The role of bubbles during air-sea gas exchange

Steven Emerson¹ and Seth Bushinsky²

¹School of Oceanography, University of Washington, Seattle, Washington, USA, ²Now at Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey, USA

Abstract The potential for using the air-sea exchange rate of oxygen as a tracer for net community biological production in the ocean is greatly enhanced by recent accuracy improvements for in situ measurements of oxygen on unmanned platforms. A limiting factor for determining the exchange process is evaluating the air-sea flux contributed by bubble processes produced by breaking waves, particularly during winter months under high winds. Highly accurate measurements of noble gases (Ne, Ar & Kr) and nitrogen, N₂, in seawater are tracers of the importance of bubble process in the surface mixed layer. We use measured distributions of these gases in the ventilated thermocline of the North Pacific and an annual time series of N₂ in the surface ocean of the NE Subarctic Pacific to evaluate four different air-water exchange models chosen to represent the range of model interpretation of bubble processes. We find that models must have an explicit bubble mechanism to reproduce concentrations of insoluble atmospheric gases, but there are periods when they all depart from observations. The recent model of Liang et al. (2013) stems from a highly resolved model of bubble plumes and categorizes bubble mechanisms into those that are small enough to collapse and larger ones that exchange gases before they resurface, both of which are necessary to explain the data.

1. Introduction

Net biological oxygen production in the surface ocean (to the depth of the winter mixed layer), if integrated over an entire year, is, via stoichiometry, equal to the annual net community production of carbon (ANCP). At steady state this value must equal organic carbon export (sometimes called the biological carbon pump, see Emerson [2014]). The magnitude and geographic distribution of this value is of interest to oceanographers because it has an important effect on atmospheric pCO₂ levels and the distribution of oxygen and other metabolites in the thermocline and deep sea.

The net biological oxygen production can be determined from a time series of oxygen measurements if the physical processes affecting the oxygen supersaturation can be evaluated in an upper ocean model. The leading physical process controlling oxygen concentrations in the ocean mixed layer is air-sea gas exchange, and the role of bubbles caused by breaking waves is a first order process when winds are strong. Another inert gas (e.g., Ar or N₂) is often measured to sort out the physical and biological processes that affect O₂ supersaturation when using oxygen measurements in the surface ocean to calculate biological rates of net community production [e.g., Spitzer and Jenkins, 1989, Emerson et al., 2008]. Since it is currently not possible to measure either Ar or N₂ on profiling floats and gliders, and frequently not practical on ships of opportunity (Voluntary Observing Ships, VOS), an accurate theoretical estimate of the degree of supersaturation caused by bubble processes is necessary when using in situ measurements of oxygen to determine biological fluxes.

Our purpose here is to demonstrate how available inert gas data constrain the validity of models used to calculate bubble-produced gas supersaturation. We interpret highly accurate measurements of N₂/Ar, Ne, Ar, and Kr in the ventilated thermocline of the North Pacific Ocean and year-long, surface-ocean measurements of N₂ on a surface mooring at Ocean Station Papa (OSP, 50°N, 145°W). Four different published models of air-sea gas transfer as a function of wind speed are employed in two separate upper-ocean models to calculate the expected degree of inert gas supersaturation. By comparing model predictions with data, we infer the accuracy of the available models for calculating the role of bubbles in creating surface oxygen supersaturation.
2. Background

The transfer of gases into the surface ocean by bubbles produced during wave breaking has long been recognized as an important process causing gas supersaturation [Kanwisher, 1963; Fuchs et al., 1987; Merlivat and Memery, 1983; Woolf and Thorpe, 1991; Keeling, 1993]. This is especially true for the more insoluble gases that make up most of the atmosphere (N₂, O₂, and all noble gases) because forced injection of atmospheric gas into surface water by subduction of bubbles causes a greater elevation of the dissolved concentration for these gases. Noble gas and N₂ measurements in the upper ocean have been used to constrain bubble models before [Spitzer and Jenkins, 1989; Hamme and Emerson, 2006, Steiner et al., 2007; Stanley et al., 2009, Vagle et al., 2010], but there is not a consensus about which models are most accurate [Nicholson et al., 2011, Liang et al., 2013]. We now have a highly-accurate, world-wide data set for the N₂/Ar ratio [Hamme and Severingham, 2007] and a time series of surface-ocean nitrogen gas concentrations at Ocean Station Papa (OSP) to determine the accuracy of present models.

There are many different model approaches to evaluating the importance of bubbles in air-sea gas exchange. We choose four different models in use presently and which represent a wide range of possible behavior ascribed to bubbles. A description of these models, along with the equations used, and how they are related to each other is presented in the Appendix A. We introduce them briefly here. The model of Wanninkhof et al. [2009, hereinafter W09; equation (A2)] is used here as an end member case because it does not explicitly include bubble flux terms. However, this model does have a cubic wind-speed dependence in the high range, which is similar to the wind speed correlation to whitecaps that are an indication of bubble formation. The mass transfer coefficient variation with wind speed in W09 is tuned to the ocean inventory of bomb-produced ¹⁴C and purposeful tracer release experiments (Figure 1).

