion

Fun With Interactions
Two Examples

2 Adding a Binary Variable

3 Adding a Continuous Covariate

4 Once More With Feeling

5 OLS Mechanics and Partialing Out

6 Fun With Red and Blue

7 Omitted Variables

8 Multicollinearity

9 Dummy Variables

10 Interaction Terms

11 Polynomials

12 Conclusion

13 Fun With Interactions
Regression with Two Explanatory Variables

Regression with Two Explanatory Variables

- Variables of interest:
 - Y: Level of democracy, measured as the 10-year average of Freedom House ratings

Regression with Two Explanatory Variables

- **Variables of interest:**
 - Y: Level of democracy, measured as the 10-year average of Freedom House ratings
 - X_1: Country income, measured as log(GDP per capita in $1000s)
Regression with Two Explanatory Variables

- Variables of interest:
 - Y: Level of democracy, measured as the 10-year average of Freedom House ratings
 - X_1: Country income, measured as $\log(\text{GDP per capita in } $1000s)$
 - X_2: Ethnic heterogeneity (continuous) or British colonial heritage (binary)
Regression with Two Explanatory Variables

- Variables of interest:
 - Y: Level of democracy, measured as the 10-year average of Freedom House ratings
 - X_1: Country income, measured as $\log(\text{GDP per capita in } \$1000\text{s})$
 - X_2: Ethnic heterogeneity (continuous) or British colonial heritage (binary)

- With one predictor we ask: Does income (X_1) predict or explain the level of democracy (Y)?
Regression with Two Explanatory Variables

● Variables of interest:
 ▶ Y: Level of democracy, measured as the 10-year average of Freedom House ratings
 ▶ X_1: Country income, measured as log(GDP per capita in $1000s)
 ▶ X_2: Ethnic heterogeneity (continuous) or British colonial heritage (binary)

● With one predictor we ask: Does income (X_1) predict or explain the level of democracy (Y)?

With two predictors we ask questions like: Does income (X_1) predict or explain the level of democracy (Y), once we “control” for ethnic heterogeneity or British colonial heritage (X_2)?

The rest of this lecture is designed to explain what is meant by “controlling for another variable” with linear regression.
Regression with Two Explanatory Variables

- **Variables of interest:**
 - Y: Level of democracy, measured as the 10-year average of Freedom House ratings
 - X_1: Country income, measured as log(GDP per capita in $1000s)
 - X_2: Ethnic heterogeneity (continuous) or British colonial heritage (binary)

- **With one predictor we ask:** Does income (X_1) predict or explain the level of democracy (Y)?

- **With two predictors we ask questions like:** Does income (X_1) predict or explain the level of democracy (Y), once we “control” for ethnic heterogeneity or British colonial heritage (X_2)?
Regression with Two Explanatory Variables

- **Variables of interest:**
 - Y: Level of democracy, measured as the 10-year average of Freedom House ratings
 - X_1: Country income, measured as log(GDP per capita in $1000s)
 - X_2: Ethnic heterogeneity (continuous) or British colonial heritage (binary)

 - With one predictor we ask: Does income (X_1) predict or explain the level of democracy (Y)?

 - With two predictors we ask questions like: Does income (X_1) predict or explain the level of democracy (Y), once we “control” for ethnic heterogeneity or British colonial heritage (X_2)?

 - The rest of this lecture is designed to explain what is meant by “controlling for another variable” with linear regression.
Let’s look at the bivariate regression of Democracy on Income:

\[\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_1 \]

\[\hat{\text{Demo}} = -1.26 + 1.6 \log(\text{GDP}) \]

Additive Linear Regression
- Linear Regression with Interaction terms
- Regression with one continuous and one dummy variable
- Additive regression with two continuous variables

Interpretation:
A one percent increase in GDP is associated with a \(0.016 \) point increase in democracy.
Simple Regression of Democracy on Income

Let’s look at the bivariate regression of Democracy on Income:

\[\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_1 \]

\[\hat{\text{Demo}} = -1.26 + 1.6 \log(GDP) \]
Let’s look at the bivariate regression of Democracy on Income:

\[\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_1 \]

\[\overline{Demo} = -1.26 + 1.6 \log(GDP) \]

Interpretation:
Simple Regression of Democracy on Income

Let’s look at the bivariate regression of Democracy on Income:

\[\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_1 \]

\[\bar{\text{Demo}} = -1.26 + 1.6 \log(GDP) \]

Interpretation: A one percent increase in GDP is associated with a .016 point increase in democracy.
Simple Regression of Democracy on Income

- But we can use more information in our prediction equation.

![Graph of Democracy vs. Income]
Simple Regression of Democracy on Income

- But we can use more information in our prediction equation.
- For example, some countries were originally British colonies and others were not:

\[
\hat{y}_i = \hat{\beta}_0 + x_i \hat{\beta}_1
\]
Simple Regression of Democracy on Income

- But we can use more information in our prediction equation.

- For example, some countries were originally British colonies and others were not:
 - Former British colonies tend to have higher levels of democracy
 - Non-colony countries tend to have lower levels of democracy
Simple Regression of Democracy on Income

- But we can use more information in our prediction equation.

- For example, some countries were originally British colonies and others were not:
 - Former British colonies tend to have higher levels of democracy
 - Non-colony countries tend to have lower levels of democracy
Adding a Covariate

How do we do this? We can generalize the prediction equation:

\[\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} \]

This implies that we want to predict \(y \) using the information we have about \(x_1 \) and \(x_2 \), and we are assuming a linear functional form.

Notice that now we write \(X_{ji} \) where:

- \(j = 1, \ldots, k \) is the index for the explanatory variables
- \(i = 1, \ldots, n \) is the index for the observation

In words:

\[\hat{\text{Democracy}} = \hat{\beta}_0 + \hat{\beta}_1 \log(\text{GDP}) + \hat{\beta}_2 \text{Colony} \]
Adding a Covariate

How do we do this? We can generalize the prediction equation:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i}$$

This implies that we want to predict \(y \) using the information we have about \(x_1 \) and \(x_2 \), and we are assuming a linear functional form.
Adding a Covariate

How do we do this? We can generalize the prediction equation:

\[\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} \]

This implies that we want to predict \(y \) using the information we have about \(x_1 \) and \(x_2 \), and we are assuming a linear functional form.

Notice that now we write \(X_{ji} \) where:

- \(j = 1, \ldots, k \) is the index for the explanatory variables
Adding a Covariate

How do we do this? We can generalize the prediction equation:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i}$$

This implies that we want to predict y using the information we have about x_1 and x_2, and we are assuming a linear functional form.

Notice that now we write X_{ji} where:

- $j = 1, \ldots, k$ is the index for the explanatory variables
- $i = 1, \ldots, n$ is the index for the observation
Adding a Covariate

How do we do this? We can generalize the prediction equation:

\[\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i} \]

This implies that we want to predict \(y \) using the information we have about \(x_1 \) and \(x_2 \), and we are assuming a linear functional form.

Notice that now we write \(X_{ji} \) where:

- \(j = 1, \ldots, k \) is the index for the explanatory variables
- \(i = 1, \ldots, n \) is the index for the observation
- we often omit \(i \) to avoid clutter
Adding a Covariate

How do we do this? We can generalize the prediction equation:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i}$$

This implies that we want to predict y using the information we have about x_1 and x_2, and we are assuming a linear functional form.

Notice that now we write X_{ji} where:

- $j = 1, \ldots, k$ is the index for the explanatory variables
- $i = 1, \ldots, n$ is the index for the observation
- we often omit i to avoid clutter

In words:

$$\text{Democracy} = \hat{\beta}_0 + \hat{\beta}_1 \log(\text{GDP}) + \hat{\beta}_2 \text{Colony}$$
Interpreting a Binary Covariate

Assume X_2 indicates whether country i used to be a British colony. When $X_2 = 0$, the model becomes:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

When $X_2 = 1$, the model becomes:

$$\hat{y} = (\hat{\beta}_0 + \hat{\beta}_2) + \hat{\beta}_1 x_1$$

What does this mean? We are fitting two lines with the same slope but different intercepts.
Interpreting a Binary Covariate

Assume X_{2i} indicates whether country i used to be a British colony.

When $X_2 = 0$, the model becomes:

When $X_2 = 1$, the model becomes:

What does this mean?

We are fitting two lines with the same slope but different intercepts.
Interpreting a Binary Covariate

Assume X_{2i} indicates whether country i used to be a British colony.

When $X_2 = 0$, the model becomes:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 0$$

$$= \hat{\beta}_0 + \hat{\beta}_1 x_1$$

What does this mean?

We are fitting two lines with the same slope but different intercepts.
Interpreting a Binary Covariate

Assume X_{2i} indicates whether country i used to be a British colony.

When $X_2 = 0$, the model becomes:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1x_1 + \hat{\beta}_20$$

$$= \hat{\beta}_0 + \hat{\beta}_1x_1$$

When $X_2 = 1$, the model becomes:
Interpreting a Binary Covariate

Assume X_{2i} indicates whether country i used to be a British colony.

When $X_2 = 0$, the model becomes:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 0$$
$$= \hat{\beta}_0 + \hat{\beta}_1 x_1$$

When $X_2 = 1$, the model becomes:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 1$$
$$= (\hat{\beta}_0 + \hat{\beta}_2) + \hat{\beta}_1 x_1$$

What does this mean?
Interpreting a Binary Covariate

Assume X_{2i} indicates whether country i used to be a British colony.

When $X_2 = 0$, the model becomes:

$$
\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 0
= \hat{\beta}_0 + \hat{\beta}_1 x_1
$$

When $X_2 = 1$, the model becomes:

$$
\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 1
= (\hat{\beta}_0 + \hat{\beta}_2) + \hat{\beta}_1 x_1
$$

What does this mean? We are fitting two lines with the same slope but different intercepts.
Regression of Democracy on Income

From R, we obtain estimates $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$:

Coefficients:

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-1.5060</td>
</tr>
<tr>
<td>GDP90LGN</td>
<td>1.7059</td>
</tr>
<tr>
<td>BRITCOL</td>
<td>0.5881</td>
</tr>
</tbody>
</table>

Non-British colonies:

$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

British colonies:

$\hat{y}_i = (\hat{\beta}_0 + \hat{\beta}_2) + \hat{\beta}_1 x_i$

Additive Linear Regression

Linear Regression with Interaction terms

Regression with one continuous and one dummy variable

Additive regression with two continuous variables

Inference for Slopes

What does this mean?

Using R, we obtain estimates for $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$:

```
library(lm)
reg <- lm(Democracy ~ Income + BritishColony)
summary(reg)
```

```
Coefficients:
  Estimate  Std. Error t value  Pr(>|t|)
(Intercept) -1.52731    0.05432 -28.150   < 2e-16 ***
Income      1.71131    0.05432  31.538   < 2e-16 ***
BritishColony 0.59201    0.05432  10.977   < 2e-16 ***
```

2.0 2.5 3.0 3.5 4.0 4.5

1 2 3 4 5 6 ...

●
●
●
●
● ●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
Regression of Democracy on Income

From R, we obtain estimates $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$:

Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-1.5060</td>
</tr>
<tr>
<td>GDP90LGN</td>
<td>1.7059</td>
</tr>
<tr>
<td>BRITCOL</td>
<td>0.5881</td>
</tr>
</tbody>
</table>

- Non-British colonies:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$
$$\hat{y} = -1.5 + 1.7 x_1$$
Regression of Democracy on Income

From R, we obtain estimates \(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2:\)

Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-1.5060</td>
</tr>
<tr>
<td>GDP90LGN</td>
<td>1.7059</td>
</tr>
<tr>
<td>BRITCOL</td>
<td>0.5881</td>
</tr>
</tbody>
</table>

- **Non-British colonies:**
 \[
 \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 \\
 \hat{y} = -1.5 + 1.7 x_1
 \]

- **Former British colonies:**
 \[
 \hat{y} = (\hat{\beta}_0 + \hat{\beta}_2) + \hat{\beta}_1 x_1 \\
 \hat{y} = -0.92 + 1.7 x_1
 \]
Regression of Democracy on Income

Our prediction equation is:
\[\hat{y} = -1.5 + 1.7 x_1 + .58 x_2 \]

Where do these quantities appear on the graph?

\[\hat{\beta}_0 = -1.5 \] is the intercept for the prediction line for non-British colonies.
\[\hat{\beta}_1 = 1.7 \] is the slope for both lines.
\[\hat{\beta}_2 = .58 \] is the vertical distance between the two lines for Ex-British colonies and non-colonies respectively.
Regression of Democracy on Income

Our prediction equation is:
\[\hat{y} = -1.5 + 1.7 x_1 + 0.58 x_2 \]

Where do these quantities appear on the graph?

- \(\hat{\beta}_0 = -1.5 \) is the intercept for the prediction line for non-British colonies.
Regression of Democracy on Income

Our prediction equation is:
\[\hat{y} = -1.5 + 1.7 x_1 + .58 x_2 \]

Where do these quantities appear on the graph?

- \(\hat{\beta}_0 = -1.5 \) is the intercept for the prediction line for non-British colonies.
- \(\hat{\beta}_1 = 1.7 \) is the slope for both lines.
- \(\hat{\beta}_2 = .58 \) is the vertical distance between the two lines for Ex-British colonies and non-colonies respectively.
Regression of Democracy on Income

Our prediction equation is:
\[\hat{y} = -1.5 + 1.7 x_1 + .58 x_2 \]

Where do these quantities appear on the graph?

- \(\hat{\beta}_0 = -1.5 \) is the intercept for the prediction line for non-British colonies.
- \(\hat{\beta}_1 = 1.7 \) is the slope for both lines.
- \(\hat{\beta}_2 = .58 \) is the vertical distance between the two lines for Ex-British colonies and non-colonies respectively.
Two Examples

3 Adding a Continuous Covariate

4 Once More With Feeling

5 OLS Mechanics and Partialing Out

6 Fun With Red and Blue

7 Omitted Variables

8 Multicollinearity

9 Dummy Variables

10 Interaction Terms

11 Polynomials

12 Conclusion

13 Fun With Interactions
We have considered an example of multiple regression with one continuous explanatory variable and one binary explanatory variable.
Fitting a regression plane

- We have considered an example of multiple regression with one continuous explanatory variable and one binary explanatory variable.

- This is easy to represent graphically in two dimensions because we can use colors to distinguish the two groups in the data.
Regression of Democracy on Income

These observations are actually located in a three-dimensional space.
Regression of Democracy on Income

- These observations are actually located in a three-dimensional space.
- We can try to represent this using a 3D scatterplot.
Regression of Democracy on Income

- These observations are actually located in a three-dimensional space.
- We can try to represent this using a 3D scatterplot.
- In this view, we are looking at the data from the Income side; the two regression lines are drawn in the appropriate locations.
Regression of Democracy on Income

- We can also look at the 3D scatterplot from the **British colony side**.

![3D Scatterplot](image-url)
Regression of Democracy on Income

- We can also look at the 3D scatterplot from the British colony side.
- While the British colonial status variable is either 0 or 1, there is nothing in the prediction equation that requires this to be the case.
We can also look at the 3D scatterplot from the British colony side.

While the British colonial status variable is either 0 or 1, there is nothing in the prediction equation that requires this to be the case.

In fact, the prediction equation defines a regression plane that connects the lines when $x_2 = 0$ and $x_2 = 1$.
Regression with two continuous variables

- Since we fit a regression plane to the data whenever we have two explanatory variables, it is easy to move to a case with two continuous explanatory variables.

\[
\hat{\text{Democracy}} = \hat{\beta}_0 + \hat{\beta}_1 \text{Income} + \hat{\beta}_2 \text{Ethnic Heterogeneity}
\]
Regression with two continuous variables

- Since we fit a regression plane to the data whenever we have two explanatory variables, it is easy to move to a case with two continuous explanatory variables.

- For example, we might want to use:
 - X_1 Income and X_2 Ethnic Heterogeneity
 - Y Democracy

\[
\hat{\text{Democracy}} = \hat{\beta}_0 + \hat{\beta}_1 \text{Income} + \hat{\beta}_2 \text{Ethnic Heterogeneity}
\]
We can plot the points in a 3D scatterplot.

\[\hat{\beta}_0 = -0.71 \]
\[\hat{\beta}_1 = 1.67 \]
\[\hat{\beta}_2 = -0.63 \]

These estimates define a regression plane through the data.
Regression of Democracy on Income

- We can plot the points in a 3D scatterplot.
- R returns:
 - $\hat{\beta}_0 = -0.71$
 - $\hat{\beta}_1 = 1.6$ for Income
 - $\hat{\beta}_2 = -0.6$ for Ethnic Heterogeneity

How does this look graphically?
Regression of Democracy on Income

- We can plot the points in a 3D scatterplot.
- R returns:
 - $\hat{\beta}_0 = -0.71$
 - $\hat{\beta}_1 = 1.6$ for Income
 - $\hat{\beta}_2 = -0.6$ for Ethnic Heterogeneity

How does this look graphically?

These estimates define a regression plane through the data.
Regression of Democracy on Income

- We can plot the points in a 3D scatterplot.
- R returns:
 - \(\hat{\beta}_0 = -0.71 \)
 - \(\hat{\beta}_1 = 1.6 \) for Income
 - \(\hat{\beta}_2 = -0.6 \) for Ethnic Heterogeneity

How does this look graphically?

- These estimates define a regression plane through the data.
Interpreting a Continuous Covariate

- The coefficient estimates have a similar interpretation in this case as they did in the Income-British Colony example.

\[\hat{\beta}_1 = 1.6 \] represents our prediction of the difference in Democracy between two observations that differ by one unit of Income but have the same value of Ethnic Heterogeneity.

The slope estimates have partial effect or ceteris paribus interpretations:

\[\frac{\partial (y = \beta_0 + \beta_1 X_1 + \beta_2 X_2)}{\partial X_1} = \beta_1 \]
Interpreting a Continuous Covariate

- The coefficient estimates have a similar interpretation in this case as they did in the Income-British Colony example.

- For example, $\hat{\beta}_1 = 1.6$ represents our prediction of the difference in Democracy between two observations that differ by one unit of Income but have the same value of Ethnic Heterogeneity.
Interpreting a Continuous Covariate

- The coefficient estimates have a similar interpretation in this case as they did in the Income-British Colony example.

- For example, $\hat{\beta}_1 = 1.6$ represents our prediction of the difference in Democracy between two observations that differ by one unit of Income but have the same value of Ethnic Heterogeneity.

- The slope estimates have partial effect or ceteris paribus interpretations:

$$\frac{\partial(y = \beta_0 + \beta_1 X_1 + \beta_2 X_2)}{\partial X_1} =$$
Interpreting a Continuous Covariate

- The coefficient estimates have a similar interpretation in this case as they did in the Income-British Colony example.

- For example, $\hat{\beta}_1 = 1.6$ represents our prediction of the difference in Democracy between two observations that differ by one unit of Income but have the same value of Ethnic Heterogeneity.

- The slope estimates have partial effect or ceteris paribus interpretations:

$$\frac{\partial (y = \beta_0 + \beta_1 X_1 + \beta_2 X_2)}{\partial X_1} = \beta_1$$
Again, we can think of this as defining a regression line for the relationship between Democracy and Income at every level of Ethnic Heterogeneity.
Interpreting a Continuous Covariate

- Again, we can think of this as defining a regression line for the relationship between Democracy and Income at every level of Ethnic Heterogeneity.

- All of these lines are parallel since they have the slope $\hat{\beta}_1 = 1.6$.

![Graph showing parallel regression lines with varying income levels for different ethnic heterogeneity values.]
Interpreting a Continuous Covariate

- Again, we can think of this as defining a regression line for the relationship between Democracy and Income at every level of Ethnic Heterogeneity.
- All of these lines are parallel since they have the slope $\hat{\beta}_1 = 1.6$.
- The lines shift up or down based on the value of Ethnic Heterogeneity.
Interpreting a Continuous Covariate

- Again, we can think of this as defining a regression line for the relationship between Democracy and Income at every level of Ethnic Heterogeneity.
- All of these lines are parallel since they have the slope $\hat{\beta}_1 = 1.6$
- The lines shift up or down based on the value of Ethnic Heterogeneity.
More Complex Predictions

We can also use the coefficient estimates for more complex predictions that involve changing multiple variables simultaneously.

Consider our results for the regression of democracy on X_1 (income) and X_2 (ethnic heterogeneity):

\[
\hat{\beta}_0 = -0.71
\]

\[
\hat{\beta}_1 = 1.6
\]

\[
\hat{\beta}_2 = -0.6
\]

What is the predicted difference in democracy between Chile with $X_1 = 3.5$ and $X_2 = .06$ and China with $X_1 = 2.5$ and $X_2 = .5$?

Predicted democracy is

\[
\hat{\beta}_1 \cdot 3.5 - \hat{\beta}_2 \cdot 0.06 = 4.8
\]

for Chile and

\[
\hat{\beta}_1 \cdot 2.5 - \hat{\beta}_2 \cdot 0.5 = 3
\]

for China. Predicted difference is thus: 1.8 or $(3.5 - 2.5) \hat{\beta}_1 + (0.06 - 0.5) \hat{\beta}_2$.
More Complex Predictions

- We can also use the coefficient estimates for more complex predictions that involve changing multiple variables simultaneously.

- Consider our results for the regression of democracy on X_1 income and X_2 ethnic heterogeneity:
 - $\hat{\beta}_0 = -0.71$
 - $\hat{\beta}_1 = 1.6$
 - $\hat{\beta}_2 = -0.6$

What is the predicted difference in democracy between Chile with $X_1 = 3.5$ and $X_2 = 0.06$ and China with $X_1 = 2.5$ and $X_2 = 0.5$?

Predicted democracy is $\hat{\beta}_0 + \hat{\beta}_1 \cdot 3.5 - \hat{\beta}_2 \cdot 0.06 = 4.8$ for Chile and $\hat{\beta}_0 + \hat{\beta}_1 \cdot 2.5 - \hat{\beta}_2 \cdot 0.5 = 3$ for China. Predicted difference is thus: 1.8 or $(3.5 - 2.5) \cdot 0.06$.

More Complex Predictions

- We can also use the coefficient estimates for more complex predictions that involve changing multiple variables simultaneously.

