Precept 7 Code
Ziyao Tian
October 25, 2018

Coding with matrices (Useful Reference for Problem 1)

First, we’re going to code in some toy matrices we can use to practice matrix operations.

\[
A \leftarrow \text{matrix}(c(1,2,3,4), \text{nrow} = 2, \text{ncol} = 2, \text{byrow} = \text{TRUE})
\]

\[
B \leftarrow \text{matrix}(c(1,0,1,0), \text{nrow} = 2, \text{ncol} = 2, \text{byrow} = \text{TRUE})
\]

\[
C \leftarrow \text{matrix}(c(6,5,4,3,2,1), \text{nrow} = 3, \text{ncol} = 2, \text{byrow} = \text{TRUE})
\]

Now we’re going to practice doing matrix operations in R. Here are some of the functions and operations you’ll need:

- Addition: +
- Subtraction: -
- Multiplication: \(\times \)
- Inverse: \text{solve}()
- Transpose: \text{t}()
- Extract the diagonal of a matrix \(A \): \text{diag}(A)
- Make a \(k \) by \(k \) identity matrix: \text{diag}(k)

Try filling in the code yourself!

```r
## Add A and B together
A + B
```

```r
## [,1] [,2]
## [1,]  2  2
## [2,]  4  4
## A minus B
A - B
```

```r
## [,1] [,2]
## [1,]  0  2
## [2,]  2  4
## A times B
B %*% A
```

```r
## [,1] [,2]
## [1,]  1  2
## [2,]  1  2
## B times A
```

```r
## C times A
```

```r
## A times C
A %*% t(C)
```
Inverse of A (A^(-1))

\[\text{solve}(A) \]

\[
\begin{bmatrix}
1 & -2.0 \\
3 & 1.5
\end{bmatrix}
\]

A \%\% solve(A)

\[
\begin{bmatrix}
1 & 1.110223e-16 \\
0 & 1.000000e+00
\end{bmatrix}
\]

t(C)

\[
\begin{bmatrix}
6 & 4 & 2 \\
5 & 3 & 1
\end{bmatrix}
\]

A four by four identity matrix(diag(4))

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

diag(diag(4))

\[
\begin{bmatrix}
1 & 1 & 1 & 1
\end{bmatrix}
\]

The diagonal of matrix C

Verify that A times its inverse gives you the identity matrix

Multiple Regression: Interpretation & F-test (Useful Reference for Problem 2)

Interpretation

First, we'll load the data and run some unrestricted and restricted models.

```r
# Let's load your favorite dataset!!!
bill <- read.csv("Billionaires.csv", header = TRUE)

filter(year == 2014, !is.na(age), !is.na(networthusd)) %>%
dplyr::select(year, name, rank, citizenship, networthusd, selfmade, typeofwealth, gender, age, foundingdate) %>%
mutate(wealth = networthusd*1000000000, 
logwealth = log(wealth),
woman = ifelse(gender == "female", 1, 0),
inherit = ifelse(selfmade == "inherited", 1, 0))
```
We're going to run a model with lots of covariates we'll consider the "unrestricted model"

```r
unrestrict <- lm(data = bill, logwealth ~ age + inherit + woman + woman:inherit)
summary(unrestrict)
```

```r
##
## Call:
## lm(formula = logwealth ~ age + inherit + woman + woman:inherit, 
##     data = bill)
##
## Residuals:
##     Min       1Q   Median       3Q      Max
## -1.32750 -0.56413 -0.17549  0.35509  3.46877
##
## Coefficients:  Estimate  Std. Error t value  Pr(>|t|)
## (Intercept)   21.13384   0.09586   220.5  < 2e-16 ***
## age           0.00778   0.00148     5.3  1.68e-07 ***
## inherit       0.19315   0.04818     4.0  6.37e-05 ***
## woman        -0.14581   0.14534    -1.0  0.316
## inherit:woman  0.09874   0.16490     0.6  0.549
##
## Residual standard error: 0.7715 on 1585 degrees of freedom 
## Multiple R-squared:  0.0321, Adjusted R-squared:  0.02966 
## F-statistic: 13.14 on 4 and 1585 DF,  p-value: 1.559e-10 
```

Think-pair-share: how do we interpret the interaction coefficient?