One of the traditional gas exchange bubble models (Woolf and Thorpe [1991] and later Woolf [1997, hereinafter W97]) derived air-sea fluxes from a physical model of bubble plume dynamics. There are three unknown parameters in this set of equations (Appendix A, equations (A4)–(A9)). First, the transfer coefficient describing air-sea interface exchange, k_w, as a function of wind speed was adopted from wind tunnel
experiments of Jahne et al. [1987]. This trend is very similar to the first two linear portions of the well-known gas transfer coefficient-wind speed dependence described by Liss and Merlivat [1986], the NOAA-COARE formulation for gas exchange [Fairall et al., 2003], and the results of DMS atmospheric eddy correlation measurements over the oceans [Goddijn-Murphy et al., 2016] (see Figure 1). Bubble processes in this model are parameterized using a bubble mass transfer coefficient, \(k_b \), and a bubble–induced fractional superstation, \(\Delta \). The latter value describes the steady-state degree of supersaturation, \(\frac{[C] - [C']}{[C']} (1 + \Delta) \), mol m\(^{-3}\) required to drive a gas flux to the atmosphere by air-water surface exchange, that exactly balances the influx by bubbles. Values of the wind speed necessary to create a \(\Delta \) of 1% are given by Woolf and Thorpe [1991] for \(\text{O}_2, \text{N}_2 \), and \(\text{CO}_2 \).

Gas transfer models that evolved from the desire to interpret observed supersaturation of noble gases, originally helium, envisioned two categories of bubble fluxes: one flux from small bubbles that are forced to great enough depths to collapse, \(F_c \), and another flux from larger bubbles, \(F_p \), that enter the ocean, exchange gases, and then resurface to the atmosphere [Fuchs et al., 1987, Jenkins, 1988, equations (A11)–(A13)]. The unknowns in these models are the surface air-sea mass transfer coefficient, \(k_s \), a mass transfer coefficient for each of the two bubble processes, \(k_c \) and \(k_p \), respectively, and the difference between the partial pressure in the surface waters and that inside the larger bubbles, \(\Delta P \). The primary cause of the supersaturation inside the bubbles is hydrostatic pressure as they are transported below the air-water interface.

Stanley et al. [2009], hereinafter S09] used the collapsing-and-exchanging bubble mechanisms in a one-dimensional, upper-ocean mixing model to calculate the gas exchange mass transfer coefficients from annual measurements of noble gases (He, Ne, Ar, Kr, Xe) in the surface waters of the Sargasso Sea. In her version of the model (equations (A14)–(A18)), \(\Delta P \) was calculated from a function that relates the depth of penetration of bubble plumes to wind speed (equation (A15)). Values for the gas exchange mass transfer coefficients, \(k_s, k_c \), and \(k_p \), and their relationship to wind speed were determined by simulating concentrations of the noble gases in the upper ocean model.

The most recent of the bubble models [Liang et al., 2013, hereinafter L13] is a direct calculation of bubble-induced gas fluxes from a large eddy simulation model coupled with a bubble population model. Gas transfer across the bubble surface followed the same mechanisms used by Fuchs et al. [1987] and S09. Results were compared with observations of argon supersaturation in the ocean. The model of L13 adopts the air-sea mass transfer coefficient, \(k_s \), from the NOAA-COARE model of gas exchange [Fairall et al., 2003, 2011; Hare et al., 2004; equation (A19)] and then solves for the wind speed dependency of the two bubble mass transfer coefficients, \(k_c \) and \(k_p \), and the large bubble supersaturation, \(\Delta P \).

The wind-speed dependence of the air-sea surface gas transfer coefficients in these four models are dramatically different (Figure 1). The trends for those of S09 and W09 are quadratic to cubic with respect to wind speed and follow the observations from tracer-release experiments. The \(k_s \) values in Figure 1 for both W97 and L13 are nearly linear with respect wind speed and are much less than the results from tracer-release experiments above wind speeds of about 10 m s\(^{-1}\). At higher winds the latter models require bubble processes comparable in magnitude to the surface exchange to explain the observations.

3. Results and Discussion

3.1. Noble Gas and \(\text{N}_2/\text{Ar} \) Data Used to Constrain Bubble Processes

Data used to test the bubble models are presented here as the degree of supersaturation with respect to atmospheric equilibrium in percent: \(\Delta C = \frac{[C] - [C']}{[C']} \times 100 \), where \([C]\) is the concentration of the gas (mol kg\(^{-1}\)) and \([C']\) is the concentration at saturation equilibrium with the atmosphere at the measured temperature, salinity and pressure. Saturation equilibrium values as a function of temperature and salinity are those of Hamme and Emerson [2004] for \(\text{N}_2, \text{Ar} \), and \(\text{Ne} \) and the values of Weiss and Kyser [1978] for \(\text{Kr} \) (See Figure 2). A pressure of one atmosphere is assumed by default for all measurements in the ocean interior. The data used here are of two types: the first are noble gas concentrations and \(\text{N}_2/\text{Ar} \) ratios measured in the North Pacific subtropical ocean in the mode waters that subduct into the thermocline from surface outcrops between the subarctic and subtropical gyres [e.g., Suga et al., 2004]. The second are the \(\text{N}_2 \) gas concentrations measured remotely every 3 h at about two meters depth on a surface mooring at Ocean Station Papa (OSP) in the subarctic ocean.
3.1.1. North Pacific Thermocline

Waters in the upper thermocline of the North Pacific are formed at the ocean surface in wintertime. The location and characteristics of the "Mode Water" formation in winter are described by Suga et al., 2004. Wintertime characteristics of this region taken from this reference and from reanalysis by the NOAA-ESRL global circulation model are presented in Table 1.