- Consider our results for the regression of democracy on X_1 income and X_2 ethnic heterogeneity:
 - $\hat{\beta}_0 = -0.71$
 - $\hat{\beta}_1 = 1.6$
 - $\hat{\beta}_2 = -0.6$

- What is the predicted difference in democracy between
 - Chile with $X_1 = 3.5$ and $X_2 = 0.06$
 - China with $X_1 = 2.5$ and $X_2 = 0.5$?
More Complex Predictions

- We can also use the coefficient estimates for more complex predictions that involve changing multiple variables simultaneously.

- Consider our results for the regression of democracy on X_1 income and X_2 ethnic heterogeneity:
 - $\hat{\beta}_0 = -0.71$
 - $\hat{\beta}_1 = 1.6$
 - $\hat{\beta}_2 = -0.6$

- What is the predicted difference in democracy between
 - Chile with $X_1 = 3.5$ and $X_2 = 0.06$
 - China with $X_1 = 2.5$ and $X_2 = 0.5$?

- Predicted democracy is
 - $-0.71 + 1.6 \cdot 3.5 - 0.6 \cdot 0.06 = 4.8$ for Chile
More Complex Predictions

- We can also use the coefficient estimates for more complex predictions that involve changing multiple variables simultaneously.

- Consider our results for the regression of democracy on X_1 income and X_2 ethnic heterogeneity:
 - $\hat{\beta}_0 = -0.71$
 - $\hat{\beta}_1 = 1.6$
 - $\hat{\beta}_2 = -0.6$

- What is the predicted difference in democracy between
 - Chile with $X_1 = 3.5$ and $X_2 = 0.06$
 - China with $X_1 = 2.5$ and $X_2 = 0.5$?

- Predicted democracy is
 - $-0.71 + 1.6 \cdot 3.5 - 0.6 \cdot 0.06 = 4.8$ for Chile
 - $-0.71 + 1.6 \cdot 2.5 - 0.6 \cdot 0.5 = 3$ for China.
More Complex Predictions

- We can also use the coefficient estimates for more complex predictions that involve changing multiple variables simultaneously.

- Consider our results for the regression of democracy on X_1 income and X_2 ethnic heterogeneity:
 - $\hat{\beta}_0 = -.71$
 - $\hat{\beta}_1 = 1.6$
 - $\hat{\beta}_2 = -.6$

- What is the predicted difference in democracy between
 - Chile with $X_1 = 3.5$ and $X_2 = .06$
 - China with $X_1 = 2.5$ and $X_2 = .5$?

- Predicted democracy is
 - $-.71 + 1.6 \cdot 3.5 - .6 \cdot .06 = 4.8$ for Chile
 - $-.71 + 1.6 \cdot 2.5 - .6 \cdot 0.5 = 3$ for China.

 Predicted difference is thus: 1.8 or $(3.5 - 2.5)\hat{\beta}_1 + (.06 - .5)\hat{\beta}_2$
Two Examples

Adding a Binary Variable

Adding a Continuous Covariate

Once More With Feeling

OLS Mechanics and Partialing Out

Fun With Red and Blue

Omitted Variables

Multicollinearity

Dummy Variables

Interaction Terms

Polynomials

Conclusion

Fun With Interactions
AJR Example

Strength of Property Rights

Log GDP per capita

African countries

Non-African countries

Stewart (Princeton)

Week 6: Two Regressors

October 17, 19, 2016
Basics

Ye olde model:

\[Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]

\(Z_i = 1 \) to indicate that \(i \) is an African country

\(Z_i = 0 \) to indicate that \(i \) is a non-African country

Concern: AJR might be picking up an "African effect":

- African countries have low incomes and weak property rights
- "Control for" country being in Africa or not to remove this
- Effects are now within Africa or within non-Africa, not between

New model:

\[Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]
Ye olde model:

\[Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]
Basics

- Ye olde model:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]
- \(Z_i = 1 \) to indicate that \(i \) is an African country

Concern: AJR might be picking up an “African effect”:
- African countries have low incomes and weak property rights
- “Control for” country being in Africa or not to remove this
- Effects are now within Africa or within non-Africa, not between
Basics

Ye olde model:

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]

- \(Z_i = 1 \) to indicate that \(i \) is an African country
- \(Z_i = 0 \) to indicate that \(i \) is a non-African country
Basics

- Ye olde model:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]
- \(Z_i = 1 \) to indicate that \(i \) is an African country
- \(Z_i = 0 \) to indicate that \(i \) is a non-African country
- Concern: AJR might be picking up an “African effect”:
Basics

- Ye olde model:
 \[
 \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i
 \]

- \(Z_i = 1\) to indicate that \(i\) is an African country
- \(Z_i = 0\) to indicate that \(i\) is a non-African country

Concern: AJR might be picking up an “African effect”:
 - African countries have low incomes and weak property rights
Basics

- Ye olde model:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]

- \(Z_i = 1 \) to indicate that \(i \) is an African country
- \(Z_i = 0 \) to indicate that \(i \) is an non-African country

- Concern: AJR might be picking up an “African effect”:
 - African countries have low incomes and weak property rights
 - “Control for” country being in Africa or not to remove this
Basics

- Ye olde model:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]
- \(Z_i = 1 \) to indicate that \(i \) is an African country
- \(Z_i = 0 \) to indicate that \(i \) is an non-African country
- Concern: AJR might be picking up an “African effect”:
 - African countries have low incomes and weak property rights
 - “Control for” country being in Africa or not to remove this
 - Effects are now within Africa or within non-Africa, not between
Basics

- Ye olde model:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]

- \(Z_i = 1\) to indicate that \(i\) is an African country
- \(Z_i = 0\) to indicate that \(i\) is an non-African country
- Concern: AJR might be picking up an “African effect”:
 - African countries have low incomes and weak property rights
 - “Control for” country being in Africa or not to remove this
 - Effects are now within Africa or within non-Africa, not between

- New model:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]
Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|------------|---------|----------|
| (Intercept) | 5.65556 | 0.31344 | 18.043 < 2e-16 *** |
| avexpr | 0.42416 | 0.03971 | 10.681 < 2e-16 *** |
| africa | -0.87844 | 0.14707 | -5.973 3.03e-08 *** |

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.6253 on 108 degrees of freedom
(52 observations deleted due to missingness)
Multiple R-squared: 0.7078, Adjusted R-squared: 0.7024
F-statistic: 130.8 on 2 and 108 DF, p-value: < 2.2e-16
Two lines in one regression

- How can we interpret this model?
Two lines in one regression

- How can we interpret this model?
- Plug in two possible values for Z_i and rearrange

\[
\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0 = \hat{\beta}_0 + \hat{\beta}_1 X_i
\]

When $Z_i = 1$:

\[
\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 1 = (\hat{\beta}_0 + \hat{\beta}_2) + \hat{\beta}_1 X_i
\]

Two different intercepts, same slope
Two lines in one regression

- How can we interpret this model?
- Plug in two possible values for Z_i and rearrange
- When $Z_i = 0$:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]
Two lines in one regression

- How can we interpret this model?
- Plug in two possible values for Z_i and rearrange
- When $Z_i = 0$:
 $$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i$$

When $Z_i = 1$:
Two lines in one regression

- How can we interpret this model?
- Plug in two possible values for Z_i and rearrange
- When $Z_i = 0$:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i$$
$$= \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0$$
Two lines in one regression

- How can we interpret this model?
- Plug in two possible values for Z_i and rearrange

When $Z_i = 0$:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i$$

$$= \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0$$

$$= \hat{\beta}_0 + \hat{\beta}_1 X_i$$
Two lines in one regression

- How can we interpret this model?
- Plug in two possible values for Z_i and rearrange

When $Z_i = 0$:

$$
\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i
$$

$$
= \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0
$$

$$
= \hat{\beta}_0 + \hat{\beta}_1 X_i
$$

When $Z_i = 1$:

$$
\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i
$$
Two lines in one regression

- How can we interpret this model?
- Plug in two possible values for Z_i and rearrange
- When $Z_i = 0$:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]
 \[= \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0 \]
 \[= \hat{\beta}_0 + \hat{\beta}_1 X_i \]
- When $Z_i = 1$:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]
Two lines in one regression

- How can we interpret this model?
- Plug in two possible values for Z_i and rearrange

When $Z_i = 0$:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i$$

$$= \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0$$

$$= \hat{\beta}_0 + \hat{\beta}_1 X_i$$

When $Z_i = 1$:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i$$

$$= \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 1$$

Two different intercepts, same slope

Stewart (Princeton)
Week 6: Two Regressors
October 17, 19, 2016 35 / 132
Two lines in one regression

- How can we interpret this model?
- Plug in two possible values for Z_i and rearrange
- When $Z_i = 0$:
 \[
 \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \\
 = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0 \\
 = \hat{\beta}_0 + \hat{\beta}_1 X_i
 \]
- When $Z_i = 1$:
 \[
 \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \\
 = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 1 \\
 = (\hat{\beta}_0 + \hat{\beta}_2) + \hat{\beta}_1 X_i
 \]
Two lines in one regression

- How can we interpret this model?
- Plug in two possible values for Z_i and rearrange
- When $Z_i = 0$:
 \[
 \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \\
 = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0 \\
 = \hat{\beta}_0 + \hat{\beta}_1 X_i
 \]

- When $Z_i = 1$:
 \[
 \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \\
 = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 1 \\
 = (\hat{\beta}_0 + \hat{\beta}_2) + \hat{\beta}_1 X_i
 \]

- Two different intercepts, same slope
Example interpretation of the coefficients

- Let’s review what we’ve seen so far:

<table>
<thead>
<tr>
<th></th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-African country</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$Z_i = 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African country</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$Z_i = 1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this example, we have:

$\hat{Y}_i = 5.656 + 0.424 \times X_i - 0.878 \times Z_i$

We can read these as:

- $\hat{\beta}_0$: average log income for non-African country ($Z_i = 0$) with property rights measured at 0 is 5.656
- $\hat{\beta}_1$: A one-unit increase in property rights is associated with a 0.424 increase in average log incomes for two African countries (or for two non-African countries)
- $\hat{\beta}_2$: there is a -0.878 average difference in log income per capita between African and non-African counties conditional on property rights.

Stewart (Princeton)
Week 6: Two Regressors
October 17, 19, 2016 36 / 132
Example interpretation of the coefficients

Let’s review what we’ve seen so far:

<table>
<thead>
<tr>
<th></th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-African country ($Z_i = 0$)</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>African country ($Z_i = 1$)</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2$</td>
<td>$\hat{\beta}_1$</td>
</tr>
</tbody>
</table>

In this example, we have:

$$\hat{Y}_i = 5.656 + 0.424 \times X_i - 0.878 \times Z_i$$
Example interpretation of the coefficients

Let’s review what we’ve seen so far:

<table>
<thead>
<tr>
<th></th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-African country ($Z_i = 0$)</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>African country ($Z_i = 1$)</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2$</td>
<td>$\hat{\beta}_1$</td>
</tr>
</tbody>
</table>

In this example, we have:

$$\hat{Y}_i = 5.656 + 0.424 \times X_i - 0.878 \times Z_i$$

We can read these as:

$\hat{\beta}_0$: average log income for non-African country ($Z_i = 0$) with property rights measured at 0 is 5.656

$\hat{\beta}_1$: A one-unit increase in property rights is associated with a 0.424 increase in average log incomes for two African countries (or for two non-African countries)

$\hat{\beta}_2$: there is a -0.878 average difference in log income per capita between African and non-African counties conditional on property rights
Example interpretation of the coefficients

Let’s review what we’ve seen so far:

<table>
<thead>
<tr>
<th></th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-African country ($Z_i = 0$)</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>African country ($Z_i = 1$)</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2$</td>
<td>$\hat{\beta}_1$</td>
</tr>
</tbody>
</table>

In this example, we have:

$$\hat{Y}_i = 5.656 + 0.424 \times X_i - 0.878 \times Z_i$$

We can read these as:

- $\hat{\beta}_0$: average log income for non-African country ($Z_i = 0$) with property rights measured at 0 is 5.656
Example interpretation of the coefficients

- Let’s review what we’ve seen so far:

<table>
<thead>
<tr>
<th></th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-African country</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$Z_i = 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African country</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$Z_i = 1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- In this example, we have:

$$\hat{Y}_i = 5.656 + 0.424 \times X_i - 0.878 \times Z_i$$

- We can read these as:
 - $\hat{\beta}_0$: average log income for non-African country ($Z_i = 0$) with property rights measured at 0 is 5.656
 - $\hat{\beta}_1$: A one-unit increase in property rights is associated with a 0.424 increase in average log incomes for two African countries (or for two non-African countries)
Example interpretation of the coefficients

- Let’s review what we’ve seen so far:

<table>
<thead>
<tr>
<th>Non-African country ($Z_i = 0$)</th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average log income</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>Average log income</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2$</td>
<td>$\hat{\beta}_1$</td>
</tr>
</tbody>
</table>

- In this example, we have:

$$\hat{Y}_i = 5.656 + 0.424 \times X_i - 0.878 \times Z_i$$

- We can read these as:
 - $\hat{\beta}_0$: average log income for non-African country ($Z_i = 0$) with property rights measured at 0 is 5.656
 - $\hat{\beta}_1$: A one-unit increase in property rights is associated with a 0.424 increase in average log incomes for two African countries (or for two non-African countries)
 - $\hat{\beta}_2$: there is a -0.878 average difference in log income per capita between African and non-African counties conditional on property rights
General interpretation of the coefficients

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]
General interpretation of the coefficients

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]

- \(\hat{\beta}_0 \): average value of \(Y_i \) when both \(X_i \) and \(Z_i \) are equal to 0.
General interpretation of the coefficients

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]

- \(\hat{\beta}_0 \): average value of \(Y_i \) when both \(X_i \) and \(Z_i \) are equal to 0
- \(\hat{\beta}_1 \): A one-unit change in \(X_i \) is associated with a \(\hat{\beta}_1 \)-unit change in \(Y_i \) conditional on \(Z_i \)
General interpretation of the coefficients

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]

- \(\hat{\beta}_0 \): average value of \(Y_i \) when both \(X_i \) and \(Z_i \) are equal to 0
- \(\hat{\beta}_1 \): A one-unit change in \(X_i \) is associated with a \(\hat{\beta}_1 \)-unit change in \(Y_i \) conditional on \(Z_i \)
- \(\hat{\beta}_2 \): average difference in \(Y_i \) between \(Z_i = 1 \) group and \(Z_i = 0 \) group conditional on \(X_i \)
Adding a binary variable, visually

\[\hat{\beta}_0 = 5.656 \]
\[\hat{\beta}_1 = 0.424 \]
Adding a binary variable, visually

\[\hat{\beta}_0 = 5.656 \]
\[\hat{\beta}_1 = 0.424 \]
\[\hat{\beta}_2 = -0.878 \]
Adding a continuous variable

- Ye olde model:

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]
Adding a continuous variable

- Ye olde model:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]

- \(Z_i \): mean temperature in country \(i \) (continuous)
Adding a continuous variable

- Ye olde model:
 \[
 \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i
 \]
- \(Z_i\): mean temperature in country \(i\) (continuous)
- Concern: geography is confounding the effect
Adding a continuous variable

- Ye olde model:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]

- \(Z_i \): mean temperature in country \(i \) (continuous)
- Concern: geography is confounding the effect
 - geography might affect political institutions
Adding a continuous variable

- Ye olde model:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]
- \(Z_i \): mean temperature in country \(i \) (continuous)
- Concern: geography is confounding the effect
 - geography might affect political institutions
 - geography might affect average incomes (through diseases like malaria)
Adding a continuous variable

Ye olde model:

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \]

\(Z_i \): mean temperature in country \(i \) (continuous)

Concern: geography is confounding the effect
 - geography might affect political institutions
 - geography might affect average incomes (through diseases like malaria)

New model:

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]
Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------------|----------|------------|---------|----------|
| (Intercept) | 6.80627 | 0.75184 | 9.053 | 1.27e-12 * * * |
| avexpr | 0.40568 | 0.06397 | 6.342 | 3.94e-08 * * * |
| meantemp | -0.06025 | 0.01940 | -3.105 | 0.00296 * * |

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.6435 on 57 degrees of freedom

(103 observations deleted due to missingness)

Multiple R-squared: 0.6155, Adjusted R-squared: 0.602

F-statistic: 45.62 on 2 and 57 DF, p-value: 1.481e-12
Interpretation with a continuous Z

<table>
<thead>
<tr>
<th>$Z_i = 0$°C</th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
<td></td>
</tr>
</tbody>
</table>
Interpretation with a continuous Z

<table>
<thead>
<tr>
<th>Z_i</th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_i = 0\ °C$</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$Z_i = 21\ °C$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 21$</td>
<td>$\hat{\beta}_1$</td>
</tr>
</tbody>
</table>

In this example we have:

$\hat{Y}_i = 6.806 + 0.406 \times X_i - 0.06 \times Z_i$

$\hat{\beta}_0$: average log income for a country with property rights measured at 0 and a mean temperature of 0 is 6.806

$\hat{\beta}_1$: A one-unit change in property rights is associated with a 0.406 change in average log incomes conditional on a country's mean temperature

$\hat{\beta}_2$: A one-degree increase in mean temperature is associated with a -0.06 change in average log incomes conditional on strength of property rights
Interpretation with a continuous Z

<table>
<thead>
<tr>
<th>Z_i</th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_i = 0 ^\circ C$</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$Z_i = 21 ^\circ C$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 21$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$Z_i = 24 ^\circ C$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 24$</td>
<td>$\hat{\beta}_1$</td>
</tr>
</tbody>
</table>

In this example we have: $\hat{Y}_i = 6.806 + 0.406 \times X_i - 0.06 \times Z_i$

$\hat{\beta}_0$: average log income for a country with property rights measured at 0 and a mean temperature of 0 is 6.806

$\hat{\beta}_1$: A one-unit change in property rights is associated with a 0.406 change in average log incomes conditional on a country’s mean temperature

$\hat{\beta}_2$: A one-degree increase in mean temperature is associated with a -0.06 change in average log incomes conditional on strength of property rights
Interpretation with a continuous Z

<table>
<thead>
<tr>
<th>Z_i</th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>21°C</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 21$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>24°C</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 24$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>26°C</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 26$</td>
<td>$\hat{\beta}_1$</td>
</tr>
</tbody>
</table>

In this example we have:

$\hat{Y}_i = 6.806 + 0.406 \times X_i - 0.06 \times Z_i$

$\hat{\beta}_0$: average log income for a country with property rights measured at 0 and a mean temperature of 0 is 6.806.

$\hat{\beta}_1$: A one-unit change in property rights is associated with a 0.406 change in average log incomes conditional on a country's mean temperature.

$\hat{\beta}_2$: A one-degree increase in mean temperature is associated with a -0.06 change in average log incomes conditional on strength of property rights.
Interpretation with a continuous Z

<table>
<thead>
<tr>
<th>Z_i</th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_i = 0 \degree \text{C}$</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$Z_i = 21 \degree \text{C}$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 21$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$Z_i = 24 \degree \text{C}$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 24$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$Z_i = 26 \degree \text{C}$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 26$</td>
<td>$\hat{\beta}_1$</td>
</tr>
</tbody>
</table>

In this example we have:

$\hat{Y}_i = 6.806 + 0.406 \times X_i - 0.06 \times Z_i$

$\hat{\beta}_0$: average log income for a country with property rights measured at 0 and a mean temperature of 0 is 6.806

$\hat{\beta}_1$: A one-unit change in property rights is associated with a 0.406 change in average log incomes conditional on a country's mean temperature

$\hat{\beta}_2$: A one-degree increase in mean temperature is associated with a -0.06 change in average log incomes conditional on strength of property rights
Interpretation with a continuous Z

<table>
<thead>
<tr>
<th>Z_i</th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^\circ C$</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$21^\circ C$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 21$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$24^\circ C$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 24$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$26^\circ C$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 26$</td>
<td>$\hat{\beta}_1$</td>
</tr>
</tbody>
</table>

- In this example we have:

$$\hat{Y}_i = 6.806 + 0.406 \times X_i + -0.06 \times Z_i$$
Interpretation with a continuous \(Z \)

<table>
<thead>
<tr>
<th>(Z_i)</th>
<th>Intercept for (X_i)</th>
<th>Slope for (X_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 , ^\circ \text{C})</td>
<td>(\hat{\beta}_0)</td>
<td>(\hat{\beta}_1)</td>
</tr>
<tr>
<td>(21 , ^\circ \text{C})</td>
<td>(\hat{\beta}_0 + \hat{\beta}_2 \times 21)</td>
<td>(\hat{\beta}_1)</td>
</tr>
<tr>
<td>(24 , ^\circ \text{C})</td>
<td>(\hat{\beta}_0 + \hat{\beta}_2 \times 24)</td>
<td>(\hat{\beta}_1)</td>
</tr>
<tr>
<td>(26 , ^\circ \text{C})</td>
<td>(\hat{\beta}_0 + \hat{\beta}_2 \times 26)</td>
<td>(\hat{\beta}_1)</td>
</tr>
</tbody>
</table>

- In this example we have:
 \[
 \hat{Y}_i = 6.806 + 0.406 \times X_i - 0.06 \times Z_i
 \]

- \(\hat{\beta}_0 \): average log income for a country with property rights measured at 0 and a mean temperature of 0 is 6.806
Interpretation with a continuous Z

<table>
<thead>
<tr>
<th>Z_i</th>
<th>Intercept for X_i β_0</th>
<th>Slope for X_i β_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0^\circ C$</td>
<td>β_0</td>
<td>β_1</td>
</tr>
<tr>
<td>$21^\circ C$</td>
<td>$\beta_0 + \beta_2 \times 21$</td>
<td>β_1</td>
</tr>
<tr>
<td>$24^\circ C$</td>
<td>$\beta_0 + \beta_2 \times 24$</td>
<td>β_1</td>
</tr>
<tr>
<td>$26^\circ C$</td>
<td>$\beta_0 + \beta_2 \times 26$</td>
<td>β_1</td>
</tr>
</tbody>
</table>

In this example we have:

$$\hat{Y}_i = 6.806 + 0.406 \times X_i - 0.06 \times Z_i$$

- β_0: average log income for a country with property rights measured at 0 and a mean temperature of 0 is 6.806
- β_1: A one-unit change in property rights is associated with a 0.406 change in average log incomes conditional on a country’s mean temperature
Interpretation with a continuous Z

<table>
<thead>
<tr>
<th>Z_i</th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>21°C</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 21$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>24°C</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 24$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>26°C</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 26$</td>
<td>$\hat{\beta}_1$</td>
</tr>
</tbody>
</table>

- In this example we have:
 \[
 \hat{Y}_i = 6.806 + 0.406 \times X_i - 0.06 \times Z_i
 \]

- $\hat{\beta}_0$: average log income for a country with property rights measured at 0 and a mean temperature of 0 is 6.806
- $\hat{\beta}_1$: A one-unit change in property rights is associated with a 0.406 change in average log incomes conditional on a country’s mean temperature
- $\hat{\beta}_2$: A one-degree increase in mean temperature is associated with a -0.06 change in average log incomes conditional on strength of property rights
General interpretation

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]

- The coefficient \(\hat{\beta}_1 \) measures how the predicted outcome varies in \(X_i \) for a fixed value of \(Z_i \).
General interpretation

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]

- The coefficient \(\hat{\beta}_1 \) measures how the predicted outcome varies in \(X_i \) for a fixed value of \(Z_i \).
- The coefficient \(\hat{\beta}_2 \) measures how the predicted outcome varies in \(Z_i \) for a fixed value of \(X_i \).
Two Examples

Adding a Binary Variable

Adding a Continuous Covariate

Once More With Feeling

OLS Mechanics and Partialing Out

Fun With Red and Blue

Omitted Variables

Multicollinearity

Dummy Variables

Interaction Terms

Polynomials

Conclusion

Fun With Interactions
Fitted values and residuals

- Where do we get our hats?
Fitted values and residuals

Where do we get our hats?
Fitted values and residuals

- Where do we get our hats? \(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2 \)
Fitted values and residuals

- Where do we get our hats? \(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2 \)
- To answer this, we first need to redefine some terms from simple linear regression.
Fitted values and residuals

- Where do we get our hats? $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$
- To answer this, we first need to redefine some terms from simple linear regression.
- Fitted values for $i = 1, \ldots, n$:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i$$
Fitted values and residuals

- Where do we get our hats? $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$

- To answer this, we first need to redefine some terms from simple linear regression.