Multiple regression meets matrix: manually coding the betas (Useful Reference for Problem 3)

```r
#X
bill_m <- bill %>%
  mutate(woman.inherit = woman * inherit) %>%
  select(age, inherit, woman, woman.inherit, logwealth)
head(bill_m)

## age inherit woman woman.inherit logwealth
## 1  83     0     0            0 21.67878
## 2  54     0     0            0 20.90559
## 3  52     1     1            1 23.57397
## 4  77     1     0            0 21.75289
## 5  83     0     0            0 21.19327
## 6  71     1     0            0 21.97603

X <- as.matrix(cbind(1, bill_m[, c("age", "inherit", "woman", "woman.inherit")]))
#y
y <- bill_m$logwealth
#betas: X'X'^{-1}X'y
betas <- solve(t(X) %*% X) %*% t(X) %*% y
betas

## [,1]
```

```r
##
##                Estimate 
## (Intercept) 21.133848037
## age           0.007781897
## inherit       0.193149681
## woman        -0.145810121
## inherit:woman  0.098744147
```
Comparing restricted and unrestricted models

Now we're going to look at a couple of restricted models

we can use the first one to test whether we need any covariates at all
note that the intercept is just the mean!
restrict1 <- `lm(data = bill, logwealth ~ 1)`

we can use the second to test whether we need gender or the interaction term
restrict2 <- `lm(data = bill, logwealth ~ age + inherit)`

Let's start by comparing our results with one big stargazer table:

```r
stargazer(restrict1, restrict2, unrestrict,
  title = "Comparing our linear models of billionaire wealth",
  star.cutoffs = c(0.05, 0.01, 0.001),
  header = FALSE,
  table.placement = "!h")
```

Now let's look visually at how well these models are doing at predicting our outcomes by looking at the actual vs. predicted outcomes for our data:

```r
##Extracting the fitted values from the model and adding them to the dataframe
bill$fit_un <- unrestrict$fitted.values
bill$fit_r1 <- restrict1$fitted.values
bill$fit_r2 <- restrict2$fitted.values

##Plotting actual vs. predicted values for each model
un <- ggplot(data = bill) +
  geom_point(aes(x = logwealth, y = fit_un),
             alpha = .2, color = "darkgreen") +
  ylim(min(bill$logwealth), max(bill$logwealth)) +
  xlab("Actual log wealth") +
  ylab("Predicted log wealth") +
  ggtitle("Unrestricted model") +
  theme(plot.title = element_text(hjust = 0.5, face = "bold", size = 14),
        text = element_text(family = "Helvetica"))

r1 <- ggplot(data = bill) +
  geom_point(aes(x = logwealth, y = fit_r1),
             alpha = .2, color = "darkgreen") +
  ylim(min(bill$logwealth), max(bill$logwealth)) +
  xlab("Actual log wealth") +
  ylab("Predicted log wealth") +
  ggtitle("Restricted model")
```

```r
```
Table 1: Comparing our linear models of billionaire wealth

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable:</td>
<td>logwealth</td>
<td>logwealth</td>
<td>logwealth</td>
</tr>
<tr>
<td>age</td>
<td>0.008***</td>
<td>0.008***</td>
<td>0.008***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>inherit</td>
<td>0.183***</td>
<td>0.193***</td>
<td>0.193***</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.048)</td>
<td>(0.048)</td>
</tr>
<tr>
<td>woman</td>
<td>−0.146</td>
<td>−0.146</td>
<td>−0.146</td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
<td>(0.145)</td>
<td>(0.145)</td>
</tr>
<tr>
<td>inherit:woman</td>
<td>0.099</td>
<td>0.099</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>(0.165)</td>
<td>(0.165)</td>
<td>(0.165)</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.095)</td>
<td>(0.096)</td>
</tr>
<tr>
<td>Observations</td>
<td>1,590</td>
<td>1,590</td>
<td>1,590</td>
</tr>
<tr>
<td>R²</td>
<td>0.000</td>
<td>0.031</td>
<td>0.032</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.000</td>
<td>0.030</td>
<td>0.030</td>
</tr>
<tr>
<td>Residual Std. Error</td>
<td>0.783 (df = 1589)</td>
<td>0.771 (df = 1587)</td>
<td>0.772 (df = 1585)</td>
</tr>
<tr>
<td>F Statistic</td>
<td>25.610*** (df = 2; 1587)</td>
<td>13.142*** (df = 4; 1585)</td>
<td>13.142*** (df = 4; 1585)</td>
</tr>
</tbody>
</table>

Note: p<0.05; **p<0.01; ***p<0.001

```r
ylab("Predicted log wealth") +
ggtitle("Restricted model 1") +
theme(plot.title = element_text(hjust = 0.5, face = "bold", size = 14),
text = element_text(family = "Helvetica"))

r2 <- ggplot(data = bill) +
geom_point(aes(x = logwealth, y = fit_r2),
    alpha = .2, color = "darkgreen") +
ylim(min(bill$logwealth), max(bill$logwealth)) +
xlab("Actual log wealth") +
ylab("Predicted log wealth") +
ggtitle("Restricted model 2") +
theme(plot.title = element_text(hjust = 0.5, face = "bold", size = 14),
text = element_text(family = "Helvetica"))

grid.arrange(r1, r2, un, nrow = 1, ncol = 3)
```
Now we’ll do a much more precise test- the F-test.

Recall that the F statistic can be calculated by the following procedure:

1. Fit the Unrestricted Model (UR) which does not impose H_0
2. Fit the Restricted Model (R) which does impose H_0
3. From the two results, compute the F Statistic:

$$F_0 = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n - k - 1)}$$

where $SSR =$ sum of squared residuals, $q =$ number of restrictions, $k =$ number of predictors in the unrestricted model, and $n =$ # of observations.

Let’s extract and calculate all the relevant values first:

```r
## Calculate the sum of squared residuals for each model
SSR_un <- sum(resid(unrestrict) ^ 2)
SSR_res1 <- sum(resid(restrict1) ^ 2)
SSR_res2 <- sum(resid(restrict2) ^ 2)

## Calculate n - k - 1 for unrestricted model
nk1 <- nrow(bill) - 4 - 1
## There is a slightly easier way to do that
nk1 == df.residual(unrestrict)

## [1] TRUE
```
Find q for the restricted models

\[
q_1 = 4 \\
q_2 = 2
\]

Now we’ll use the formula to calculate our first F-Statistic. Note that we should get the same F-Statistic we see in our `lm()` output for the unrestricted model.

```r
## F-test with first restricted model
f1 <- ((SSR_res1 - SSR_un) / q1) / (SSR_un / nk1)
f1
```

```
## [1] 13.14155
```

```r
# we can use `pf()` to get the p-value for our f test
pf(f1, q1, nk1, lower.tail = FALSE)
```

```
## [1] 1.559003e-10
```

Now we can do the same for our second restricted model.

```r
## F-test with first restricted model
f2 <- ((SSR_res2 - SSR_un) / q2) / (SSR_un / nk1)
f2
```

```
## [1] 0.6834552
```

```r
# we can use `pf()` to get the p-value for our f test
pf(f2, q2, nk1, lower.tail = FALSE)
```

```
## [1] 0.5050183
```

We can also do this with the `anova()` function:

```r
# recall that
# unrestrict <- lm(data = bill, logwealth ~ age + inherit + woman + woman:inherit)
# restrict1 <- lm(data = bill, logwealth ~ 1)
# restrict2 <- lm(data = bill, logwealth ~ age + inherit)

# F test 1
anova(restrict1, unrestrict)
```

```
## Analysis of Variance Table
##
## Model 1: logwealth ~ 1
## Model 2: logwealth ~ age + inherit + woman + woman:inherit
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 1589 974.75
## 2 1585 943.46 4 31.29 13.142 1.559e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# F test 2
anova(restrict2, unrestrict)
```

```
## Analysis of Variance Table
##
## Model 1: logwealth ~ age + inherit
## Model 2: logwealth ~ age + inherit + woman + woman:inherit
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 1587 944.27
```
Think-pair-share: - What is the null hypothesis H0 for F test 1 and 2? - how do we interpret the F test results?