- Fitted values for $i = 1, \ldots, n$:
 \[
 \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i
 \]

- Residuals for $i = 1, \ldots, n$:
 \[
 \hat{u}_i = Y_i - \hat{Y}_i
 \]
Least squares is still least squares

How do we estimate $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\beta}_2$?

Minimize the sum of the squared residuals, just like before:

$$(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = \arg \min_{b_0, b_1, b_2} \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i - b_2 Z_i)^2$$

The calculus is the same as last week, with 3 partial derivatives instead of 2.

Let's start with a simple recipe and then rigorously show that it holds.
Least squares is still least squares

- How do we estimate $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\beta}_2$?
- Minimize the sum of the squared residuals, just like before:

$$ (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = \arg \min_{b_0, b_1, b_2} \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i - b_2 Z_i)^2 $$
Least squares is still least squares

How do we estimate $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\beta}_2$?

Minimize the sum of the squared residuals, just like before:

$$(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = \arg \min_{b_0, b_1, b_2} \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i - b_2 Z_i)^2$$

The calculus is the same as last week, with 3 partial derivatives instead of 2
Least squares is still least squares

- How do we estimate $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\beta}_2$?
- Minimize the sum of the squared residuals, just like before:

$$
(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = \arg \min_{b_0, b_1, b_2} \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i - b_2 Z_i)^2
$$

- The calculus is the same as last week, with 3 partial derivatives instead of 2
- Let’s start with a simple recipe and then rigorously show that it holds
OLS estimator recipe using two steps

- “Partialling out” OLS recipe:
 1. Run regression of X_i on Z_i:
 \[\hat{X}_i = \hat{\delta}_0 + \hat{\delta}_1 Z_i \]
 2. Calculate residuals from this regression:
 \[\hat{r}_{xz,i} = X_i - \hat{X}_i \]
 3. Run a simple regression of Y_i on residuals, $\hat{r}_{xz,i}$:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 \hat{r}_{xz,i} \]

Estimate of $\hat{\beta}_1$ will be the same as running:

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]
OLS estimator recipe using two steps

“Partialling out” OLS recipe:

1. Run regression of X_i on Z_i:

$$
\hat{X}_i = \hat{\delta}_0 + \hat{\delta}_1 Z_i
$$

2. Calculate residuals from this regression:

$$
\hat{r}_{xz, i} = X_i - \hat{X}_i
$$

3. Run a simple regression of Y_i on residuals, $\hat{r}_{xz, i}$:

$$
\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 \hat{r}_{xz, i}
$$

Estimate of $\hat{\beta}_1$ will be the same as running:

$$
\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i
$$
OLS estimator recipe using two steps

- “Partialling out” OLS recipe:

1. Run regression of X_i on Z_i:

 $$\hat{X}_i = \hat{\delta}_0 + \hat{\delta}_1 Z_i$$

2. Calculate residuals from this regression:

 $$\hat{r}_{xz,i} = X_i - \hat{X}_i$$
OLS estimator recipe using two steps

“Partiallying out” OLS recipe:

1. Run regression of X_i on Z_i:

 $$\hat{X}_i = \hat{\delta}_0 + \hat{\delta}_1 Z_i$$

2. Calculate residuals from this regression:

 $$\hat{r}_{xz,i} = X_i - \hat{X}_i$$

3. Run a simple regression of Y_i on residuals, $\hat{r}_{xz,i}$:

 $$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 \hat{r}_{xz,i}$$
OLS estimator recipe using two steps

"Partialling out" OLS recipe:

1. Run regression of X_i on Z_i:
 \[\hat{X}_i = \hat{\delta}_0 + \hat{\delta}_1 Z_i \]

2. Calculate residuals from this regression:
 \[\hat{r}_{xz,i} = X_i - \hat{X}_i \]

3. Run a simple regression of Y_i on residuals, $\hat{r}_{xz,i}$:
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 \hat{r}_{xz,i} \]

Estimate of $\hat{\beta}_1$ will be the same as running:
\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i \]
Regression property rights on mean temperature

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|--------------------------|----------|------------|---------|-----------|
| (Intercept) | 9.95678 | 0.82015 | 12.140 | < 2e-16 *** |
| meantemp | -0.14900 | 0.03469 | -4.295 | 6.73e-05 *** |

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.321 on 58 degrees of freedom

(103 observations deleted due to missingness)

Multiple R-squared: 0.2413, Adjusted R-squared: 0.2282

F-statistic: 18.45 on 1 and 58 DF, p-value: 6.733e-05
Regression of log income on the residuals

```r
## (Intercept)  avexpr.res
##  8.0542783  0.4056757

## (Intercept)  avexpr  meantemp
##  6.80627375  0.40567575  -0.06024937
```
Residual/partial regression plot

Useful for plotting the conditional relationship between property rights and income given temperature:

Residuals (Property Right ~ Mean Temperature)

Log GDP per capita
Residual/partial regression plot

Useful for plotting the conditional relationship between property rights and income given temperature:
Residual/partial regression plot

Useful for plotting the conditional relationship between property rights and income given temperature:

![Graph showing the relationship between residuals and log GDP per capita](image)
Deriving the Linear Least Squares Estimator

- In simple regression, we chose \((\hat{\beta}_0, \hat{\beta}_1)\) to minimize the sum of the squared residuals.
Deriving the Linear Least Squares Estimator

- In simple regression, we chose \((\hat{\beta}_0, \hat{\beta}_1)\) to minimize the sum of the squared residuals.
- We use the same principle for picking \((\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)\) for regression with two regressors \((x_i, z_i)\):

\[
(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = \arg \min_{\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2} \sum_{i=1}^{n} \hat{u}_i^2 = \arg \min_{\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
\]

\[
= \arg \min_{\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2} \sum_{i=1}^{n} (y_i - \tilde{\beta}_0 - x_i \tilde{\beta}_1 - z_i \tilde{\beta}_2)^2
\]
Deriving the Linear Least Squares Estimator

- In simple regression, we chose \((\hat{\beta}_0, \hat{\beta}_1)\) to minimize the sum of the squared residuals.

- We use the same principle for picking \((\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)\) for regression with two regressors \((x_i\) and \(z_i)\):

 \[
 (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = \operatorname{argmin}_{\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2} \sum_{i=1}^{n} \hat{u}_i^2 = \operatorname{argmin}_{\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
 \]

 \[
 = \operatorname{argmin}_{\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2} \sum_{i=1}^{n} (y_i - \tilde{\beta}_0 - x_i\tilde{\beta}_1 - z_i\tilde{\beta}_2)^2
 \]

- (The same works more generally for \(k\) regressors, but this is done more easily with matrices as we will see next week.)
Deriving the Linear Least Squares Estimator

We want to minimize the following quantity with respect to \((\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2)\):

\[
S(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2) = \sum_{i=1}^{n} (y_i - \tilde{\beta}_0 - \tilde{\beta}_1 x_i - \tilde{\beta}_2 z_i)^2
\]

Plan is conceptually the same as before
Deriving the Linear Least Squares Estimator

We want to minimize the following quantity with respect to \((\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2)\):

\[
S(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2) = \sum_{i=1}^{n} (y_i - \tilde{\beta}_0 - \tilde{\beta}_1 x_i - \tilde{\beta}_2 z_i)^2
\]

Plan is conceptually the same as before

1. Take the partial derivatives of \(S\) with respect to \(\tilde{\beta}_0, \tilde{\beta}_1\) and \(\tilde{\beta}_2\).
Deriving the Linear Least Squares Estimator

We want to minimize the following quantity with respect to $(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2)$:

$$S(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2) = \sum_{i=1}^{n} (y_i - \tilde{\beta}_0 - \tilde{\beta}_1 x_i - \tilde{\beta}_2 z_i)^2$$

Plan is conceptually the same as before

1. Take the partial derivatives of S with respect to $\tilde{\beta}_0, \tilde{\beta}_1$ and $\tilde{\beta}_2$.

2. Set each of the partial derivatives to 0 to obtain the first order conditions.
Deriving the Linear Least Squares Estimator

We want to minimize the following quantity with respect to \((\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2)\):

\[
S(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2) = \sum_{i=1}^{n} (y_i - \tilde{\beta}_0 - \tilde{\beta}_1 x_i - \tilde{\beta}_2 z_i)^2
\]

Plan is conceptually the same as before

1. Take the partial derivatives of \(S\) with respect to \(\tilde{\beta}_0, \tilde{\beta}_1\) and \(\tilde{\beta}_2\).

2. Set each of the partial derivatives to 0 to obtain the first order conditions.

3. Substitute \(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2\) for \(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2\) and solve for \(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2\) to obtain the OLS estimator.
First Order Conditions

Setting the partial derivatives equal to zero leads to a system of 3 linear equations in 3 unknowns: $\hat{\beta}_0, \hat{\beta}_1$ and $\hat{\beta}_2$

\[
\frac{\partial S}{\partial \hat{\beta}_0} = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 z_i) = 0
\]

\[
\frac{\partial S}{\partial \hat{\beta}_1} = \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 z_i) = 0
\]

\[
\frac{\partial S}{\partial \hat{\beta}_2} = \sum_{i=1}^{n} z_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 z_i) = 0
\]

When will this linear system have a unique solution?
First Order Conditions

Setting the partial derivatives equal to zero leads to a system of 3 linear equations in 3 unknowns: $\hat{\beta}_0, \hat{\beta}_1$ and $\hat{\beta}_2$

$$\frac{\partial S}{\partial \hat{\beta}_0} = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 z_i) = 0$$

$$\frac{\partial S}{\partial \hat{\beta}_1} = \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 z_i) = 0$$

$$\frac{\partial S}{\partial \hat{\beta}_2} = \sum_{i=1}^{n} z_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 z_i) = 0$$

When will this linear system have a unique solution?

- More observations than predictors (i.e. $n > 2$)
- x and z are **linearly independent**, i.e.,
 - neither x nor z is a constant
 - x is not a linear function of z (or vice versa)
- Wooldridge calls this assumption **no perfect collinearity**
The OLS Estimator

The OLS estimator for \((\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)\) can be written as

\[
\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} - \hat{\beta}_2 \bar{z}
\]

\[
\hat{\beta}_1 = \frac{\text{Cov}(x, y) \text{Var}(z) - \text{Cov}(z, y) \text{Cov}(x, z)}{\text{Var}(x) \text{Var}(z) - (\text{Cov}(x, z))^2}
\]

\[
\hat{\beta}_2 = \frac{\text{Cov}(z, y) \text{Var}(x) - \text{Cov}(x, y) \text{Cov}(z, x)}{\text{Var}(x) \text{Var}(z) - (\text{Cov}(x, z))^2}
\]

For \((\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)\) to be well-defined we need:

\[
\text{Var}(x) \text{Var}(z) \neq (\text{Cov}(x, z))^2
\]

Condition fails if:

1. If \(x\) or \(z\) is a constant (\(\Rightarrow \text{Var}(x) \text{Var}(z) = 0\))
2. One explanatory variable is an exact linear function of another (\(\Rightarrow \text{Cor}(x, z) = 1 \Rightarrow \text{Var}(x) \text{Var}(z) = (\text{Cov}(x, z))^2\))
The OLS Estimator

The OLS estimator for \((\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)\) can be written as

\[
\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} - \hat{\beta}_2 \bar{z}
\]

\[
\hat{\beta}_1 = \frac{\text{Cov}(x, y) \text{Var}(z) - \text{Cov}(z, y) \text{Cov}(x, z)}{\text{Var}(x) \text{Var}(z) - \text{Cov}(x, z)^2}
\]

\[
\hat{\beta}_2 = \frac{\text{Cov}(z, y) \text{Var}(x) - \text{Cov}(x, y) \text{Cov}(z, x)}{\text{Var}(x) \text{Var}(z) - \text{Cov}(x, z)^2}
\]

For \((\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)\) to be well-defined we need:

\[
\text{Var}(x) \text{Var}(z) \neq \text{Cov}(x, z)^2
\]

Condition fails if:

1. If \(x\) or \(z\) is a constant (\(\Rightarrow \text{Var}(x) \text{Var}(z) = \text{Cov}(x, z) = 0\))
2. One explanatory variable is an exact linear function of another (\(\Rightarrow \text{Cor}(x, z) = 1 \Rightarrow \text{Var}(x) \text{Var}(z) = \text{Cov}(x, z)^2\))
The OLS Estimator

The OLS estimator for \((\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)\) can be written as

\[
\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} - \hat{\beta}_2 \bar{z}
\]
\[
\hat{\beta}_1 = \frac{\text{Cov}(x, y) \text{Var}(z) - \text{Cov}(z, y) \text{Cov}(x, z)}{\text{Var}(x) \text{Var}(z) - \text{Cov}(x, z)^2}
\]
\[
\hat{\beta}_2 = \frac{\text{Cov}(z, y) \text{Var}(x) - \text{Cov}(x, y) \text{Cov}(z, x)}{\text{Var}(x) \text{Var}(z) - \text{Cov}(x, z)^2}
\]

For \((\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)\) to be well-defined we need:

\[
\text{Var}(x) \text{Var}(z) \neq \text{Cov}(x, z)^2
\]

Condition fails if:

1. If \(x\) or \(z\) is a constant \(\Rightarrow \text{Var}(x) \text{Var}(z) = \text{Cov}(x, z) = 0\)
The OLS Estimator

The OLS estimator for \((\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)\) can be written as

\[
\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} - \hat{\beta}_2 \bar{z}
\]

\[
\hat{\beta}_1 = \frac{Cov(x, y) Var(z) - Cov(z, y) Cov(x, z)}{Var(x) Var(z) - Cov(x, z)^2}
\]

\[
\hat{\beta}_2 = \frac{Cov(z, y) Var(x) - Cov(x, y) Cov(z, x)}{Var(x) Var(z) - Cov(x, z)^2}
\]

For \((\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)\) to be well-defined we need:

\[
Var(x) Var(z) \neq Cov(x, z)^2
\]

Condition fails if:

1. If \(x\) or \(z\) is a constant \(\Rightarrow Var(x) Var(z) = Cov(x, z) = 0\)
2. One explanatory variable is an exact linear function of another \(\Rightarrow Cor(x, z) = 1 \Rightarrow Var(x) Var(z) = Cov(x, z)^2\)
“Partialling Out” Interpretation of the OLS Estimator

Assume $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$. Another way to write the OLS estimator is:

$$
\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} y_i}{\sum_i^n \hat{r}_{xz,i}^2}
$$

where $\hat{r}_{xz,i}$ are the residuals from the regression of X on Z:

$$
X = \lambda + \delta Z + r_{xz}
$$
“Partialling Out” Interpretation of the OLS Estimator

Assume $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$. Another way to write the OLS estimator is:

$$
\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} y_i}{\sum_i^n \hat{r}_{xz,i}^2}
$$

where $\hat{r}_{xz,i}$ are the residuals from the regression of X on Z:

$$
X = \lambda + \delta Z + r_{xz}
$$

In other words, both of these regressions yield identical estimates $\hat{\beta}_1$:

$$
y = \hat{\gamma}_0 + \hat{\beta}_1 \hat{r}_{xz} \quad \text{and} \quad y = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 z
$$
“Partialling Out” Interpretation of the OLS Estimator

Assume $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$. Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum^n_i \hat{r}_{xz,i} y_i}{\sum^n_i \hat{r}^2_{xz,i}}$$

where $\hat{r}_{xz,i}$ are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates $\hat{\beta}_1$:

$$y = \gamma_0 + \hat{\beta}_1 \hat{r}_{xz} \quad \text{and} \quad y = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 z$$

- δ is correlation between X and Z.
“Partialling Out” Interpretation of the OLS Estimator

Assume $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$. Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} y_i}{\sum_i^n \hat{r}_{xz,i}^2}$$

where $\hat{r}_{xz,i}$ are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates $\hat{\beta}_1$:

$$y = \hat{\gamma}_0 + \hat{\beta}_1 \hat{r}_{xz} \quad \text{and} \quad y = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 z$$

δ is correlation between X and Z. What is our estimator $\hat{\beta}_1$ if $\delta = 0$?

$$r_{xz} = x - \hat{\lambda} = x_i - \bar{x} \quad \text{so} \quad \hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} y_i}{\sum_i^n \hat{r}_{xz,i}^2} = $$
“Partialling Out” Interpretation of the OLS Estimator

Assume $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$. Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} y_i}{\sum_i^n \hat{r}_{xz,i}^2}$$

where $\hat{r}_{xz,i}$ are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates $\hat{\beta}_1$:

$$y = \gamma_0 + \hat{\beta}_1 \hat{r}_{xz} \quad \text{and} \quad y = \beta_0 + \hat{\beta}_1 x + \hat{\beta}_2 z$$

- δ is correlation between X and Z. What is our estimator $\hat{\beta}_1$ if $\delta = 0$?

$$r_{xz} = x - \lambda = x_i - \bar{x} \quad \text{so} \quad \hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} y_i}{\sum_i^n \hat{r}_{xz,i}^2} = \frac{\sum_i^n (x_i - \bar{x}) y_i}{\sum_i^n (x_i - \bar{x})^2}$$

- That is, same as the simple regresson of Y on X alone.
Origin of the Partial Out Recipe

Assume $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$. Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_{i}^{n} \hat{r}_{xz,i} y_i}{\sum_{i}^{n} \hat{r}_{xz,i}^2},$$

where $\hat{r}_{xz,i}$ are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates $\hat{\beta}_1$:

$$y = \hat{\gamma}_0 + \hat{\beta}_1 \hat{r}_{xz} \quad \text{and} \quad y = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 z$$
Origin of the Partial Out Recipe

Assume $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$. Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} y_i}{\sum_i^n \hat{r}_{xz,i}^2}$$

where $\hat{r}_{xz,i}$ are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates $\hat{\beta}_1$:

$$y = \hat{\gamma}_0 + \hat{\beta}_1 \hat{r}_{xz} \quad \text{and} \quad y = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 z$$

- δ measures the correlation between X and Z.

Origin of the Partial Out Recipe

Assume $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$. Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} y_i}{\sum_i^n \hat{r}_{xz,i}^2}$$

where $\hat{r}_{xz,i}$ are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates $\hat{\beta}_1$:

$$y = \gamma_0 + \hat{\beta}_1 \hat{r}_{xz} \quad \text{and} \quad y = \beta_0 + \beta_1 x + \beta_2 z$$

- δ measures the correlation between X and Z.
- Residuals \hat{r}_{xz} are the part of X that is uncorrelated with Z. Put differently, \hat{r}_{xz} is X, after the effect of Z on X has been partialled out or netted out.
Origin of the Partial Out Recipe

Assume \(Y = \beta_0 + \beta_1 X + \beta_2 Z + u \). Another way to write the OLS estimator is:

\[
\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} y_i}{\sum_i^n \hat{r}_{xz,i}^2}
\]

where \(\hat{r}_{xz,i} \) are the residuals from the regression of \(X \) on \(Z \):

\[
X = \lambda + \delta Z + r_{xz}
\]

In other words, both of these regressions yield identical estimates \(\hat{\beta}_1 \):

\[
y = \gamma_0 + \hat{\beta}_1 \hat{r}_{xz} \quad \text{and} \quad y = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 z
\]

- \(\delta \) measures the correlation between \(X \) and \(Z \).
- Residuals \(\hat{r}_{xz} \) are the part of \(X \) that is uncorrelated with \(Z \). Put differently, \(\hat{r}_{xz} \) is \(X \), after the effect of \(Z \) on \(X \) has been partialled out or netted out.
- Can use same equation with \(k \) explanatory variables; \(\hat{r}_{xz} \) will then come from a regression of \(X \) on all the other explanatory variables.
OLS assumptions for unbiasedness

1. Linearity
2. Random/iid sample
3. No perfect collinearity
4. Zero conditional mean error

\[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]
OLS assumptions for unbiasedness

- When we have more than one independent variable, we need the following assumptions in order for OLS to be unbiased:
OLS assumptions for unbiasedness

- When we have more than one independent variable, we need the following assumptions in order for OLS to be unbiased:

1. Linearity

 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]
OLS assumptions for unbiasedness

When we have more than one independent variable, we need the following assumptions in order for OLS to be unbiased:

1. Linearity
 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]

2. Random/iid sample
OLS assumptions for unbiasedness

When we have more than one independent variable, we need the following assumptions in order for OLS to be unbiased:

1. **Linearity**
 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]

2. **Random/iid sample**

3. **No perfect collinearity**
OLS assumptions for unbiasedness

- When we have more than one independent variable, we need the following assumptions in order for OLS to be unbiased:

1. Linearity
 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]

2. Random/iid sample

3. No perfect collinearity

4. Zero conditional mean error
 \[\mathbb{E}[u_i | X_i, Z_i] = 0 \]
New assumption

Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no exactly linear relationships among the explanatory variables.

- Two components
New assumption

Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no exactly linear relationships among the explanatory variables.

- Two components
 - Both X_i and Z_i have to vary.

Two components

- Both X_i and Z_i have to vary.
New assumption

Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no exactly linear relationships among the explanatory variables.

- Two components
 1. Both X_i and Z_i have to vary.
 2. Z_i cannot be a deterministic, linear function of X_i.

Notice how this is linear (equation of a line) and there is no error, so it is deterministic.
New assumption

Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no exactly linear relationships among the explanatory variables.

- Two components
 1. Both X_i and Z_i have to vary.
 2. Z_i cannot be a deterministic, linear function of X_i.

- Part 2 rules out anything of the form:

$$Z_i = a + bX_i$$
New assumption

Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no exactly linear relationships among the explanatory variables.

- Two components
 1. Both X_i and Z_i have to vary.
 2. Z_i cannot be a deterministic, linear function of X_i.

- Part 2 rules out anything of the form:

$$Z_i = a + bX_i$$

- Notice how this is linear (equation of a line) and there is no error, so it is deterministic.
New assumption

Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no exactly linear relationships among the explanatory variables.

- Two components
 1. Both X_i and Z_i have to vary.
 2. Z_i cannot be a deterministic, linear function of X_i.

- Part 2 rules out anything of the form:

$$Z_i = a + bX_i$$

- Notice how this is linear (equation of a line) and there is no error, so it is deterministic.
- What’s the correlation between Z_i and X_i? 1!
Perfect collinearity example (I)

- Simple example:

\[X_i = 1 \text{ if a country is not in Africa and } 0 \text{ otherwise.} \]
\[Z_i = 1 \text{ if a country is in Africa and } 0 \text{ otherwise.} \]

But, clearly we have the following:
\[Z_i = 1 - X_i \]

These two variables are perfectly collinear.

What about the following:
\[X_i = \text{income} \]
\[Z_i = X_i^2 \]

Do we have to worry about collinearity here?

No! Because while \(Z_i \) is a deterministic function of \(X_i \), it is not a linear function of \(X_i \).
Perfect collinearity example (I)

- Simple example:
 - $X_i = 1$ if a country is not in Africa and 0 otherwise.
 - $Z_i = 1$ if a country is in Africa and 0 otherwise.

But, clearly we have the following:

$$Z_i = 1 - X_i$$

These two variables are perfectly collinear.

What about the following:

- X_i = income
- $Z_i = X_i^2$

Do we have to worry about collinearity here?

No! Because while Z_i is a deterministic function of X_i, it is not a linear function of X_i.
Perfect collinearity example (I)

- Simple example:
 - $X_i = 1$ if a country is not in Africa and 0 otherwise.
 - $Z_i = 1$ if a country is in Africa and 0 otherwise.

But, clearly we have the following:

$$Z_i = 1 - X_i$$

These two variables are perfectly collinear.

What about the following:

- $X_i =$ income
- $Z_i = X_i^2$

Do we have to worry about collinearity here?

No! Because while Z_i is a deterministic function of X_i, it is not a linear function of X_i.
Perfect collinearity example (I)

- Simple example:
 - $X_i = 1$ if a country is not in Africa and 0 otherwise.
 - $Z_i = 1$ if a country is in Africa and 0 otherwise.
- But, clearly we have the following:
 \[Z_i = 1 - X_i \]
Perfect collinearity example (I)

- Simple example:
 - $X_i = 1$ if a country is not in Africa and 0 otherwise.
 - $Z_i = 1$ if a country is in Africa and 0 otherwise.

- But, clearly we have the following:

$$Z_i = 1 - X_i$$

- These two variables are perfectly collinear.
Perfect collinearity example (I)

• Simple example:
 ▶ $X_i = 1$ if a country is not in Africa and 0 otherwise.
 ▶ $Z_i = 1$ if a country is in Africa and 0 otherwise.

• But, clearly we have the following:

\[Z_i = 1 - X_i \]

• These two variables are perfectly collinear.

• What about the following:
Perfect collinearity example (I)

- Simple example:
 - $X_i = 1$ if a country is not in Africa and 0 otherwise.
 - $Z_i = 1$ if a country is in Africa and 0 otherwise.

- But, clearly we have the following:
 \[Z_i = 1 - X_i \]

- These two variables are perfectly collinear.

- What about the following:
 - $X_i = \text{income}$
Perfect collinearity example (I)

- Simple example:
 - $X_i = 1$ if a country is not in Africa and 0 otherwise.
 - $Z_i = 1$ if a country is in Africa and 0 otherwise.

- But, clearly we have the following:

 $Z_i = 1 - X_i$

- These two variables are perfectly collinear.

- What about the following:
 - $X_i = \text{income}$
 - $Z_i = X_i^2$
Perfect collinearity example (I)

- Simple example:
 - $X_i = 1$ if a country is not in Africa and 0 otherwise.
 - $Z_i = 1$ if a country is in Africa and 0 otherwise.

- But, clearly we have the following:
 $$Z_i = 1 - X_i$$

- These two variables are perfectly collinear.

- What about the following:
 - $X_i = \text{income}$
 - $Z_i = X_i^2$

- Do we have to worry about collinearity here?
Perfect collinearity example (I)

- Simple example:
 - $X_i = 1$ if a country is not in Africa and 0 otherwise.
 - $Z_i = 1$ if a country is in Africa and 0 otherwise.

- But, clearly we have the following:
 \[Z_i = 1 - X_i \]

- These two variables are perfectly collinear.

- What about the following:
 - $X_i = \text{income}$
 - $Z_i = X_i^2$

- Do we have to worry about collinearity here?
 - No! Because while Z_i is a deterministic function of X_i, it is not a linear function of X_i.
R and perfect collinearity

- R, and all other packages, will drop one of the variables if there is perfect collinearity:

\[
\begin{align*}
\text{Coefficients: (1 not defined because of singularities)} \\
\begin{array}{llll}
\text{Estimate} & \text{Std. Error} & \text{t value} & \text{Pr(>|t|)} \\
(\text{Intercept}) & 8.71638 & 0.08991 & 96.941 & < 2e-16 & *** \\
\text{africa} & -1.36119 & 0.16306 & -8.348 & 4.87e-14 & *** \\
\text{nonafrica} & \text{NA} & \text{NA} & \text{NA} & \text{NA} \\
\end{array}
\end{align*}
\]

- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

- Residual standard error: 0.9125 on 146 degrees of freedom (15 observations deleted due to missingness)

- Multiple R-squared: 0.3231, Adjusted R-squared: 0.3184

- F-statistic: 69.68 on 1 and 146 DF, p-value: 4.87e-14
R and perfect collinearity

- R, and all other packages, will drop one of the variables if there is perfect collinearity:

```
Coefficients: (1 not defined because of singularities)
               Estimate Std. Error  t value Pr(>|t|)
(Intercept)   8.71638    0.08991  96.941     < 2e-16 ***
africa        -1.36119    0.16306  -8.348   4.87e-14 ***
nonafrica     NA         NA       NA      NA

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9125 on 146 degrees of freedom
(15 observations deleted due to missingness)
Multiple R-squared: 0.3231, Adjusted R-squared: 0.3184
F-statistic: 69.68 on 1 and 146 DF, p-value: 4.87e-14
```
R and perfect collinearity

- R, and all other packages, will drop one of the variables if there is perfect collinearity:

```r
## Coefficients: (1 not defined because of singularities)
##
##   Estimate Std. Error  t value Pr(>|t|)
## (Intercept)   8.716   0.0899  96.941  < 2e-16 ***
##    africa    -1.361   0.1630  -8.348 4.87e-14 ***
##  nonafrica      NA        NA       NA      NA
## ---
## Signif. codes:  * 0.05 ** 0.01 *** 0.001
##
## Residual standard error: 0.9125 on 146 degrees of freedom
## (15 observations deleted due to missingness)
## Multiple R-squared: 0.3231, Adjusted R-squared: 0.3184
## F-statistic: 69.68 on 1 and 146 DF, p-value: 4.87e-14
```
Perfect collinearity example (II)

- Another example:
Perfect collinearity example (II)

- Another example:
 - $X_i = \text{mean temperature in Celsius}$
Another example:

- $X_i =$ mean temperature in Celsius
- $Z_i = 1.8X_i + 32$ (mean temperature in Fahrenheit)
Perfect collinearity example (II)

Another example:

- $X_i = \text{mean temperature in Celsius}$
- $Z_i = 1.8X_i + 32$ (mean temperature in Fahrenheit)
Perfect collinearity example (II)

- Another example:
 - $X_i = \text{mean temperature in Celsius}$
 - $Z_i = 1.8X_i + 32$ (mean temperature in Fahrenheit)

```
# (Intercept) meantemp meantemp.f
10.8454999 -0.1206948 NA
```
OLS assumptions for large-sample inference

1. Linearity

 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]

2. Random/iid sample

3. No perfect collinearity

4. Zero conditional mean error

 \[\mathbb{E}[u_i | X_i, Z_i] = 0 \]

5. Homoskedasticity

 \[\text{var}[u_i | X_i, Z_i] = \sigma^2 \]
OLS assumptions for large-sample inference

For large-sample inference and calculating SEs, we need the two-variable version of the Gauss-Markov assumptions:

1. Linearity: \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]

2. Random/iid sample

3. No perfect collinearity

4. Zero conditional mean error: \[E[u_i | X_i, Z_i] = 0 \]

5. Homoskedasticity: \[var(u_i | X_i, Z_i) = \sigma^2 \]
OLS assumptions for large-sample inference

For large-sample inference and calculating SEs, we need the two-variable version of the Gauss-Markov assumptions:

1. **Linearity**
 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]

2. **Random/iid sample**
3. **No perfect collinearity**
4. **Zero conditional mean error**
 \[\mathbb{E}[u_i|X_i, Z_i] = 0 \]
OLS assumptions for large-sample inference

For large-sample inference and calculating SEs, we need the two-variable version of the Gauss-Markov assumptions:

1. **Linearity**
 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]

2. **Random/iid sample**

3. **No perfect collinearity**

4. **Zero conditional mean error**
 \[\mathbb{E}[u_i|X_i, Z_i] = 0 \]

5. **Homoskedasticity**
 \[\text{var}[u_i|X_i, Z_i] = \sigma_u^2 \]
Inference with two independent variables in large samples

- We have our OLS estimate $\hat{\beta}_1$
Inference with two independent variables in large samples

- We have our OLS estimate $\hat{\beta}_1$.
- We have an estimate of the standard error for that coefficient, $SE[\hat{\beta}_1]$.

Under assumption 1-5, in large samples, we'll have the following:

$$\hat{\beta}_1 - \beta_1 \sim N(0, 1)$$

The same holds for the other coefficient:

$$\hat{\beta}_2 - \beta_2 \sim N(0, 1)$$

Inference is exactly the same in large samples! Hypothesis tests and CIs are good to go.

The SE's will change, though.
Inference with two independent variables in large samples

- We have our OLS estimate $\hat{\beta}_1$
- We have an estimate of the standard error for that coefficient, $\hat{SE}[\hat{\beta}_1]$.
- Under assumption 1-5, in large samples, we’ll have the following:

$$\frac{\hat{\beta}_1 - \beta_1}{\hat{SE}[\hat{\beta}_1]} \sim N(0, 1)$$
Inference with two independent variables in large samples

- We have our OLS estimate \(\hat{\beta}_1 \).
- We have an estimate of the standard error for that coefficient, \(\hat{SE}[\hat{\beta}_1] \).
- Under assumption 1-5, in large samples, we’ll have the following:

\[
\frac{\hat{\beta}_1 - \beta_1}{\hat{SE}[\hat{\beta}_1]} \sim N(0, 1)
\]

- The same holds for the other coefficient:

\[
\frac{\hat{\beta}_2 - \beta_2}{\hat{SE}[\hat{\beta}_2]} \sim N(0, 1)
\]
Inference with two independent variables in large samples

- We have our OLS estimate $\hat{\beta}_1$
- We have an estimate of the standard error for that coefficient, $\hat{SE}[\hat{\beta}_1]$.
- Under assumption 1-5, in large samples, we’ll have the following:

$$\frac{\hat{\beta}_1 - \beta_1}{\hat{SE}[\hat{\beta}_1]} \sim N(0, 1)$$

- The same holds for the other coefficient:

$$\frac{\hat{\beta}_2 - \beta_2}{\hat{SE}[\hat{\beta}_2]} \sim N(0, 1)$$

- Inference is exactly the same in large samples!
Inference with two independent variables in large samples

- We have our OLS estimate $\hat{\beta}_1$
- We have an estimate of the standard error for that coefficient, $\hat{SE}[\hat{\beta}_1]$.
- Under assumption 1-5, in large samples, we’ll have the following:

$$\frac{\hat{\beta}_1 - \beta_1}{\hat{SE}[\hat{\beta}_1]} \sim N(0, 1)$$

- The same holds for the other coefficient:

$$\frac{\hat{\beta}_2 - \beta_2}{\hat{SE}[\hat{\beta}_2]} \sim N(0, 1)$$

- Inference is exactly the same in large samples!
- Hypothesis tests and CIs are good to go
Inference with two independent variables in large samples

- We have our OLS estimate $\hat{\beta}_1$
- We have an estimate of the standard error for that coefficient, $\hat{SE}[\hat{\beta}_1]$.
- Under assumption 1-5, in large samples, we’ll have the following:
 \[
 \frac{\hat{\beta}_1 - \beta_1}{\hat{SE}[\hat{\beta}_1]} \sim N(0,1)
 \]
- The same holds for the other coefficient:
 \[
 \frac{\hat{\beta}_2 - \beta_2}{\hat{SE}[\hat{\beta}_2]} \sim N(0,1)
 \]
- Inference is exactly the same in large samples!
- Hypothesis tests and CIs are good to go
- The SE’s will change, though
OLS assumptions for small-sample inference

1. Linearity: $Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$

2. Random/iid sample

3. No perfect collinearity

4. Zero conditional mean error: $E[u_i | X_i, Z_i] = 0$

5. Homoskedasticity: $\text{var}[u_i | X_i, Z_i] = \sigma^2_u$

6. Normal conditional errors: $u_i \sim N(0, \sigma^2_u)$
OLS assumptions for small-sample inference

For small-sample inference, we need the Gauss-Markov plus Normal errors:

1. Linearity
 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]

2. Random/iid sample

3. No perfect collinearity

4. Zero conditional mean error
 \[E[u_i | X_i, Z_i] = 0 \]

5. Homoskedasticity
 \[\text{var}[u_i | X_i, Z_i] = \sigma^2_u \]

6. Normal conditional errors
 \[u_i \sim N(0, \sigma^2_u) \]
OLS assumptions for small-sample inference

For small-sample inference, we need the Gauss-Markov plus Normal errors:

1. **Linearity**
 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]

2. **Random/iid sample**

3. **No perfect collinearity**

4. **Zero conditional mean error**
 \[\mathbb{E}[u_i | X_i, Z_i] = 0 \]

5. **Homoskedasticity**
 \[\text{var}[u_i | X_i, Z_i] = \sigma_u^2 \]
OLS assumptions for small-sample inference

For small-sample inference, we need the Gauss-Markov plus Normal errors:

1. Linearity

\[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]

2. Random/iid sample

3. No perfect collinearity

4. Zero conditional mean error

\[\mathbb{E}[u_i|X_i, Z_i] = 0 \]

5. Homoskedasticity

\[\text{var}[u_i|X_i, Z_i] = \sigma_u^2 \]

6. Normal conditional errors

\[u_i \sim N(0, \sigma_u^2) \]
Inference with two independent variables in small samples

- Under assumptions 1-6, we have the following small change to our small-n sampling distribution:

\[
\frac{\hat{\beta}_1 - \beta_1}{SE[\hat{\beta}_1]} \sim t_{n-3}
\]

Why $n-3$? We've estimated another parameter, so we need to take off another degree of freedom.

This leads to small adjustments to the critical values and the t-values for our hypothesis tests and confidence intervals.
Inference with two independent variables in small samples

- Under assumptions 1-6, we have the following small change to our small-\(n\) sampling distribution:

\[
\frac{\hat{\beta}_1 - \beta_1}{SE[\hat{\beta}_1]} \sim t_{n-3}
\]

- The same is true for the other coefficient:

\[
\frac{\hat{\beta}_2 - \beta_2}{SE[\hat{\beta}_2]} \sim t_{n-3}
\]
Inference with two independent variables in small samples

- Under assumptions 1-6, we have the following small change to our small-n sampling distribution:

\[
\frac{\hat{\beta}_1 - \beta_1}{SE[\hat{\beta}_1]} \sim t_{n-3}
\]

- The same is true for the other coefficient:

\[
\frac{\hat{\beta}_2 - \beta_2}{SE[\hat{\beta}_2]} \sim t_{n-3}
\]

- Why $n - 3$?
Inference with two independent variables in small samples

- Under assumptions 1-6, we have the following small change to our small-\(n\) sampling distribution:

\[
\frac{\hat{\beta}_1 - \beta_1}{SE[\hat{\beta}_1]} \sim t_{n-3}
\]

- The same is true for the other coefficient:

\[
\frac{\hat{\beta}_2 - \beta_2}{SE[\hat{\beta}_2]} \sim t_{n-3}
\]

- Why \(n - 3\)?
 - We've estimated another parameter, so we need to take off another degree of freedom.
Inference with two independent variables in small samples

- Under assumptions 1-6, we have the following small change to our small-n sampling distribution:

\[
\frac{\hat{\beta}_1 - \beta_1}{SE[\hat{\beta}_1]} \sim t_{n-3}
\]

- The same is true for the other coefficient:

\[
\frac{\hat{\beta}_2 - \beta_2}{SE[\hat{\beta}_2]} \sim t_{n-3}
\]

- Why $n - 3$?
 - We've estimated another parameter, so we need to take off another degree of freedom.

- Small adjustments to the critical values and the t-values for our hypothesis tests and confidence intervals.
Two Examples
Adding a Binary Variable
Adding a Continuous Covariate
Once More With Feeling
OLS Mechanics and Partialing Out
Fun With Red and Blue
Omitted Variables
Multicollinearity
Dummy Variables
Interaction Terms
Polynomials
Conclusion
Fun With Interactions
Two Examples

Adding a Binary Variable

Adding a Continuous Covariate

Once More With Feeling

OLS Mechanics and Partialing Out

Fun With Red and Blue

Omitted Variables

Multicollinearity

Dummy Variables

Interaction Terms

Polynomials

Conclusion

Fun With Interactions
Red State Blue State

Why Americans Vote the Way They Do

Andrew Gelman
Rich States are More Democratic

Republican vote by state in 2004

Vote share for George Bush

Average income within state

States shown:
- UT
- ID
- OK
- ND
- NE
- AK
- KS
- TX
- GA
- IN
- SC
- SD
- WI
- MO
- AZ
- WV
- FL
- NV
- OH
- CA
- HI
- NH
- RI
- NY
- MA
But Rich People are More Republican

Bush vote in 2004 by income

Vote share for Bush

Individual income

2006 House exit polls

Republican vote share

Income

South

Midwest

West

Northeast

low

middle

high
McCain vote by income in a poor, middle-income, and rich state

Probability of voting for McCain

Voter's income

(50%) (75%)

(poor) (rich)

Miss.
Ohio
Conn.
If Only Rich People Voted, it Would Be a Landslide
A Possible Explanation

Average ideologies of different groups of voters

Republican States
- Middle
 - Poor voters
 - Rich voters

Battleground States
- Middle
 - Poor voters
 - Rich voters

Democratic States
- Middle
 - Rich voters

Axes:
- Liberal - Conservative
- Moderate - Social Issues

Average score on economic issues

Where We’ve Been and Where We’re Going...
Where We’ve Been and Where We’re Going...

- **Last Week**
 - mechanics of OLS with one variable
 - properties of OLS

- **This Week**
 - Monday:

- **Next Week**

- **Long Run**
 - probability
 - → inference
 - → regression

Questions?

Stewart (Princeton)
Where We’ve Been and Where We’re Going...

- **Last Week**
 - mechanics of OLS with one variable
 - properties of OLS

- **This Week**
 - Monday:
 - adding a second variable

- **Next Week**
 - multiple regression

- **Long Run**
 - probability
 - inference
 - regression

Questions?

Stewart (Princeton)
Where We’ve Been and Where We’re Going...

- Last Week
 - mechanics of OLS with one variable
 - properties of OLS

- This Week
 - Monday:
 - adding a second variable
 - new mechanics

- Next Week
 - multiple regression

- Long Run
 - probability
 - inference
 - regression

Questions?

Stewart (Princeton) Week 6: Two Regressors October 17, 19, 2016 74 / 132
Where We’ve Been and Where We’re Going...

- **Last Week**
 - mechanics of OLS with one variable
 - properties of OLS

- **This Week**
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:

 - Next Week:
 - multiple regression

- **Long Run**
 - probability
 → inference
 → regression

Questions?

Stewart (Princeton)
Where We’ve Been and Where We’re Going...

- Last Week
 - mechanics of OLS with one variable
 - properties of OLS

- This Week
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:
 - omitted variable bias

Next Week

Long Run

Questions?
Where We’ve Been and Where We’re Going...

- **Last Week**
 - mechanics of OLS with one variable
 - properties of OLS

- **This Week**
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:
 - omitted variable bias
 - multicollinearity

- **Next Week**
 - multiple regression

- **Long Run**
 - probability
 - inference
 - regression

Questions?

Stewart (Princeton)

Week 6: Two Regressors

October 17, 19, 2016
Where We’ve Been and Where We’re Going…

- **Last Week**
 - mechanics of OLS with one variable
 - properties of OLS

- **This Week**
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:
 - omitted variable bias
 - multicollinearity
 - interactions

- **Next Week**
 - multiple regression

- **Long Run**
 - → probability
 - → inference
 - → regression

Questions?