Bootstrapping to get standard errors and confidence intervals (Useful Reference for Problem 4)

```r
## Let's say we have a random sample of billionaires and we want to estimate the mean log wealth and the standard error of the mean
## Let's first implement this with a for loop
set.seed(12334)
# First create the random sample
n <- 1000
random_sample <- sample_n(bill, n)
mean(bill$logwealth)

## [1] 21.67788
mean(random_sample$logwealth)

## [1] 21.68432

# We can do it by for loop
reps <- 1000
boot_vec <- rep(0, reps)
for (i in 1:reps) {
  boot_samp <- sample_n(random_sample, nrow(random_sample), replace = T)
  boot_vec[i] <- mean(boot_samp$logwealth)
}

# Or replicate
calc_boot <- function() {
  boot_samp <- sample_n(random_sample, nrow(random_sample), replace = T)
  boot_samp_mean <- mean(boot_samp$logwealth)
  return(boot_samp_mean)
}
boot_vec <- replicate(reps, calc_boot())

# the distribution of our results
ggplot() + geom_density(aes(x = boot_vec))
```
their mean and standard deviation

```r
mean(boot_vec)  # about the same as the true mean in our sample
```


```r
sd(boot_vec)
```

[1] 0.0249139

and the 95% confidence interval

```r
quantile(boot_vec, probs = c(0.005, 0.995))
```

0.5% 99.5%
21.62231 21.74828

How does our bootstrap SE compare to ...

```r
sd(boot_vec)
```

[1] 0.0249139

##to (1) the estimated SE from one sample

```r
sd(boot_samp$logwealth)/sqrt(nrow(boot_samp))
```

[1] 0.02450389

##to (2) the true SE, which we can calculate from the population dist. SE(X_bar)^2 = true variance / n

```r
true.var <- sum((bill$logwealth - mean(bill$logwealth))^2)/nrow(bill)
sqrt(true.var/nrow(bill))
```

[1] 0.01963581
We can use bootstrapping to estimate standard errors for lots of things
Let's go back to our unrestricted linear model
And try to retrieve the standard errors of our coefficients
We're also going to add some tests of inputs and outputs

```r
tests <- 1000
set.seed(1234)

boot_coefs <- function(data) {
  if (!is.data.frame(data)) stop("Data is not a data frame")
  boot_samp <- sample_n(data, nrow(data), replace = T)
  model <- lm(data = boot_samp, logwealth ~ age + inherit + woman + woman:inherit)
  coefs <- coef(model)
  if (anyNA(coefs)) stop("Missing values in coefficients")
  return(coefs)
}

boot_coefs_out <- replicate(tests, boot_coefs(random_sample))

apply(boot_coefs_out, MARGIN = 1, FUN = mean) #1 indicates applying the FUN=mean by ROW

apply(boot_coefs_out, MARGIN = 1, FUN = sd)

apply(boot_coefs_out, 1, quantile, probs = c(0.025, 0.975))

full_model <- lm(data = random_sample, logwealth ~ age + inherit + woman + woman:inherit)

summary(full_model)$coefficients

sqrt(diag(vcov(full_model)))

```

How does this compare to the estimates we get from the original random sample?

```r
full_model <- lm(data = random_sample, logwealth ~ age + inherit + woman + woman:inherit)

summary(full_model)$coefficients

sqrt(diag(vcov(full_model)))

```

```r
compare.SEhat <- rbind(sqrt(diag(vcov(full_model))),
apply(boot_coefs_out, MARGIN = 1, FUN = sd))

rownames(compare.SEhat) <- c("lm", "bootstrap")

compare.SEhat
```
Answer to think-pair-share 1:

- for male billionaires of same age, we observe on average the logwealth of those who inherited their wealth to be ??? higher than those who don’t inherited wealth

- for **female** billionaires of same age, we observe on average the logwealth of those who inherited their wealth to be ??? higher than those who don’t inherited wealth

Answer to think-pair-share 2:

```
#unrestrict <- lm(data = bill, logwealth ~ age + inherit + woman + woman:inherit)
#restrict1 <- lm(data = bill, logwealth ~ 1)
#restrict2 <- lm(data = bill, logwealth ~ age + inherit)
```

What is the null hypothesis H_0 for F-test 1 and 2?

- H_0 for Ftest1: $\beta_{age} = \beta_{inherit} = \beta_{woman} = \beta_{woman:inherit} = 0$
- H_0 for Ftest1: $\beta_{woman} = \beta_{woman:inherit} = 0$

How do we interpret the F test results?

- F-test1: we reject the null hypothesis that none of the predictors will significantly improve model fit.
- F-test2: we fail to reject the null hypothesis that including women and the interaction between woman and inherit will not significantly improve our model fit.