Stewart (Princeton)

Week 6: Two Regressors

October 17, 19, 2016 74 / 132
Where We’ve Been and Where We’re Going…

- **Last Week**
 - mechanics of OLS with one variable
 - properties of OLS

- **This Week**
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:
 - omitted variable bias
 - multicollinearity
 - interactions

- **Next Week**
Where We’ve Been and Where We’re Going…

- Last Week
 - mechanics of OLS with one variable
 - properties of OLS

- This Week
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:
 - omitted variable bias
 - multicollinearity
 - interactions

- Next Week
 - multiple regression
Where We’ve Been and Where We’re Going...

- Last Week
 - mechanics of OLS with one variable
 - properties of OLS

- This Week
 - Monday:
 - adding a second variable
 - new mechanics
 - Wednesday:
 - omitted variable bias
 - multicollinearity
 - interactions

- Next Week
 - multiple regression

- Long Run
 - probability → inference → regression

Questions?
Two Examples

Adding a Binary Variable

Adding a Continuous Covariate

Once More With Feeling

OLS Mechanics and Partialing Out

Fun With Red and Blue

Omitted Variables

Multicollinearity

Dummy Variables

Interaction Terms

Polynomials

Conclusion

Fun With Interactions
Remember This?

- **Identification**
 - Data Description
 - Variation in X

- **Unbiasedness**
 - Consistency
 - Variation in X
 - Random Sampling
 - Linearity in Parameters
 - Zero Conditional Mean

- **Gauss-Markov (BLUE)**
 - Asymptotic Inference (z and χ^2)
 - Variation in X
 - Random Sampling
 - Linearity in Parameters
 - Zero Conditional Mean
 - Homoskedasticity

- **Classical LM (BUE)**
 - Small-Sample Inference (t and F)
 - Variation in X
 - Random Sampling
 - Linearity in Parameters
 - Zero Conditional Mean
 - Homoskedasticity
 - Normality of Errors
Unbiasedness revisited

- True model:

\[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]
Unbiasedness revisited

- True model:

\[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]

- Assumptions 1-4 \(\Rightarrow\) we get unbiased estimates of the coefficients
Unbiasedness revisited

- True model:
 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]
- Assumptions 1-4 \(\Rightarrow \) we get unbiased estimates of the coefficients
- What happens if we ignore the \(Z_i \) and just run the simple linear regression with just \(X_i \)?
Unbiasedness revisited

- **True model:**
 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]

- Assumptions 1-4 ⇒ we get unbiased estimates of the coefficients

- What happens if we ignore the \(Z_i \) and just run the simple linear regression with just \(X_i \)?

- Misspecified model:
 \[Y_i = \beta_0 + \beta_1 X_i + u_i^* \quad u_i^* = \beta_2 Z_i + u_i \]
Unbiasedness revisited

- True model:
 \[Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i \]
- Assumptions 1-4 \(\Rightarrow\) we get unbiased estimates of the coefficients
- What happens if we ignore the \(Z_i\) and just run the simple linear regression with just \(X_i\)?
- Misspecified model:
 \[Y_i = \beta_0 + \beta_1 X_i + u_i^* \quad u_i^* = \beta_2 Z_i + u_i \]
- OLS estimates from the misspecified model:
 \[\hat{Y}_i = \tilde{\beta}_0 + \tilde{\beta}_1 X_i \]
Omitted Variable Bias: Simple Case

True Population Model:

\[\text{Voted Republican} = \beta_0 + \beta_1 \text{Watch Fox News} + \beta_2 \text{Strong Republican} + u \]
Omitted Variable Bias: Simple Case

True Population Model:

\[\text{Voted Republican} = \beta_0 + \beta_1 \text{Watch Fox News} + \beta_2 \text{Strong Republican} + u \]

Underspecified Model that we use:

\[\text{Voted Republican} = \tilde{\beta}_0 + \tilde{\beta}_1 \text{Watch Fox News} \]

Q: Which statement is correct?

1. \(\beta_1 > \tilde{\beta}_1 \)
2. \(\beta_1 < \tilde{\beta}_1 \)
3. \(\beta_1 = \tilde{\beta}_1 \)
4. Can’t tell

Answer: \(\tilde{\beta}_1 \) is upward biased since being a strong republican is positively correlated with both watching fox news and voting republican. We have \(\beta_1 < \tilde{\beta}_1 \).
Omitted Variable Bias: Simple Case

True Population Model:

\[\text{Voted Republican} = \beta_0 + \beta_1 \text{Watch Fox News} + \beta_2 \text{Strong Republican} + u \]

Underspecified Model that we use:

\[\text{Voted Republican} = \tilde{\beta}_0 + \tilde{\beta}_1 \text{Watch Fox News} \]

Q: Which statement is correct?

1. \(\beta_1 > \tilde{\beta}_1 \)
2. \(\beta_1 < \tilde{\beta}_1 \)
3. \(\beta_1 = \tilde{\beta}_1 \)
4. Can't tell

Answer: \(\tilde{\beta}_1 \) is upward biased since being a strong republican is positively correlated with both watching Fox News and voting Republican. We have \(\beta_1 < \tilde{\beta}_1 \).
Omitted Variable Bias: Simple Case

True Population Model:

\[\text{Voted Republican} = \beta_0 + \beta_1 \text{Watch Fox News} + \beta_2 \text{Strong Republican} + u \]

Underspecified Model that we use:

\[\text{Voted Republican} = \tilde{\beta}_0 + \tilde{\beta}_1 \text{Watch Fox News} \]

Q: Which statement is correct?

1. \(\beta_1 > \tilde{\beta}_1 \)

Answer: \(\tilde{\beta}_1 \) is upward biased since being a strong republican is positively correlated with both watching fox news and voting republican. We have \(\beta_1 < \tilde{\beta}_1 \).
Omitted Variable Bias: Simple Case

True Population Model:

\[
\text{Voted Republican} = \beta_0 + \beta_1 \text{Watch Fox News} + \beta_2 \text{Strong Republican} + u
\]

Underspecified Model that we use:

\[
\text{Voted Republican} = \tilde{\beta}_0 + \tilde{\beta}_1 \text{Watch Fox News}
\]

Q: Which statement is correct?

1. \(\beta_1 > \tilde{\beta}_1 \)
2. \(\beta_1 < \tilde{\beta}_1 \)

Answer: \(\tilde{\beta}_1 \) is upward biased since being a strong republican is positively correlated with both watching fox news and voting republican. We have \(\beta_1 < \tilde{\beta}_1 \).
Omitted Variable Bias: Simple Case

True Population Model:

\[\text{Voted Republican} = \beta_0 + \beta_1 \text{Watch Fox News} + \beta_2 \text{Strong Republican} + u \]

Underspecified Model that we use:

\[\text{Voted Republican} = \tilde{\beta}_0 + \tilde{\beta}_1 \text{Watch Fox News} \]

Q: Which statement is correct?

1. \(\beta_1 > \tilde{\beta}_1 \)
2. \(\beta_1 < \tilde{\beta}_1 \)
3. \(\beta_1 = \tilde{\beta}_1 \)

Can't tell

Answer: \(\tilde{\beta}_1 \) is upward biased since being a strong republican is positively correlated with both watching fox news and voting republican. We have \(\beta_1 < \tilde{\beta}_1 \).
Omitted Variable Bias: Simple Case

True Population Model:

\[\text{Voted Republican} = \beta_0 + \beta_1 \text{Watch Fox News} + \beta_2 \text{Strong Republican} + u \]

Underspecified Model that we use:

\[\text{Voted Republican} = \tilde{\beta}_0 + \tilde{\beta}_1 \text{Watch Fox News} \]

Q: Which statement is correct?

1. \(\beta_1 > \tilde{\beta}_1 \)
2. \(\beta_1 < \tilde{\beta}_1 \)
3. \(\beta_1 = \tilde{\beta}_1 \)
4. Can’t tell

Answer: \(\tilde{\beta}_1 \) is upward biased since being a strong republican is positively correlated with both watching fox news and voting republican. We have \(\beta_1 < \tilde{\beta}_1 \).
Omitted Variable Bias: Simple Case

True Population Model:

\[
\text{Voted Republican} = \beta_0 + \beta_1 \text{Watch Fox News} + \beta_2 \text{Strong Republican} + u
\]

Underspecified Model that we use:

\[
\text{Voted Republican} = \tilde{\beta}_0 + \tilde{\beta}_1 \text{Watch Fox News}
\]

Q: Which statement is correct?

1. \(\beta_1 > \tilde{\beta}_1 \)
2. \(\beta_1 < \tilde{\beta}_1 \)
3. \(\beta_1 = \tilde{\beta}_1 \)
4. Can’t tell

Answer: \(\tilde{\beta}_1 \) is upward biased since being a strong republican is positively correlated with both watching fox news and voting republican. We have \(\beta_1 < \tilde{\beta}_1 \).
Omitted Variable Bias: Simple Case

True Population Model:

\[
\text{Survival} = \beta_0 + \beta_1 \text{Hospitalized} + \beta_2 \text{Health} + u
\]

Under-specified Model that we use:

\[
\text{Survival} = \tilde{\beta}_0 + \tilde{\beta}_1 \text{Hospitalized}
\]

Q: Which statement is correct?

1. \(\beta_1 > \tilde{\beta}_1 \)
2. \(\beta_1 < \tilde{\beta}_1 \)
3. \(\beta_1 = \tilde{\beta}_1 \)
4. Can't tell

Answer: The negative coefficient \(\tilde{\beta}_1 \) is downward biased compared to the true \(\beta_1 \) so \(\beta_1 > \tilde{\beta}_1 \). Being hospitalized is negatively correlated with health, and health is positively correlated with survival.
Omitted Variable Bias: Simple Case

True Population Model:

\[\text{Survival} = \beta_0 + \beta_1 \text{Hospitalized} + \beta_2 \text{Health} + u \]
Omitted Variable Bias: Simple Case

True Population Model:

\[
\text{Survival} = \beta_0 + \beta_1 \text{Hospitalized} + \beta_2 \text{Health} + u
\]

Under-specified Model that we use:

\[
\text{Survival} = \tilde{\beta}_0 + \tilde{\beta}_1 \text{Hospitalized}
\]

Q: Which statement is correct?

1. \(\beta_1 > \tilde{\beta}_1 \)
2. \(\beta_1 < \tilde{\beta}_1 \)
3. \(\beta_1 = \tilde{\beta}_1 \)
4. Can’t tell

Answer: The negative coefficient \(\tilde{\beta}_1 \) is downward biased compared to the true \(\beta_1 \) so \(\beta_1 > \tilde{\beta}_1 \). Being hospitalized is negatively correlated with health, and health is positively correlated with survival.
Omitted Variable Bias: Simple Case

True Population Model:

\[\text{Survival} = \beta_0 + \beta_1 \text{Hospitalized} + \beta_2 \text{Health} + u \]

Under-specified Model that we use:

\[\text{Survival} = \tilde{\beta}_0 + \tilde{\beta}_1 \text{Hospitalized} \]

Q: Which statement is correct?

1. \(\beta_1 > \tilde{\beta}_1 \)
2. \(\beta_1 < \tilde{\beta}_1 \)
3. \(\beta_1 = \tilde{\beta}_1 \)
4. Can’t tell

Answer: The negative coefficient \(\tilde{\beta}_1 \) is downward biased compared to the true \(\beta_1 \) so \(\beta_1 > \tilde{\beta}_1 \). Being hospitalized is negatively correlated with health, and health is positively correlated with survival.
Omitted Variable Bias: Simple Case

True Population Model:

\[
\text{Survival} = \beta_0 + \beta_1 \text{Hospitalized} + \beta_2 \text{Health} + u
\]

Under-specified Model that we use:

\[
\text{Survival} = \tilde{\beta}_0 + \tilde{\beta}_1 \text{Hospitalized}
\]

Q: Which statement is correct?

1. \(\beta_1 > \tilde{\beta}_1 \)
2. \(\beta_1 < \tilde{\beta}_1 \)
3. \(\beta_1 = \tilde{\beta}_1 \)
4. Can’t tell

Answer: The negative coefficient \(\tilde{\beta}_1 \) is downward biased compared to the true \(\beta_1 \) so \(\beta_1 > \tilde{\beta}_1 \). Being hospitalized is negatively correlated with health, and health is positively correlated with survival.
Omitted Variable Bias: Simple Case

True Population Model:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u \]
Omitted Variable Bias: Simple Case

True Population Model:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u \]

Underspecified Model that we use:

\[\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 \]

We can show that the relationship between \(\tilde{\beta}_1 \) and \(\hat{\beta}_1 \) is:

\[\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \]

where:

\[\tilde{\delta} \] is the slope of a regression of \(x_2 \) on \(x_1 \). If \(\tilde{\delta} > 0 \) then \(\text{cor}(x_1, x_2) > 0 \) and if \(\tilde{\delta} < 0 \) then \(\text{cor}(x_1, x_2) < 0 \).

\(\hat{\beta}_2 \) is from the true regression and measures the relationship between \(x_2 \) and \(y \), conditional on \(x_1 \).

Q. When will \(\tilde{\beta}_1 = \hat{\beta}_1 \)?

A. If \(\tilde{\delta} = 0 \) or \(\hat{\beta}_2 = 0 \).
Omitted Variable Bias: Simple Case

True Population Model:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u \]

Underspecified Model that we use:

\[\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 \]

We can show that the relationship between \(\tilde{\beta}_1 \) and \(\hat{\beta}_1 \) is:

\[\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \]

where:

\(\tilde{\delta} \) is the slope of a regression of \(x_2 \) on \(x_1 \). If \(\tilde{\delta} > 0 \) then \(\text{cor}(x_1, x_2) > 0 \) and if \(\tilde{\delta} < 0 \) then \(\text{cor}(x_1, x_2) < 0 \).
Omitted Variable Bias: Simple Case

True Population Model:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u \]

Underspecified Model that we use:

\[\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 \]

We can show that the relationship between \(\tilde{\beta}_1 \) and \(\hat{\beta}_1 \) is:

\[\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \]

where:

- \(\tilde{\delta} \) is the slope of a regression of \(x_2 \) on \(x_1 \). If \(\tilde{\delta} > 0 \) then \(\text{cor}(x_1, x_2) > 0 \) and if \(\tilde{\delta} < 0 \) then \(\text{cor}(x_1, x_2) < 0 \).
Omitted Variable Bias: Simple Case

True Population Model:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u \]

Underspecified Model that we use:

\[\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 \]

We can show that the relationship between \(\tilde{\beta}_1 \) and \(\hat{\beta}_1 \) is:

\[\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \]

where:

- \(\tilde{\delta} \) is the slope of a regression of \(x_2 \) on \(x_1 \). If \(\tilde{\delta} > 0 \) then \(\text{cor}(x_1, x_2) > 0 \) and if \(\tilde{\delta} < 0 \) then \(\text{cor}(x_1, x_2) < 0 \).
- \(\hat{\beta}_2 \) is from the true regression and measures the relationship between \(x_2 \) and \(y \), conditional on \(x_1 \).
Omitted Variable Bias: Simple Case

True Population Model:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u \]

Underspecified Model that we use:

\[\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 \]

We can show that the relationship between \(\tilde{\beta}_1 \) and \(\hat{\beta}_1 \) is:

\[\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \]

where:

- \(\tilde{\delta} \) is the slope of a regression of \(x_2 \) on \(x_1 \). If \(\tilde{\delta} > 0 \) then \(\text{cor}(x_1, x_2) > 0 \) and if \(\tilde{\delta} < 0 \) then \(\text{cor}(x_1, x_2) < 0 \).

- \(\hat{\beta}_2 \) is from the true regression and measures the relationship between \(x_2 \) and \(y \), conditional on \(x_1 \).

Q. When will \(\tilde{\beta}_1 = \hat{\beta}_1 \)?
Omitted Variable Bias: Simple Case

True Population Model:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u \]

Underspecified Model that we use:

\[\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 \]

We can show that the relationship between \(\tilde{\beta}_1 \) and \(\hat{\beta}_1 \) is:

\[\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \]

where:

- \(\tilde{\delta} \) is the slope of a regression of \(x_2 \) on \(x_1 \). If \(\tilde{\delta} > 0 \) then \(\text{cor}(x_1, x_2) > 0 \) and if \(\tilde{\delta} < 0 \) then \(\text{cor}(x_1, x_2) < 0 \).

- \(\hat{\beta}_2 \) is from the true regression and measures the relationship between \(x_2 \) and \(y \), conditional on \(x_1 \).

Q. When will \(\tilde{\beta}_1 = \hat{\beta}_1 \)?

A. If \(\tilde{\delta} = 0 \) or \(\hat{\beta}_2 = 0 \).
Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:

\[\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \]

\[E[\tilde{\beta}_1 | X] = \]

Any variable that is correlated with an included \(X \) and the outcome \(Y \) is called a confounder.
Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:

\[\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \]

\[E[\tilde{\beta}_1 \mid X] = E[\hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \mid X] = \]

Any variable that is correlated with an included \(X \) and the outcome \(Y \) is called a confounder.
Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:

\[\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \]

\[E[\tilde{\beta}_1 | X] = E[\hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} | X] \]

\[= E[\hat{\beta}_1 | X] + E[\hat{\beta}_2 | X] \cdot \tilde{\delta} \quad (\tilde{\delta} \text{ nonrandom given } x) \]

So the bias depends on the relationship between \(x_2 \) and \(x_1 \), our \(\tilde{\delta} \), and the relationship between \(x_2 \) and \(y \), our \(\beta_2 \).

Any variable that is correlated with an included \(X \) and the outcome \(Y \) is called a confounder.
Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:

\[
\hat{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta}
\]

\[
E[\tilde{\beta}_1 | X] = E[\hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} | X]
\]

\[
= E[\hat{\beta}_1 | X] + E[\hat{\beta}_2 | X] \cdot \tilde{\delta} \quad (\tilde{\delta} \text{ nonrandom given } x)
\]

\[
= \beta_1 + \beta_2 \cdot \tilde{\delta} \quad (\text{given assumptions 1-4})
\]
Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:

\[
\hat{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta}
\]

\[
E[\hat{\beta}_1 | X] = E[\hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} | X]
\]

\[
= E[\hat{\beta}_1 | X] + E[\hat{\beta}_2 | X] \cdot \tilde{\delta} \text{ (}\tilde{\delta} \text{ nonrandom given } x)\]

\[
= \beta_1 + \beta_2 \cdot \tilde{\delta} \text{ (given assumptions 1-4)}
\]

So

\[
\text{Bias}[\hat{\beta}_1 | X] = E[\hat{\beta}_1 | X] - \beta_1 = \beta_2 \cdot \tilde{\delta}
\]
Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:

\[
\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \\
i
\]

\[
E[\tilde{\beta}_1 \mid X] = E[\hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \mid X] \\
i
\]

\[
= E[\hat{\beta}_1 \mid X] + E[\hat{\beta}_2 \mid X] \cdot \tilde{\delta} \quad (\tilde{\delta} \text{ nonrandom given } x) \\
i
\]

\[
= \beta_1 + \beta_2 \cdot \tilde{\delta} \quad (\text{given assumptions 1-4})
\]

So

\[
\text{Bias}[\tilde{\beta}_1 \mid X] = E[\tilde{\beta}_1 \mid X] - \beta_1 = \beta_2 \cdot \tilde{\delta}
\]

So the bias depends on the relationship between \(x_2\) and \(x_1\), our \(\tilde{\delta}\), and the relationship between \(x_2\) and \(y\), our \(\beta_2\).
Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:

\[
\begin{align*}
\tilde{\beta}_1 &= \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \\
E[\tilde{\beta}_1 | X] &= E[\hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} | X] \\
&= E[\hat{\beta}_1 | X] + E[\hat{\beta}_2 | X] \cdot \tilde{\delta} \quad (\tilde{\delta} \text{ nonrandom given } x) \\
&= \beta_1 + \beta_2 \cdot \tilde{\delta} \quad \text{(given assumptions 1-4)}
\end{align*}
\]

So

\[
\text{Bias}[\tilde{\beta}_1 | X] = E[\tilde{\beta}_1 | X] - \beta_1 = \beta_2 \cdot \tilde{\delta}
\]

So the bias depends on the relationship between \(x_2\) and \(x_1\), our \(\tilde{\delta}\), and the relationship between \(x_2\) and \(y\), our \(\beta_2\).

Any variable that is correlated with an included \(X\) and the outcome \(Y\) is called a confounder.
Omitted Variable Bias: Simple Case

Direction of the bias of $\tilde{\beta}_1$ compared to β_1 is given by:

<table>
<thead>
<tr>
<th>β_2</th>
<th>cov(X_1, X_2) > 0</th>
<th>cov(X_1, X_2) < 0</th>
<th>cov(X_1, X_2) = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_2 > 0$</td>
<td>Positive bias</td>
<td>Negative Bias</td>
<td>No bias</td>
</tr>
<tr>
<td>$\beta_2 < 0$</td>
<td>Negative bias</td>
<td>Positive Bias</td>
<td>No bias</td>
</tr>
<tr>
<td>$\beta_2 = 0$</td>
<td>No bias</td>
<td>No bias</td>
<td>No bias</td>
</tr>
</tbody>
</table>

Further points:
- Magnitude of the bias matters too
- If you miss an important confounder, your estimates are biased and inconsistent.
- In the more general case with more than two covariates the bias is more difficult to discern. It depends on all the pairwise correlations.
Direction of the bias of $\tilde{\beta}_1$ compared to β_1 is given by:

<table>
<thead>
<tr>
<th>$\text{cov}(X_1, X_2)$</th>
<th>Positive bias</th>
<th>Negative Bias</th>
<th>No bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_2 > 0$</td>
<td>Positive bias</td>
<td>Negative Bias</td>
<td>No bias</td>
</tr>
<tr>
<td>$\beta_2 < 0$</td>
<td>Negative bias</td>
<td>Positive Bias</td>
<td>No bias</td>
</tr>
<tr>
<td>$\beta_2 = 0$</td>
<td>No bias</td>
<td>No bias</td>
<td>No bias</td>
</tr>
</tbody>
</table>

Further points:

- Magnitude of the bias matters too
Omitted Variable Bias: Simple Case

Direction of the bias of $\tilde{\beta}_1$ compared to β_1 is given by:

<table>
<thead>
<tr>
<th>β_2</th>
<th>$\text{cov}(X_1, X_2) > 0$</th>
<th>$\text{cov}(X_1, X_2) < 0$</th>
<th>$\text{cov}(X_1, X_2) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_2 > 0$</td>
<td>Positive bias</td>
<td>Negative Bias</td>
<td>No bias</td>
</tr>
<tr>
<td>$\beta_2 < 0$</td>
<td>Negative bias</td>
<td>Positive Bias</td>
<td>No bias</td>
</tr>
<tr>
<td>$\beta_2 = 0$</td>
<td>No bias</td>
<td>No bias</td>
<td>No bias</td>
</tr>
</tbody>
</table>

Further points:

- Magnitude of the bias matters too
- If you miss an important confounder, your estimates are biased and inconsistent.
Omitted Variable Bias: Simple Case

Direction of the bias of $\tilde{\beta}_1$ compared to β_1 is given by:

\[
\begin{array}{ccc}
\text{cov}(X_1, X_2) > 0 & \text{cov}(X_1, X_2) < 0 & \text{cov}(X_1, X_2) = 0 \\
\beta_2 > 0 & \text{Positive bias} & \text{Negative Bias} & \text{No bias} \\
\beta_2 < 0 & \text{Negative bias} & \text{Positive Bias} & \text{No bias} \\
\beta_2 = 0 & \text{No bias} & \text{No bias} & \text{No bias}
\end{array}
\]

Further points:

- Magnitude of the bias matters too
- If you miss an important confounder, your estimates are biased and inconsistent.
- In the more general case with more than two covariates the bias is more difficult to discern. It depends on all the pairwise correlations.
Including an Irrelevant Variable: Simple Case

True Population Model:

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \]

where \(\beta_2 = 0 \) and Assumptions I–IV hold.

Overspecified Model that we use:

\[\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2 \]

Q: Which statement is correct?

1. \(\beta_1 > \tilde{\beta}_1 \)
2. \(\beta_1 < \tilde{\beta}_1 \)
3. \(\beta_1 = \tilde{\beta}_1 \)
4. Can't tell
Including an Irrelevant Variable: Simple Case

True Population Model:

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \quad \text{where} \quad \beta_2 = 0 \]

and Assumptions I–IV hold.
Including an Irrelevant Variable: Simple Case

True Population Model:

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \quad \text{where} \quad \beta_2 = 0 \]

and Assumptions I–IV hold.

Overspecified Model that we use:

\[\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2 \]
Including an Irrelevant Variable: Simple Case

True Population Model:

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \quad \text{where} \quad \beta_2 = 0 \]

and Assumptions I–IV hold.

Overspecified Model that we use:

\[\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2 \]

Q: Which statement is correct?

1. \(\beta_1 > \tilde{\beta}_1 \)
2. \(\beta_1 < \tilde{\beta}_1 \)
3. \(\beta_1 = \tilde{\beta}_1 \)
4. Can’t tell
Including an Irrelevant Variable: Simple Case

Recall: Given Assumptions I–IV, we have:

\[E[\hat{\beta}_j] = \beta_j \]

for all values of \(\beta_j \). So, if \(\beta_2 = 0 \), we get

\[E[\hat{\beta}_0] = \beta_0, \]
\[E[\hat{\beta}_1] = \beta_1, \]
\[E[\hat{\beta}_2] = 0 \]

and thus including the irrelevant variable does not generally affect the unbiasedness. The sampling distribution of \(\hat{\beta}_2 \) will be centered about zero.
Including an Irrelevant Variable: Simple Case

Recall: Given Assumptions I–IV, we have:

\[E[\hat{\beta}_j] = \beta_j \]
Including an Irrelevant Variable: Simple Case

Recall: Given Assumptions I–IV, we have:

\[E[\hat{\beta}_j] = \beta_j \]

for all values of \(\beta_j \). So, if \(\beta_2 = 0 \), we get

\[E[\hat{\beta}_0] = \beta_0, \ E[\hat{\beta}_1] = \beta_1, \ E[\hat{\beta}_2] = 0 \]
Including an Irrelevant Variable: Simple Case

Recall: Given Assumptions I–IV, we have:

\[E[\hat{\beta}_j] = \beta_j \]

for all values of \(\beta_j \). So, if \(\beta_2 = 0 \), we get

\[E[\hat{\beta}_0] = \beta_0, \quad E[\hat{\beta}_1] = \beta_1, \quad E[\hat{\beta}_2] = 0 \]

and thus including the irrelevant variable does not generally affect the unbiasedness. The sampling distribution of \(\hat{\beta}_2 \) will be centered about zero.
1 Two Examples
2 Adding a Binary Variable
3 Adding a Continuous Covariate
4 Once More With Feeling
5 OLS Mechanics and Partialing Out
6 Fun With Red and Blue
7 Omitted Variables
8 Multicollinearity
9 Dummy Variables
10 Interaction Terms
11 Polynomials
12 Conclusion
13 Fun With Interactions
Two Examples

Adding a Binary Variable

Adding a Continuous Covariate

Once More With Feeling

OLS Mechanics and Partialing Out

Fun With Red and Blue

Omitted Variables

Multicollinearity

Dummy Variables

Interaction Terms

Polynomials

Conclusion

Fun With Interactions
Sampling variance for simple linear regression

- Under simple linear regression, we found that the distribution of the slope was the following:

\[
\text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{\sum_{i=1}^{n}(X_i - \bar{X})^2}
\]
Sampling variance for simple linear regression

- Under simple linear regression, we found that the distribution of the slope was the following:

\[\text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{\sum_{i=1}^{n}(X_i - \bar{X})^2} \]

- Factors affecting the standard errors (the square root of these sampling variances):
Sampling variance for simple linear regression

- Under simple linear regression, we found that the distribution of the slope was the following:

\[
\text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2}
\]

- Factors affecting the standard errors (the square root of these sampling variances):
 - The error variance \(\sigma_u^2 \) (higher conditional variance of \(Y_i \) leads to bigger SEs)
Sampling variance for simple linear regression

- Under simple linear regression, we found that the distribution of the slope was the following:

\[
\text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{\sum_{i=1}^{n}(X_i - \bar{X})^2}
\]

- Factors affecting the standard errors (the square root of these sampling variances):
 - The error variance \(\sigma_u^2 \) (higher conditional variance of \(Y_i \) leads to bigger SEs)
 - The total variation in \(X_i \): \(\sum_{i=1}^{n}(X_i - \bar{X})^2 \) (lower variation in \(X_i \) leads to bigger SEs)
Sampling variation for linear regression with two covariates

- Regression with an additional independent variable:

\[
\text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^{n} (X_i - \bar{X})^2}
\]

Here, \(R_1^2\) is the \(R^2\) from the regression of \(X_i\) on \(Z_i\):

\[
\hat{X}_i = \hat{\delta}_0 + \hat{\delta}_1 Z_i
\]

Factors now affecting the standard errors:

- The error variance (higher conditional variance of \(Y_i\) leads to bigger SEs)
- The total variation of \(X_i\) (lower variation in \(X_i\) leads to bigger SEs)
- The strength of the relationship between \(X_i\) and \(Z_i\) (stronger relationships mean higher \(R_1^2\) and thus bigger SEs)

What happens with perfect collinearity?

\(R_1^2 = 1\) and the variances are infinite.
Sampling variation for linear regression with two covariates

- Regression with an additional independent variable:

 \[\text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^{n} (X_i - \bar{X})^2} \]

- Here, \(R_1^2 \) is the \(R^2 \) from the regression of \(X_i \) on \(Z_i \):

 \[\hat{X}_i = \hat{\delta}_0 + \hat{\delta}_1 Z_i \]

- Factors now affecting the standard errors:
 - The error variance (higher conditional variance of \(Y_i \) leads to bigger SEs)
 - The total variation of \(X_i \) (lower variation in \(X_i \) leads to bigger SEs)
 - The strength of the relationship between \(X_i \) and \(Z_i \) (stronger relationships mean higher \(R^2_1 \) and thus bigger SEs)

What happens with perfect collinearity?

\(R_1^2 = 1 \) and the variances are infinite.
Sampling variation for linear regression with two covariates

- Regression with an additional independent variable:

\[
\text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^{n} (X_i - \bar{X})^2}
\]

- Here, \(R_1^2 \) is the \(R^2 \) from the regression of \(X_i \) on \(Z_i \):

\[
\hat{X}_i = \hat{\delta}_0 + \hat{\delta}_1 Z_i
\]

- Factors now affecting the standard errors:
Sampling variation for linear regression with two covariates

- Regression with an additional independent variable:
 \[
 \text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \bar{X})^2}
 \]

- Here, R_1^2 is the R^2 from the regression of X_i on Z_i:
 \[
 \hat{X}_i = \hat{\delta}_0 + \hat{\delta}_1 Z_i
 \]

- Factors now affecting the standard errors:
 - The error variance (higher conditional variance of Y_i leads to bigger SEs)
Sampling variation for linear regression with two covariates

- Regression with an additional independent variable:

\[
\text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^{n}(X_i - \bar{X})^2}
\]

- Here, \(R_1^2 \) is the \(R^2 \) from the regression of \(X_i \) on \(Z_i \):

\[
\hat{X}_i = \hat{\delta}_0 + \hat{\delta}_1 Z_i
\]

- Factors now affecting the standard errors:

 ▶ The error variance (higher conditional variance of \(Y_i \) leads to bigger SEs)

 ▶ The total variation of \(X_i \) (lower variation in \(X_i \) leads to bigger SEs)

What happens with perfect collinearity?

\(R_1^2 = 1 \) and the variances are infinite.
Sampling variation for linear regression with two covariates

- Regression with an additional independent variable:

\[
\text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^{n} (X_i - \bar{X})^2}
\]

- Here, \(R_1^2\) is the \(R^2\) from the regression of \(X_i\) on \(Z_i\):

\[
\hat{X}_i = \hat{\delta}_0 + \hat{\delta}_1 Z_i
\]

- Factors now affecting the standard errors:
 - The error variance (higher conditional variance of \(Y_i\) leads to bigger SEs)
 - The total variation of \(X_i\) (lower variation in \(X_i\) leads to bigger SEs)
 - The strength of the relationship between \(X_i\) and \(Z_i\) (stronger relationships mean higher \(R_1^2\) and thus bigger SEs)

What happens with perfect collinearity?

\(R_1^2 = 1\) and the variances are infinite.
Sampling variation for linear regression with two covariates

Regression with an additional independent variable:

$$\text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^{n}(X_i - \bar{X})^2}$$

Here, R_1^2 is the R^2 from the regression of X_i on Z_i:

$$\hat{X}_i = \hat{\delta}_0 + \hat{\delta}_1 Z_i$$

Factors now affecting the standard errors:

- The error variance (higher conditional variance of Y_i leads to bigger SEs)
- The total variation of X_i (lower variation in X_i leads to bigger SEs)
- The strength of the relationship between X_i and Z_i (stronger relationships mean higher R_1^2 and thus bigger SEs)

What happens with perfect collinearity? $R_1^2 = 1$ and the variances are infinite.
Multicollinearity

Multicollinearity is defined to be high, but not perfect, correlation between two independent variables in a regression. With multicollinearity, we'll have $R^2 \approx 1$, but not exactly. The stronger the relationship between X_i and Z_i, the closer R^2 will be to 1, and the higher the SEs will be:

$$\text{var}(\hat{\beta}_1) = \sigma^2_u (1 - R^2) \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Given the symmetry, it will also increase var($\hat{\beta}_2$) as well.
Multicollinearity

Definition

Multicollinearity is defined to be high, but not perfect, correlation between two independent variables in a regression.
Multicollinearity

Definition

Multicollinearity is defined to be high, but not perfect, correlation between two independent variables in a regression.

- With multicollinearity, we’ll have $R_1^2 \approx 1$, but not exactly.
Multicollinearity

Definition

Multicollinearity is defined to be high, but not perfect, correlation between two independent variables in a regression.

- With multicollinearity, we’ll have $R_1^2 \approx 1$, but not exactly.
- The stronger the relationship between X_i and Z_i, the closer the R_1^2 will be to 1, and the higher the SEs will be:

$$
\text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \bar{X})^2}
$$
Multicollinearity

Definition

Multicollinearity is defined to be high, but not perfect, correlation between two independent variables in a regression.

- With multicollinearity, we’ll have $R_1^2 \approx 1$, but not exactly.
- The stronger the relationship between X_i and Z_i, the closer the R_1^2 will be to 1, and the higher the SEs will be:

$$\text{var}(\hat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \bar{X})^2}$$

- Given the symmetry, it will also increase $\text{var}(\hat{\beta}_2)$ as well.
Intuition for multicollinearity

- Remember the OLS recipe:
Intuition for multicollinearity

- Remember the OLS recipe:
 - $\hat{\beta}_1$ from regression of Y_i on $\hat{r}_{xz,i}$
Intuition for multicollinearity

- Remember the OLS recipe:
 - $\hat{\beta}_1$ from regression of Y_i on $\hat{r}_{xz,i}$
 - $\hat{r}_{xz,i}$ are the residuals from the regression of X_i on Z_i
Intuition for multicollinearity

- Remember the OLS recipe:
 - $\hat{\beta}_1$ from regression of Y_i on $\hat{r}_{xz,i}$
 - $\hat{r}_{xz,i}$ are the residuals from the regression of X_i on Z_i

- Estimated coefficient:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} \hat{r}_{xz,i} Y_i}{\sum_{i=1}^{n} \hat{r}_{xz,i}^2}$$
Intuition for multicollinearity

- Remember the OLS recipe:
 - $\hat{\beta}_1$ from regression of Y_i on $\hat{r}_{xz,i}$
 - $\hat{r}_{xz,i}$ are the residuals from the regression of X_i on Z_i

- Estimated coefficient:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} \hat{r}_{xz,i} Y_i}{\sum_{i=1}^{n} \hat{r}^2_{xz,i}}$$

- When Z_i and X_i have a strong relationship, then the residuals will have low variation
Intuition for multicollinearity

- Remember the OLS recipe:
 - $\hat{\beta}_1$ from regression of Y_i on $\hat{r}_{xz,i}$
 - $\hat{r}_{xz,i}$ are the residuals from the regression of X_i on Z_i

- Estimated coefficient:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} \hat{r}_{xz,i} Y_i}{\sum_{i=1}^{n} \hat{r}_{xz,i}^2}$$

- When Z_i and X_i have a strong relationship, then the residuals will have low variation
- We explain away a lot of the variation in X_i through Z_i.
Intuition for multicollinearity

- Remember the OLS recipe:
 - $\hat{\beta}_1$ from regression of Y_i on $\hat{r}_{xz,i}$
 - $\hat{r}_{xz,i}$ are the residuals from the regression of X_i on Z_i

- Estimated coefficient:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} \hat{r}_{xz,i} Y_i}{\sum_{i=1}^{n} \hat{r}_{xz,i}^2}$$

- When Z_i and X_i have a strong relationship, then the residuals will have low variation
- We explain away a lot of the variation in X_i through Z_i.
- Low variation in an independent variable (here, $\hat{r}_{xz,i}$) \rightsquigarrow high SEs
Intuition for multicollinearity

- Remember the OLS recipe:
 - $\hat{\beta}_1$ from regression of Y_i on $\hat{r}_{xz,i}$
 - $\hat{r}_{xz,i}$ are the residuals from the regression of X_i on Z_i

- Estimated coefficient:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} \hat{r}_{xz,i} Y_i}{\sum_{i=1}^{n} \hat{r}_{xz,i}^2}$$

- When Z_i and X_i have a strong relationship, then the residuals will have low variation
- We explain away a lot of the variation in X_i through Z_i.
- Low variation in an independent variable (here, $\hat{r}_{xz,i}$) \leadsto high SEs
- Basically, there is less residual variation left in X_i after “partialling out” the effect of Z_i
Effects of multicollinearity

- No effect on the bias of OLS.
Effects of multicollinearity

- No effect on the bias of OLS.
- Only increases the standard errors.

Really just a sample size problem:

\[X_i\] and \(Z_i\) are extremely highly correlated, you're going to need a much bigger sample to accurately differentiate between their effects.
Effects of multicollinearity

- No effect on the bias of OLS.
- Only increases the standard errors.
- Really just a sample size problem:

\[X_i \text{ and } Z_i \text{ are extremely highly correlated, you're going to need a } \]
\[\text{much bigger sample to accurately differentiate between their effects.} \]
Effects of multicollinearity

- No effect on the bias of OLS.
- Only increases the standard errors.
- Really just a sample size problem:
 - If X_i and Z_i are extremely highly correlated, you’re going to need a much bigger sample to accurately differentiate between their effects.
Effects of multicollinearity

- No effect on the bias of OLS.
- Only increases the standard errors.
- Really just a sample size problem:
 - If X_i and Z_i are extremely highly correlated, you’re going to need a much bigger sample to accurately differentiate between their effects.
Effects of multicollinearity

- No effect on the bias of OLS.
- Only increases the standard errors.
- Really just a sample size problem:
 - If X_i and Z_i are extremely highly correlated, you’re going to need a much bigger sample to accurately differentiate between their effects.
How Do We Detect Multicollinearity?

- The best practice is to directly compute $\text{Cor}(X_1, X_2)$ before running your regression.

- Large changes in the estimated regression coefficients when a predictor variable is added or deleted

- Lack of statistical significance despite high R^2

- Estimated regression coefficients have an opposite sign from predicted

A more formal indicator is the variance inflation factor (VIF): $VIF(\hat{\beta}_j) = \frac{1}{1 - R^2_j}$, which measures how much $\hat{\beta}_j$ is inflated compared to a (hypothetical) uncorrelated data. (where R^2_j is the coefficient of determination from the partialing out equation)

In R, `vif()` in the `car` package.
How Do We Detect Multicollinearity?

- The best practice is to directly compute Cor(X_1, X_2) before running your regression.

- But you might (and probably will) forget to do so. Even then, you can detect multicollinearity from your regression result:
 - Large changes in the estimated regression coefficients when a predictor variable is added or deleted
 - Lack of statistical significance despite high R^2
 - Estimated regression coefficients have an opposite sign from predicted

A more formal indicator is the variance inflation factor (VIF):

$$VIF(\beta_j) = \frac{1}{1 - R^2_j}$$

which measures how much $V[\hat{\beta}_j|X]$ is inflated compared to a (hypothetical) uncorrelated data. (R^2_j is the coefficient of determination from the partialing out equation)

In R, `vif()` in the `car` package.
How Do We Detect Multicollinearity?

- The best practice is to directly compute Cor(X_1, X_2) before running your regression.

- But you might (and probably will) forget to do so. Even then, you can detect multicollinearity from your regression result:
 - Large changes in the estimated regression coefficients when a predictor variable is added or deleted

A more formal indicator is the variance inflation factor (VIF):

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R^2_j}$$

which measures how much $\hat{\beta}_j$ is inflated compared to a (hypothetical) uncorrelated data. (R^2_j is the coefficient of determination from the partialing out equation)

In R, `vif()` in the `car` package.
How Do We Detect Multicollinearity?

- The best practice is to directly compute $\text{Cor}(X_1, X_2)$ before running your regression.

- But you might (and probably will) forget to do so. Even then, you can detect multicollinearity from your regression result:
 - Large changes in the estimated regression coefficients when a predictor variable is added or deleted
 - Lack of statistical significance despite high R^2

A more formal indicator is the variance inflation factor (VIF):

$$VIF_j = \frac{1}{1 - R^2_j}$$

which measures how much $\hat{\beta}_j | \hat{X}$ is inflated compared to a (hypothetical) uncorrelated data. (where R^2_j is the coefficient of determination from the partialing out equation)

In R, `vif()` in the `car` package.
How Do We Detect Multicollinearity?

- The best practice is to directly compute $\text{Cor}(X_1, X_2)$ before running your regression.

- But you might (and probably will) forget to do so. Even then, you can detect multicollinearity from your regression result:
 - Large changes in the estimated regression coefficients when a predictor variable is added or deleted
 - Lack of statistical significance despite high R^2
 - Estimated regression coefficients have an opposite sign from predicted
How Do We Detect Multicollinearity?

- The best practice is to directly compute $\text{Cor}(X_1, X_2)$ before running your regression.

- But you might (and probably will) forget to do so. Even then, you can detect multicollinearity from your regression result:
 - Large changes in the estimated regression coefficients when a predictor variable is added or deleted
 - Lack of statistical significance despite high R^2
 - Estimated regression coefficients have an opposite sign from predicted

- A more formal indicator is the variance inflation factor (VIF):
 \[VIF(\beta_j) = \frac{1}{1 - R^2_j} \]

 which measures how much $V[\hat{\beta}_j | X]$ is inflated compared to a (hypothetical) uncorrelated data. (where R^2_j is the coefficient of determination from the partialing out equation)
How Do We Detect Multicollinearity?

- The best practice is to directly compute $\text{Cor}(X_1, X_2)$ before running your regression.

- But you might (and probably will) forget to do so. Even then, you can detect multicollinearity from your regression result:
 - Large changes in the estimated regression coefficients when a predictor variable is added or deleted
 - Lack of statistical significance despite high R^2
 - Estimated regression coefficients have an opposite sign from predicted

- A more formal indicator is the variance inflation factor (VIF):
 \[
 VIF(\beta_j) = \frac{1}{1 - R^2_j}
 \]
 which measures how much $\text{V}[\hat{\beta}_j \mid X]$ is inflated compared to a (hypothetical) uncorrelated data. (where R^2_j is the coefficient of determination from the partialing out equation)

In R, `vif()` in the `car` package.
So How Should I Think about Multicollinearity?

- Multicollinearity does NOT lead to bias; estimates will be unbiased and consistent.
So How Should I Think about Multicollinearity?

- Multicollinearity does NOT lead to bias; estimates will be unbiased and consistent.
- Multicollinearity should in fact be seen as a problem of *micronumerosity*, or “too little data.” You can’t ask the OLS estimator to distinguish the partial effects of X_1 and X_2 if they are essentially the same.

Relax, you got way more important things to worry about!

If possible, get more data

Drop one of the variables, or combine them

Or maybe linear regression is not the right tool
So How Should I Think about Multicollinearity?

- Multicollinearity does NOT lead to bias; estimates will be unbiased and consistent.
- Multicollinearity should in fact be seen as a problem of micronumerosity, or “too little data.” You can’t ask the OLS estimator to distinguish the partial effects of X_1 and X_2 if they are essentially the same.
- If X_1 and X_2 are almost the same, why would you want a unique β_1 and a unique β_2? Think about how you would interpret that?
So How Should I Think about Multicollinearity?

- Multicollinearity does NOT lead to bias; estimates will be unbiased and consistent.
- Multicollinearity should in fact be seen as a problem of micronumerosity, or “too little data.” You can’t ask the OLS estimator to distinguish the partial effects of X_1 and X_2 if they are essentially the same.
- If X_1 and X_2 are almost the same, why would you want a unique β_1 and a unique β_2? Think about how you would interpret that?
- Relax, you got way more important things to worry about!
- If possible, get more data
- Drop one of the variables, or combine them
- Or maybe linear regression is not the right tool
1 Two Examples
2 Adding a Binary Variable
3 Adding a Continuous Covariate
4 Once More With Feeling
5 OLS Mechanics and Partialing Out
6 Fun With Red and Blue
7 Omitted Variables
8 Multicollinearity
9 Dummy Variables
10 Interaction Terms
11 Polynomials
12 Conclusion
13 Fun With Interactions
1. Two Examples
2. Adding a Binary Variable
3. Adding a Continuous Covariate
4. Once More With Feeling
5. OLS Mechanics and Partialing Out
6. Fun With Red and Blue
7. Omitted Variables
8. Multicollinearity
9. Dummy Variables
10. Interaction Terms
11. Polynomials
12. Conclusion
13. Fun With Interactions
Why Dummy Variables?

- A **dummy variable** (a.k.a. indicator variable, binary variable, etc.) is a variable that is coded 1 or 0 only.
Why Dummy Variables?

- A **dummy variable** (a.k.a. indicator variable, binary variable, etc.) is a variable that is coded 1 or 0 only.

- We use dummy variables in regression to represent qualitative information through **categorical variables** such as different subgroups of the sample (e.g. regions, old and young respondents, etc.)
Why Dummy Variables?

- A **dummy variable** (a.k.a. indicator variable, binary variable, etc.) is a variable that is coded 1 or 0 only.

- We use dummy variables in regression to represent qualitative information through **categorical variables** such as different subgroups of the sample (e.g. regions, old and young respondents, etc.)

- By including dummy variables into our regression function, we can easily obtain the **conditional mean of the outcome variable for each category**.

- E.g. does average income vary by region? Are Republicans smarter than Democrats?

- Dummy variables are also used to examine conditional hypothesis via interaction terms

 - E.g. does the effect of education differ by gender?
Why Dummy Variables?

- A **dummy variable** (a.k.a. indicator variable, binary variable, etc.) is a variable that is coded 1 or 0 only.

- We use dummy variables in regression to represent qualitative information through **categorical variables** such as different subgroups of the sample (e.g. regions, old and young respondents, etc.)

- By including dummy variables into our regression function, we can easily obtain the **conditional mean of the outcome variable for each category**.
 - E.g. does average income vary by region? Are Republicans smarter than Democrats?
Why Dummy Variables?

- A **dummy variable** (a.k.a. indicator variable, binary variable, etc.) is a variable that is coded 1 or 0 only.

- We use dummy variables in regression to represent qualitative information through **categorical variables** such as different subgroups of the sample (e.g. regions, old and young respondents, etc.)

- By including dummy variables into our regression function, we can easily obtain the **conditional mean** of the outcome variable for each category.
 - E.g. does average income vary by region? Are Republicans smarter than Democrats?

- Dummy variables are also used to examine conditional hypothesis via **interaction terms**
Why Dummy Variables?

- A **dummy variable** (a.k.a. indicator variable, binary variable, etc.) is a variable that is coded 1 or 0 only.

- We use dummy variables in regression to represent qualitative information through categorical variables such as different subgroups of the sample (e.g. regions, old and young respondents, etc.)

- By including dummy variables into our regression function, we can easily obtain the conditional mean of the outcome variable for each category.
 - E.g. does average income vary by region? Are Republicans smarter than Democrats?

- Dummy variables are also used to examine conditional hypothesis via interaction terms
 - E.g. does the effect of education differ by gender?
How Can I Use a Dummy Variable?

- Consider the easiest case with two categories. The type of electoral system of country i is given by:

 $X_i \in \{Proportional, Majoritarian\}$

 For this we use a single dummy variable which is coded like:

 $D_i = \begin{cases}
 1 & \text{if country } i \text{ has a Majoritarian Electoral System} \\
 0 & \text{if country } i \text{ has a Proportional Electoral System}
 \end{cases}$

 Hint: Informative variable names help (e.g. call it MAJORITARIAN)

 Let's regress GDP on this dummy variable and a constant:

 $Y = \beta_0 + \beta_1 D_i + u$
Consider the easiest case with two categories. The type of electoral system of country i is given by:

$$X_i \in \{Proportional, Majoritarian\}$$

For this we use a single dummy variable which is coded like:

$$D_i = \begin{cases}
1 & \text{if country } i \text{ has a Majoritarian Electoral System} \\
0 & \text{if country } i \text{ has a Proportional Electoral System}
\end{cases}$$
How Can I Use a Dummy Variable?

- Consider the easiest case with two categories. The type of electoral system of country \(i \) is given by:
 \[X_i \in \{ \text{Proportional, Majoritarian} \} \]

- For this we use a single dummy variable which is coded like:
 \[D_i = \begin{cases}
 1 & \text{if country } i \text{ has a Majoritarian Electoral System} \\
 0 & \text{if country } i \text{ has a Proportional Electoral System}
\end{cases} \]

- Hint: Informative variable names help (e.g. call it MAJORITARIAN)
How Can I Use a Dummy Variable?

- Consider the easiest case with two categories. The type of electoral system of country i is given by:
 \[X_i \in \{ \text{Proportional, Majoritarian} \} \]

- For this we use a single dummy variable which is coded like:
 \[
 D_i = \begin{cases}
 1 & \text{if country } i \text{ has a Majoritarian Electoral System} \\
 0 & \text{if country } i \text{ has a Proportional Electoral System}
 \end{cases}
 \]

- Hint: Informative variable names help (e.g. call it MAJORITARIAN)

- Let's regress GDP on this dummy variable and a constant:
 \[Y = \beta_0 + \beta_1 D + u \]
Example: GDP per capita on Electoral System

R Code

> summary(lm(REALGDPCAP ~ MAJORITARIAN, data = D))

Call:
lm(formula = REALGDPCAP ~ MAJORITARIAN, data = D)

Residuals:
 Min 1Q Median 3Q Max
-5982 -4592 -2112 4293 13685

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 7097.700 763.194 9.303 1.64e-14 ***
MAJORITARIAN -1053.828 1223.943 -0.863 0.392

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5504 on 83 degrees of freedom
Multiple R-squared: 0.008838, Adjusted R-squared: -0.003104
F-statistic: 0.7401 on 1 and 83 DF, p-value: 0.3921
Example: GDP per capita on Electoral System

<table>
<thead>
<tr>
<th>Coefficients:</th>
<th>R Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate Std. Error t value</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>7097.7</td>
</tr>
<tr>
<td>MAJORITARIAN</td>
<td>-1053.8</td>
</tr>
</tbody>
</table>

```r
R Code
> gdp.pro <- D$REALGDPCAP[D$MAJORITARIAN == 0]
> summary(gdp.pro)
   Min. 1st Qu. Median  Mean 3rd Qu. Max.
   1116  2709   5102  7098 10670 20780

> gdp.maj <- D$REALGDPCAP[D$MAJORITARIAN == 1]
> summary(gdp.maj)
   Min. 1st Qu. Median  Mean 3rd Qu. Max.
   530.2  1431.0  3404.0  6044.0 11770.0 18840.0
```

So this is just like a difference in means two sample t-test!
Example: GDP per capita on Electoral System

R Code

```
Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) 7097.7 | 763.2 | 9.30 | 1.64e-14 *** |
| MAJORITARIAN -1053.8 | 1224.9 | -0.86 | 0.392 |
```

```r
> gdp.pro <- D$REALGDPCAP[D$MAJORITARIAN == 0]
> summary(gdp.pro)

    Min. 1st Qu.  Median     Mean  3rd Qu.    Max.  
    1116   2709   5102      7098  10670  20780

> gdp.maj <- D$REALGDPCAP[D$MAJORITARIAN == 1]
> summary(gdp.maj)

    Min. 1st Qu.  Median     Mean  3rd Qu.    Max.  
    530.2  1431.0  3404.0    6044.0 11770.0 18840.0
```

So this is just like a difference in means two sample t-test!
Example: GDP per capita on Electoral System

R Code

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) 7097.7 | 763.2 | 9.30 | 1.64e-14 *** |
| MAJORITARIAN -1053.8 | 1224.9 | -0.86 | 0.392 |

R Code

```r
> gdp.pro <- D$REALGDPCAP[D$MAJORITARIAN == 0]
> summary(gdp.pro)

     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
  1116.00   2709.0   5102.0   7098.0  10670.0  20780.0

> gdp.maj <- D$REALGDPCAP[D$MAJORITARIAN == 1]
> summary(gdp.maj)

     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
  530.20  1431.00  3404.00  6044.00 11770.00 18840.00
```

So this is just like a difference in means two sample t-test!
More generally, let’s say X measures which of m categories each unit i belongs to. E.g. the type of electoral system or region of country i is given by:

- $X_i \in \{Proportional, Majoritarian\}$ so $m = 2$
- $X_i \in \{Asia, Africa, LatinAmerica, OECD, Transition\}$ so $m = 5$
Dummy Variables for Multiple Categories

- More generally, let’s say X measures which of m categories each unit i belongs to. E.g. the type of electoral system or region of country i is given by:
 - $X_i \in \{Proportional, Majoritarian\}$ so $m = 2$
 - $X_i \in \{Asia, Africa, LatinAmerica, OECD, Transition\}$ so $m = 5$

- To incorporate this information into our regression function we usually create $m - 1$ dummy variables, one for each of the $m - 1$ categories.
Dummy Variables for Multiple Categories

- More generally, let’s say X measures which of m categories each unit i belongs to. E.g. the type of electoral system or region of country i is given by:
 - $X_i \in \{Proportional, Majoritarian\}$ so $m = 2$
 - $X_i \in \{Asia, Africa, LatinAmerica, OECD, Transition\}$ so $m = 5$

- To incorporate this information into our regression function we usually create $m - 1$ dummy variables, one for each of the $m - 1$ categories.

- Why not all m?
Dummy Variables for Multiple Categories

- More generally, let’s say X measures which of m categories each unit i belongs to. E.g. the type of electoral system or region of country i is given by:
 - $X_i \in \{Proportional, Majoritarian\}$ so $m = 2$
 - $X_i \in \{Asia, Africa, LatinAmerica, OECD, Transition\}$ so $m = 5$

- To incorporate this information into our regression function we usually create $m - 1$ dummy variables, one for each of the $m - 1$ categories.

- Why not all m? Including all m category indicators as dummies would violate the no perfect collinearity assumption:

$$D_m = 1 - (D_1 + \cdots + D_{m-1})$$
Dummy Variables for Multiple Categories

- More generally, let’s say \(X \) measures which of \(m \) categories each unit \(i \) belongs to. E.g. the type of electoral system or region of country \(i \) is given by:
 - \(X_i \in \{ \text{Proportional, Majoritarian} \} \) so \(m = 2 \)
 - \(X_i \in \{ \text{Asia, Africa, LatinAmerica, OECD, Transition} \} \) so \(m = 5 \)

- To incorporate this information into our regression function we usually create \(m - 1 \) dummy variables, one for each of the \(m - 1 \) categories.

- Why not all \(m \)? Including all \(m \) category indicators as dummies would violate the no perfect collinearity assumption:
 \[
 D_m = 1 - (D_1 + \cdots + D_{m-1})
 \]

- The omitted category is our baseline case (also called a reference category) against which we compare the conditional means of \(Y \) for the other \(m - 1 \) categories.
Example: Regions of the World

- Consider the case of our “polytomous” variable world region with $m = 5$:

$$X_i \in \{\text{Asia, Africa, LatinAmerica, OECD, Transition}\}$$
Example: Regions of the World

- Consider the case of our “polytomous” variable world region with $m = 5$:

 $$X_i \in \{Asia, Africa, LatinAmerica, OECD, Transition\}$$

- This five-category classification can be represented in the regression equation by introducing $m - 1 = 4$ dummy regressors:

<table>
<thead>
<tr>
<th>Category</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>D_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Africa</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LatinAmerica</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>OECD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Transition</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Example: Regions of the World

Consider the case of our “polytomous” variable world region with $m = 5$:

$X_i \in \{\text{Asia, Africa, LatinAmerica, OECD, Transition}\}$

This five-category classification can be represented in the regression equation by introducing $m - 1 = 4$ dummy regressors:

<table>
<thead>
<tr>
<th>Category</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>D_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Africa</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LatinAmerica</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>OECD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Transition</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Our regression equation is:

$$Y = \beta_0 + \beta_1 D_1 + \beta_2 D_2 + \beta_3 D_3 + \beta_4 D_4 + u$$
Two Examples
Adding a Binary Variable
Adding a Continuous Covariate
Once More With Feeling
OLS Mechanics and Partialing Out
Fun With Red and Blue
Omitted Variables
Multicollinearity
Dummy Variables
Interaction Terms
Polynomials
Conclusion
Fun With Interactions
Two Examples
Adding a Binary Variable
Adding a Continuous Covariate
Once More With Feeling
OLS Mechanics and Partialing Out
Fun With Red and Blue
Omitted Variables
Multicollinearity
Dummy Variables
Interaction Terms
Polynomials
Conclusion
Fun With Interactions
Why Interaction Terms?

- Interaction terms will allow you to let the slope on one variable vary as a function of another variable.
Why Interaction Terms?

- Interaction terms will allow you to let the slope on one variable vary as a function of another variable.
- Interaction terms are central in regression analysis to:
 - Model and test conditional hypothesis (do the returns to education vary by gender?)

Interactions often confuse researchers and mistakes in use and interpretation occur frequently (even in top journals).
Why Interaction Terms?

- Interaction terms will allow you to let the slope on one variable vary as a function of another variable.
- Interaction terms are central in regression analysis to:
 - Model and test conditional hypothesis (do the returns to education vary by gender?)
 - Make model of the conditional expectation function more realistic by letting coefficients vary across subgroups.

We can interact:
- two or more dummy variables
- dummy variables and continuous variables
- two or more continuous variables

Interactions often confuse researchers and mistakes in use and interpretation occur frequently (even in top journals).
Why Interaction Terms?

- Interaction terms will allow you to let the slope on one variable vary as a function of another variable.
- Interaction terms are central in regression analysis to:
 - Model and test conditional hypothesis (do the returns to education vary by gender?)
 - Make model of the conditional expectation function more realistic by letting coefficients vary across subgroups.
- We can interact:
 - two or more dummy variables
Why Interaction Terms?

- Interaction terms will allow you to let the slope on one variable vary as a function of another variable.
- Interaction terms are central in regression analysis to:
 - Model and test conditional hypothesis (do the returns to education vary by gender?)
 - Make model of the conditional expectation function more realistic by letting coefficients vary across subgroups.
- We can interact:
 - two or more dummy variables
 - dummy variables and continuous variables

Interactions often confuse researchers and mistakes in use and interpretation occur frequently (even in top journals).
Why Interaction Terms?

- Interaction terms will allow you to let the slope on one variable vary as a function of another variable.
- Interaction terms are central in regression analysis to:
 - Model and test conditional hypothesis (do the returns to education vary by gender?)
 - Make model of the conditional expectation function more realistic by letting coefficients vary across subgroups.

- We can interact:
 - Two or more dummy variables
 - Dummy variables and continuous variables
 - Two or more continuous variables

Interactions often confuses researchers and mistakes in use and interpretation occur frequently (even in top journals).
Why Interaction Terms?

- Interaction terms will allow you to let the slope on one variable vary as a function of another variable.
- Interaction terms are central in regression analysis to:
 - Model and test conditional hypothesis (do the returns to education vary by gender?)
 - Make model of the conditional expectation function more realistic by letting coefficients vary across subgroups.
- We can interact:
 - two or more dummy variables
 - dummy variables and continuous variables
 - two or more continuous variables
- Interactions often confuses researchers and mistakes in use and interpretation occur frequently (even in top journals).
Return to the Fish Example

- Data comes from Fish (2002), “Islam and Authoritarianism.”
Return to the Fish Example

- Data comes from Fish (2002), “Islam and Authoritarianism.”
- Basic relationship: does more economic development lead to more democracy?
Return to the Fish Example

- Data comes from Fish (2002), “Islam and Authoritarianism.”
- Basic relationship: does more economic development lead to more democracy?
- We measure economic development with log GDP per capita
Return to the Fish Example

- Data comes from Fish (2002), “Islam and Authoritarianism.”
- Basic relationship: does more economic development lead to more democracy?
- We measure economic development with log GDP per capita
- We measure democracy with a Freedom House score, 1 (less free) to 7 (more free)
Let’s see the data

Fish argues that Muslim countries are less likely to be democratic no matter their economic development.
Controlling for Religion Additively

But the regression is a poor fit for Muslim countries. Can we allow for different slopes for each group?
Controlling for Religion Additively

But the regression is a poor fit for Muslim countries.
Controlling for Religion Additively

But the regression is a poor fit for Muslim countries.

Can we allow for different slopes for each group?
Interactions with a binary variable

Let Z_i be binary. In this case, $Z_i = 1$ for the country being Muslim. We can add another covariate to the baseline model that allows the effect of income to vary by Muslim status. This covariate is called an interaction term and it is the product of the two marginal variables of interest:

$$\text{income}_i \times \text{muslim}_i$$

Here is the model with the interaction term:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i$$
Interactions with a binary variable

- Let Z_i be binary
Interactions with a binary variable

- Let Z_i be binary
- In this case, $Z_i = 1$ for the country being Muslim
Interactions with a binary variable

- Let Z_i be binary
- In this case, $Z_i = 1$ for the country being Muslim
- We can add another covariate to the baseline model that allows the effect of income to vary by Muslim status.

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]
Interactions with a binary variable

- Let Z_i be binary
- In this case, $Z_i = 1$ for the country being Muslim
- We can add another covariate to the baseline model that allows the effect of income to vary by Muslim status.
- This covariate is called an interaction term and it is the product of the two marginal variables of interest: $income_i \times muslim_i$
Interactions with a binary variable

- Let Z_i be binary
- In this case, $Z_i = 1$ for the country being Muslim
- We can add another covariate to the baseline model that allows the effect of income to vary by Muslim status.
- This covariate is called an interaction term and it is the product of the two marginal variables of interest: $\text{income}_i \times \text{muslim}_i$
- Here is the model with the interaction term:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i$$
Two lines in one regression

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]
Two lines in one regression

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- How can we interpret this model?
Two lines in one regression

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- How can we interpret this model?
- We can plug in the two possible values of Z_i
Two lines in one regression

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- How can we interpret this model?
- We can plug in the two possible values of \(Z_i \)
- When \(Z_i = 0 \):
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]
Two lines in one regression

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- How can we interpret this model?
- We can plug in the two possible values of \(Z_i \)
- When \(Z_i = 0 \):
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]
Two lines in one regression

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- How can we interpret this model?
- We can plug in the two possible values of \(Z_i \)
- When \(Z_i = 0 \):
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]
 \[= \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0 + \hat{\beta}_3 X_i \times 0 \]
Two lines in one regression

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- How can we interpret this model?
- We can plug in the two possible values of \(Z_i \)
- When \(Z_i = 0 \):
 \[
 \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \\
 = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0 + \hat{\beta}_3 X_i \times 0 \\
 = \hat{\beta}_0 + \hat{\beta}_1 X_i
 \]
Two lines in one regression

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- How can we interpret this model?
- We can plug in the two possible values of \(Z_i \)
- When \(Z_i = 0 \):
 \[
 \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \\
 = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0 + \hat{\beta}_3 X_i \times 0 \\
 = \hat{\beta}_0 + \hat{\beta}_1 X_i
 \]
- When \(Z_i = 1 \):
 \[
 \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i
 \]
Two lines in one regression

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- How can we interpret this model?
- We can plug in the two possible values of \(Z_i \)
- When \(Z_i = 0 \):

\[
\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \\
= \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0 + \hat{\beta}_3 X_i \times 0 \\
= \hat{\beta}_0 + \hat{\beta}_1 X_i
\]

- When \(Z_i = 1 \):

\[
\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i
\]
Two lines in one regression

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- How can we interpret this model?
- We can plug in the two possible values of \(Z_i \)
- When \(Z_i = 0 \):

 \[
 \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \\
 = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0 + \hat{\beta}_3 X_i \times 0 \\
 = \hat{\beta}_0 + \hat{\beta}_1 X_i
 \]

- When \(Z_i = 1 \):

 \[
 \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \\
 = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 1 + \hat{\beta}_3 X_i \times 1
 \]
Two lines in one regression

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- How can we interpret this model?
- We can plug in the two possible values of \(Z_i \)
 - When \(Z_i = 0 \):
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]
 \[= \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 0 + \hat{\beta}_3 X_i \times 0 \]
 \[= \hat{\beta}_0 + \hat{\beta}_1 X_i \]
 - When \(Z_i = 1 \):
 \[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]
 \[= \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 \times 1 + \hat{\beta}_3 X_i \times 1 \]
 \[= (\hat{\beta}_0 + \hat{\beta}_2) + (\hat{\beta}_1 + \hat{\beta}_3) X_i \]
Example interpretation of the coefficients

\[\hat{\beta}_0 + \hat{\beta}_1 Z_i \]

Non-Muslim country ($Z_i = 0$)

Muslim country ($Z_i = 1$)

\[\hat{\beta}_0 + \hat{\beta}_2 + \hat{\beta}_3 \]

Log GDP per capita

Democracy

2.0 2.5 3.0 3.5 4.0 4.5
1 2 3 4 5 6 7

Stewart (Princeton)
Week 6: Two Regressors
October 17, 19, 2016
Example interpretation of the coefficients

<table>
<thead>
<tr>
<th></th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Muslim country ($Z_i = 0$)</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>Muslim country ($Z_i = 1$)</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2$</td>
<td>$\hat{\beta}_1 + \hat{\beta}_3$</td>
</tr>
</tbody>
</table>

![Graph showing the relationship between log GDP per capita and democracy, with lines for different regions.](image-url)
General interpretation of the coefficients

- $\hat{\beta}_0$: average value of Y_i when both X_i and Z_i are equal to 0
- $\hat{\beta}_1$: a one-unit change in X_i is associated with a $\hat{\beta}_1$-unit change in Y_i when $Z_i = 0$
- $\hat{\beta}_2$: average difference in Y_i between $Z_i = 1$ group and $Z_i = 0$ group when $X_i = 0$
- $\hat{\beta}_3$: change in the effect of X_i on Y_i between $Z_i = 1$ group and $Z_i = 0$
General interpretation of the coefficients

- $\hat{\beta}_0$: average value of Y_i when both X_i and Z_i are equal to 0
- $\hat{\beta}_1$: a one-unit change in X_i is associated with a $\hat{\beta}_1$-unit change in Y_i when $Z_i = 0$
General interpretation of the coefficients

- $\hat{\beta}_0$: average value of Y_i when both X_i and Z_i are equal to 0
- $\hat{\beta}_1$: a one-unit change in X_i is associated with a $\hat{\beta}_1$-unit change in Y_i when $Z_i = 0$
- $\hat{\beta}_2$: average difference in Y_i between $Z_i = 1$ group and $Z_i = 0$ group when $X_i = 0$
General interpretation of the coefficients

- $\hat{\beta}_0$: average value of Y_i when both X_i and Z_i are equal to 0
- $\hat{\beta}_1$: a one-unit change in X_i is associated with a $\hat{\beta}_1$-unit change in Y_i when $Z_i = 0$
- $\hat{\beta}_2$: average difference in Y_i between $Z_i = 1$ group and $Z_i = 0$ group when $X_i = 0$
- $\hat{\beta}_3$: change in the effect of X_i on Y_i between $Z_i = 1$ group and $Z_i = 0$
Lower order terms
Lower order terms

- Principle of Marginality: Always include the marginal effects (sometimes called the lower order terms)
Lower order terms

- Principle of Marginality: Always include the marginal effects (sometimes called the lower order terms)
- Imagine we omitted the lower order term for muslim:
Lower order terms

- Principle of Marginality: Always include the marginal effects (sometimes called the lower order terms)
- Imagine we omitted the lower order term for muslim:
Lower order terms

- Principle of Marginality: Always include the marginal effects (sometimes called the lower order terms)
- Imagine we omitted the lower order term for muslim:

![Graph showing the relationship between democracy and log GDP per capita with and without the lower order term.](image)
Omitting lower order terms

$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_3 X_i Z_i$

Intercept for X_i

Slope for X_i

Non-Muslim country ($Z_i = 0$)

Muslim country ($Z_i = 1$)

Implication: no difference between Muslims and non-Muslims when income is 0

Distorts slope estimates.

Very rarely justified.

Yet for some reason people keep doing it.
Omitting lower order terms

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + 0 \times Z_i + \hat{\beta}_3 X_i Z_i \]

<table>
<thead>
<tr>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$\hat{\beta}_0 + 0$</td>
<td>$\hat{\beta}_1 + \hat{\beta}_3$</td>
</tr>
</tbody>
</table>

Non-Muslim country ($Z_i = 0$)

Muslim country ($Z_i = 1$)

Implication: no difference between Muslims and non-Muslims when income is 0

Distorts slope estimates.

Very rarely justified.

Yet for some reason people keep doing it.
Omitting lower order terms

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + 0 \times Z_i + \hat{\beta}_3 X_i Z_i \]

<table>
<thead>
<tr>
<th>Intercept for (X_i)</th>
<th>Slope for (X_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Muslim country ((Z_i = 0))</td>
<td>(\hat{\beta}_0)</td>
</tr>
<tr>
<td>Muslim country ((Z_i = 1))</td>
<td>(\hat{\beta}_0 + 0)</td>
</tr>
</tbody>
</table>

- Implication: no difference between Muslims and non-Muslims when income is 0
Omitting lower order terms

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + 0 \times Z_i + \hat{\beta}_3 X_i Z_i \]

<table>
<thead>
<tr>
<th>Non-Muslim country ((Z_i = 0))</th>
<th>Intercept for (X_i)</th>
<th>Slope for (X_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\beta}_0)</td>
<td>(\hat{\beta}_1)</td>
<td>(\hat{\beta}_1 + \hat{\beta}_3)</td>
</tr>
<tr>
<td>Muslim country ((Z_i = 1))</td>
<td>(\hat{\beta}_0 + 0)</td>
<td></td>
</tr>
</tbody>
</table>

- Implication: no difference between Muslims and non-Muslims when income is 0
- Distorts slope estimates.
Omitting lower order terms

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + 0 \times Z_i + \hat{\beta}_3 X_i Z_i \]

<table>
<thead>
<tr>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Muslim country ($Z_i = 0$)</td>
<td>$\hat{\beta}_0$</td>
</tr>
<tr>
<td>Muslim country ($Z_i = 1$)</td>
<td>$\hat{\beta}_0 + 0$</td>
</tr>
</tbody>
</table>

- Implication: no difference between Muslims and non-Muslims when income is 0
- Distorts slope estimates.
- Very rarely justified.
Omitting lower order terms

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + 0 \times Z_i + \hat{\beta}_3 X_i Z_i \]

<table>
<thead>
<tr>
<th></th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Muslim country ($Z_i = 0$)</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>Muslim country ($Z_i = 1$)</td>
<td>$\hat{\beta}_0 + 0$</td>
<td>$\hat{\beta}_1 + \hat{\beta}_3$</td>
</tr>
</tbody>
</table>

- Implication: no difference between Muslims and non-Muslims when income is 0
- Distorts slope estimates.
- Very rarely justified.
- Yet for some reason people keep doing it.
Interactions with two continuous variables

Now let Z_i be continuous
Interactions with two continuous variables

- Now let Z_i be continuous
- Z_i is the percent growth in GDP per capita from 1975 to 1998
Interactions with two continuous variables

- Now let Z_i be continuous
- Z_i is the percent growth in GDP per capita from 1975 to 1998
- Is the effect of economic development for rapidly developing countries higher or lower than for stagnant economies?
Interactions with two continuous variables

- Now let Z_i be continuous
- Z_i is the percent growth in GDP per capita from 1975 to 1998
- Is the effect of economic development for rapidly developing countries higher or lower than for stagnant economies?
- We can still define the interaction:

\[income_i \times growth_i \]
Interactions with two continuous variables

- Now let Z_i be continuous
- Z_i is the percent growth in GDP per capita from 1975 to 1998
- Is the effect of economic development for rapidly developing countries higher or lower than for stagnant economies?
- We can still define the interaction:

$$income_i \times growth_i$$

- And include it in the regression:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i$$
Interpretation

- With a continuous Z_i, we can have more than two values that it can take on:

\[
\begin{array}{c|cc}
Z_i = 0 & \text{Intercept for } X_i & \text{Slope for } X_i \\
\hline
\hat{\beta}_0 & \hat{\beta}_1
\end{array}
\]
Interpretation

- With a continuous Z_i, we can have more than two values that it can take on:

<table>
<thead>
<tr>
<th>$Z_i = 0$</th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
<td></td>
</tr>
</tbody>
</table>
- With a continuous Z_i, we can have more than two values that it can take on:

<table>
<thead>
<tr>
<th>Z_i</th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_i = 0$</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$Z_i = 0.5$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 0.5$</td>
<td>$\hat{\beta}_1 + \hat{\beta}_3 \times 0.5$</td>
</tr>
</tbody>
</table>
With a continuous Z_i, we can have more than two values that it can take on:

<table>
<thead>
<tr>
<th>Z_i</th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_i = 0$</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$Z_i = 0.5$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 0.5$</td>
<td>$\hat{\beta}_1 + \hat{\beta}_3 \times 0.5$</td>
</tr>
<tr>
<td>$Z_i = 1$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 1$</td>
<td>$\hat{\beta}_1 + \hat{\beta}_3 \times 1$</td>
</tr>
</tbody>
</table>
With a continuous Z_i, we can have more than two values that it can take on:

<table>
<thead>
<tr>
<th></th>
<th>Intercept for X_i</th>
<th>Slope for X_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_i = 0$</td>
<td>$\hat{\beta}_0$</td>
<td>$\hat{\beta}_1$</td>
</tr>
<tr>
<td>$Z_i = 0.5$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 0.5$</td>
<td>$\hat{\beta}_1 + \hat{\beta}_3 \times 0.5$</td>
</tr>
<tr>
<td>$Z_i = 1$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 1$</td>
<td>$\hat{\beta}_1 + \hat{\beta}_3 \times 1$</td>
</tr>
<tr>
<td>$Z_i = 5$</td>
<td>$\hat{\beta}_0 + \hat{\beta}_2 \times 5$</td>
<td>$\hat{\beta}_1 + \hat{\beta}_3 \times 5$</td>
</tr>
</tbody>
</table>
General interpretation

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- The coefficient \(\hat{\beta}_1 \) measures how the predicted outcome varies in \(X_i \) when \(Z_i = 0 \).
General interpretation

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- The coefficient \(\hat{\beta}_1 \) measures how the predicted outcome varies in \(X_i \) when \(Z_i = 0 \).
- The coefficient \(\hat{\beta}_2 \) measures how the predicted outcome varies in \(Z_i \) when \(X_i = 0 \).
General interpretation

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- The coefficient \(\hat{\beta}_1 \) measures how the predicted outcome varies in \(X_i \) when \(Z_i = 0 \).
- The coefficient \(\hat{\beta}_2 \) measures how the predicted outcome varies in \(Z_i \) when \(X_i = 0 \).
- The coefficient \(\hat{\beta}_3 \) is the change in the effect of \(X_i \) given a one-unit change in \(Z_i \):

\[
\frac{\partial E[Y_i|X_i, Z_i]}{\partial X_i} = \beta_1 + \beta_3 Z_i
\]
General interpretation

\[\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 Z_i + \hat{\beta}_3 X_i Z_i \]

- The coefficient \(\hat{\beta}_1 \) measures how the predicted outcome varies in \(X_i \) when \(Z_i = 0 \).
- The coefficient \(\hat{\beta}_2 \) measures how the predicted outcome varies in \(Z_i \) when \(X_i = 0 \).
- The coefficient \(\hat{\beta}_3 \) is the change in the effect of \(X_i \) given a one-unit change in \(Z_i \):
 \[\frac{\partial E[Y_i|X_i, Z_i]}{\partial X_i} = \beta_1 + \beta_3 Z_i \]
- The coefficient \(\hat{\beta}_3 \) is the change in the effect of \(Z_i \) given a one-unit change in \(X_i \):
 \[\frac{\partial E[Y_i|X_i, Z_i]}{\partial Z_i} = \beta_2 + \beta_3 X_i \]
Additional Assumptions

Interaction effects are particularly susceptible to model dependence. We are making two assumptions for the estimated effects to be meaningful:

1. Linearity of the interaction effect
2. Common support (variation in X throughout the range of Z)

We will talk about checking these assumptions in a few weeks.
Interaction effects are particularly susceptible to model dependence. We are making two assumptions for the estimated effects to be meaningful:
Additional Assumptions

Interaction effects are particularly susceptible to model dependence. We are making two assumptions for the estimated effects to be meaningful:

1. Linearity of the interaction effect
Interaction effects are particularly susceptible to model dependence. We are making two assumptions for the estimated effects to be meaningful:

1. Linearity of the interaction effect
2. Common support (variation in X throughout the range of Z)
Additional Assumptions

Interaction effects are particularly susceptible to model dependence. We are making two assumptions for the estimated effects to be meaningful:

1. Linearity of the interaction effect
2. Common support (variation in X throughout the range of Z)

We will talk about checking these assumptions in a few weeks.
Example: Common Support
Chapman 2009 analysis
example and reanalysis from Hainmueller, Mummolo, Xu 2016
Example: Common Support
Chapman 2009 analysis
example and reanalysis from Hainmueller, Mummolo, Xu 2016

![Graph showing US affinity with UN Security Council vs. UN authorization]
Summary for Interactions

Do not omit lower order terms (unless you have a strong theory that tells you so) because this usually imposes unrealistic restrictions.

Do not interpret the coefficients on the lower terms as marginal effects (they give the marginal effect only for the case where the other variable is equal to zero).

Produce tables or figures that summarize the conditional marginal effects of the variable of interest at plausible different levels of the other variable; use correct formula to compute variance for these conditional effects (sum of coefficients).

In simple cases the p-value on the interaction term can be used as a test against the null of no interaction, but significant tests for the lower order terms rarely make sense.

Summary for Interactions

- Do not omit lower order terms (unless you have a strong theory that tells you so) because this usually imposes unrealistic restrictions.
Summary for Interactions

- Do not omit lower order terms (unless you have a strong theory that tells you so) because this usually imposes unrealistic restrictions.
- Do not interpret the coefficients on the lower terms as marginal effects (they give the marginal effect only for the case where the other variable is equal to zero).

Summary for Interactions

- Do not omit lower order terms (unless you have a strong theory that tells you so) because this usually imposes unrealistic restrictions.

- Do not interpret the coefficients on the lower terms as marginal effects (they give the marginal effect only for the case where the other variable is equal to zero)

- Produce tables or figures that summarize the conditional marginal effects of the variable of interest at plausible different levels of the other variable; use correct formula to compute variance for these conditional effects (sum of coefficients)

Summary for Interactions

- Do not omit lower order terms (unless you have a strong theory that tells you so) because this usually imposes unrealistic restrictions.

- Do not interpret the coefficients on the lower terms as marginal effects (they give the marginal effect only for the case where the other variable is equal to zero).

- Produce tables or figures that summarize the conditional marginal effects of the variable of interest at plausible different levels of the other variable; use correct formula to compute variance for these conditional effects (sum of coefficients).

- In simple cases the p-value on the interaction term can be used as a test against the null of no interaction, but significant tests for the lower order terms rarely make sense.

Summary for Interactions

- Do not omit lower order terms (unless you have a strong theory that tells you so) because this usually imposes unrealistic restrictions.
- Do not interpret the coefficients on the lower terms as marginal effects (they give the marginal effect only for the case where the other variable is equal to zero).
- Produce tables or figures that summarize the conditional marginal effects of the variable of interest at plausible different levels of the other variable; use correct formula to compute variance for these conditional effects (sum of coefficients).
- In simple cases the p-value on the interaction term can be used as a test against the null of no interaction, but significant tests for the lower order terms rarely make sense.

Two Examples

Adding a Binary Variable

Adding a Continuous Covariate

Once More With Feeling

OLS Mechanics and Partialing Out

Fun With Red and Blue

Omitted Variables

Multicollinearity

Dummy Variables

Interaction Terms

Polynomials

Conclusion

Fun With Interactions
Two Examples

Adding a Binary Variable

Adding a Continuous Covariate

Once More With Feeling

OLS Mechanics and Partialing Out

Fun With Red and Blue

Omitted Variables

Multicollinearity

Dummy Variables

Interaction Terms

Polynomials

Conclusion

Fun With Interactions
Polynomial terms

Polynomial terms are a special case of the continuous variable interactions.

For example, when $X_1 = X_2$ in the previous interaction model, we get a quadratic:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + u$$

This is called a second order polynomial in X_1.

A third order polynomial is given by:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2^2 + \beta_3 X_3 + u$$
Polynomial terms

- Polynomial terms are a special case of the continuous variable interactions.
Polynomial terms

Polynomial terms are a special case of the continuous variable interactions.

For example, when $X_1 = X_2$ in the previous interaction model, we get a quadratic:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + u$$

$$Y = \beta_0 + (\beta_1 + \beta_2)X_1 + \beta_3 X_1 X_1 + u$$

$$Y = \beta_0 + \tilde{\beta}_1 X_1 + \tilde{\beta}_2 X_1^2 + u$$

This is called a second order polynomial in X_1.
Polynomial terms

- Polynomial terms are a special case of the continuous variable interactions.
- For example, when $X_1 = X_2$ in the previous interaction model, we get a quadratic:

$$
Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + u
$$

$$
Y = \beta_0 + (\beta_1 + \beta_2) X_1 + \beta_3 X_1 X_1 + u
$$

$$
Y = \beta_0 + \tilde{\beta}_1 X_1 + \tilde{\beta}_2 X_1^2 + u
$$

- This is called a **second order polynomial** in X_1
- A **third order polynomial** is given by:

$$
Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_1^3 + u
$$
Polynomial Example: Income and Age

- Let’s look at data from the U.S. and examine the relationship between Y: income and X: age
Polynomial Example: Income and Age

- Let’s look at data from the U.S. and examine the relationship between Y: income and X: age.

- We see that a simple linear specification does not fit the data very well:
 \[Y = \beta_0 + \beta_1 X_1 + u \]
Polynomial Example: Income and Age

- Let’s look at data from the U.S. and examine the relationship between Y: income and X: age

- We see that a simple linear specification does not fit the data very well:
 $$Y = \beta_0 + \beta_1 X_1 + u$$

- A second order polynomial in age fits the data a lot better:
 $$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + u$$
Polynomial Example: Income and Age

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + u \]
Polynomial Example: Income and Age

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + u$
- Is β_1 the marginal effect of age on income?
Polynomial Example: Income and Age

- \(Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + u \)
- Is \(\beta_1 \) the marginal effect of age on income?
- No! The marginal effect of age depends on the level of age:
 \[
 \frac{\partial Y}{\partial X_1} = \hat{\beta}_1 + 2 \hat{\beta}_2 X_1
 \]
 Here the effect of age changes monotonically from positive to negative with income.
Polynomial Example: Income and Age

- \[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + u \]

- Is \(\beta_1 \) the marginal effect of age on income?

- No! The marginal effect of age depends on the level of age:
 \[\frac{\partial Y}{\partial X_1} = \hat{\beta}_1 + 2 \hat{\beta}_2 X_1 \]
 Here the effect of age changes monotonically from positive to negative with income.

- If \(\beta_2 > 0 \) we get a U-shape, and if \(\beta_2 < 0 \) we get an inverted U-shape.
Polynomial Example: Income and Age

- \(Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + u \)
- Is \(\beta_1 \) the marginal effect of age on income?
- No! The marginal effect of age depends on the level of age:
 \[\frac{\partial Y}{\partial X_1} = \hat{\beta}_1 + 2 \hat{\beta}_2 X_1 \]
 Here the effect of age changes monotonically from positive to negative with income.
- If \(\beta_2 > 0 \) we get a U-shape, and if \(\beta_2 < 0 \) we get an inverted U-shape.
- Maximum/Minimum occurs at \(\left| \frac{\beta_1}{2\beta_2} \right| \). Here turning point is at \(X_1 = 50 \).
Higher Order Polynomials

Approximating data generated with a sine function. Red line is a first degree polynomial, green line is second degree, orange line is third degree and blue is fourth degree.
Conclusion

In this brave new world with 2 independent variables:
Conclusion

In this brave new world with 2 independent variables:

1. β’s have slightly different interpretations
Conclusion

In this brave new world with 2 independent variables:

1. β’s have slightly different interpretations
2. OLS still minimizing the sum of the squared residuals
Conclusion

In this brave new world with 2 independent variables:

1. β’s have slightly different interpretations
2. OLS still minimizing the sum of the squared residuals
3. Small adjustments to OLS assumptions and inference
Conclusion

In this brave new world with 2 independent variables:

1. β’s have slightly different interpretations
2. OLS still minimizing the sum of the squared residuals
3. Small adjustments to OLS assumptions and inference
4. Adding or omitting variables in a regression can affect the bias and the variance of OLS
Conclusion

In this brave new world with 2 independent variables:

1. β’s have slightly different interpretations
2. OLS still minimizing the sum of the squared residuals
3. Small adjustments to OLS assumptions and inference
4. Adding or omitting variables in a regression can affect the bias and the variance of OLS
5. We can optionally consider interactions, but must take care to interpret them correctly
Next Week

- Practice up on matrices
- Fox Chapter 9.1-9.4 (skip 9.1.1-9.1.2) Linear Models in Matrix Form
- Aronow and Miller 4.1.2-4.1.4 Regression with Matrix Algebra
- Optional: Fox Chapter 10 Geometry of Regression
- Optional: Imai Chapter 4.3-4.3.3
- Optional: Angrist and Pischke Chapter 3.1 Regression Fundamentals
Next Week

- OLS in its full glory
Next Week

- OLS in its full glory
- Reading:
 - Practice up on matrices
 - Fox Chapter 9.1-9.4 (skip 9.1.1-9.1.2) Linear Models in Matrix Form
 - Aronow and Miller 4.1.2-4.1.4 Regression with Matrix Algebra
 - Optional: Fox Chapter 10 Geometry of Regression
 - Optional: Imai Chapter 4.3-4.3.3
 - Optional: Angrist and Pischke Chapter 3.1 Regression Fundamentals
Two Examples

Adding a Binary Variable

Adding a Continuous Covariate

Once More With Feeling

OLS Mechanics and Partialing Out

Fun With Red and Blue

Omitted Variables

Multicollinearity

Dummy Variables

Interaction Terms

Polynomials

Conclusion

Fun With Interactions
Fun With Interactions

Remember that time I mentioned people doing strange things with interactions?

Remember that time I mentioned people doing strange things with interactions?
Fun With Interactions

Remember that time I mentioned people doing strange things with interactions?

Fun With Interactions

Remember that time I mentioned people doing strange things with interactions?

Original Argument

- Public preferences shape welfare state trajectories over the long term
Original Argument

- Public preferences shape welfare state trajectories over the long term
- Democracy empowers the masses, and that empowerment helps define social outcomes
Original Argument

- Public preferences shape welfare state trajectories over the long term
- Democracy empowers the masses, and that empowerment helps define social outcomes
- Key model is interaction between liberal/non-liberal and public preferences on social spending
Public preferences shape welfare state trajectories over the long term.

Democracy empowers the masses, and that empowerment helps define social outcomes.

Key model is interaction between liberal/non-liberal and public preferences on social spending.

but...they leave out a main effect.
They omit the marginal term for liberal/non-liberal
They omit the marginal term for liberal/non-liberal
This forces the two regression lines to intersect at public preferences $= 0$.
They omit the marginal term for liberal/non-liberal
This forces the two regression lines to intersect at public preferences = 0.
They mean center so the 0 represents the average over the entire sample.
What Happens?
What Happens?

Figure 1: Predicted Regression Lines for the Effect of Policy Preferences on Social Welfare Spending, without and with the Main Effect of Regime
Moral of the Story
Moral of the Story

Seriously
Moral of the Story

Seriously, don’t
Moral of the Story

Seriously, don’t omit
Moral of the Story

Seriously, don’t omit lower order terms.
Moral of the Story

Seriously, don’t omit lower order terms.

<drops mic>
References