The noble gas and N2/Ar data in the upper thermocline of the North Pacific (Figure 3) were "pre-formed" at the ocean surface in the Mode Water formation region. These data are compiled here from measurements published previously and available on the web. N2/Ar, Ar and Ne data are averages of 6–12 depth profiles to 1000 m over a period of 1 year at the Hawaii Ocean Time series (HOT) (see Hamme and Emerson [2006], and the data compilation on Hamme’s website, www.uvic.ca/~rhamme/). Krypton results are from a single profile published in Hamme and Severinghaus [2007] from the same location. We are interested in data from pressures deep enough to be unaffected by local heating processes (> 200 m) and from within the density range of waters that originate in the winter at the surface in the North Pacific (\(\rho_s < 26.6 - 26.7 \)). The number of sample duplicates from the web database within this density interval are 5 for Ne and 11 for N2/Ar and Ar (column two of Table 2). The ratios of the standard deviations to the means of these measurements are \(\pm 0.2\% \), \(\pm 0.1\% \), and \(\pm 0.3\% \), respectively. The estimated precision of duplicate Kr measurements on a single profile by Hamme and Severinghaus [2007] was \(\pm 0.2\% \).

Mechanisms that control inert gas supersaturation, \(\Delta C \), in the ocean interior are: (1) temperature change and air-sea gas transfer with the atmosphere at the surface ocean outcrop, (2) the atmospheric pressure at the location and time of the outcrop, (3) mixing of waters across temperature gradients in the interior, which can create supersaturation, and (4) nitrogen gas has a biological component in some ocean interior locations due to denitrification. We discuss these processes in more detail below and argue that we can correct the data for processes (2) through (4).

Subduction of surface waters to the ocean interior occurs in the wintertime when cooling increases density. Temperature decrease creates gas undersaturation because cold water can hold more gas at thermodynamic equilibrium and gas exchange is relatively slow. Bubble fluxes caused by breaking waves at high wind speeds have the opposite effect of creating gas supersaturation. These two processes compete to drive the saturation state of the inert gases away from equilibrium while surface air-sea exchange pulls the concentrations back toward atmospheric saturation. Fortunately, the saturation temperature dependence and solubility of the inert gases varies enough (Figure 2) to distinguish the importance of these different processes [see Hamme and Emerson, 2006; Hamme and Severinghaus, 2007].

Once the subducting waters escape the ocean surface, gases are isolated from physical processes that change their concentration. However, diapycnal mixing creates supersaturation if the gas saturation

Figure 2. The Henry's Law Solubility coefficient at one atmosphere (mmol kg\(^{-1}\)) as a function of temperature for Ne, Ar, Kr and N\(_2\). The ratios N\(_2\)/Ar and Kr/Ar are also presented to show how the ratio mostly eliminates the temperature dependence. The nonlinearity of solubility with temperature causes supersaturation when saturated waters of different temperatures mix.

<table>
<thead>
<tr>
<th>Table 1. Characteristics of the Winter-Time (October–February) Outcrop of the Central Mode Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean Characteristics [Suga et al., 2004]:</td>
</tr>
<tr>
<td>Outcrop region 36°–42° N; 145°E – 170°W</td>
</tr>
<tr>
<td>Density range, (\rho_s = 26.0-26.6)</td>
</tr>
<tr>
<td>Mixed layer depth = 150 – 200 m</td>
</tr>
<tr>
<td>Atmosphere (NOAA-ESRL Reanalysis):</td>
</tr>
<tr>
<td>Surface ocean temperature change between Oct and Feb = 15.5–10.0°C ((-0.4)°C d(^{-1}))</td>
</tr>
<tr>
<td>Mean daily wind speed (Oct. – Feb.) = 12.3 m s(^{-1})</td>
</tr>
<tr>
<td>Sea level pressure = 1009 mbar (0.4% below one atmosphere)</td>
</tr>
</tbody>
</table>

concentrations are nonlinear with respect to temperature because mixing end members at saturation will create a mixture that is supersaturated (see Figure 2). The effect of diapycnal mixing on the argon supersaturation in the ocean thermocline in the North Pacific was determined by Emerson et al. [2012] by measuring Ar concentrations on northsouth transects from the mode water outcrop into the subtropical gyre. They found supersaturation increases that averaged $0.5 \pm 0.2\%$ over the circulation distance between 24° and 20° North near the Hawaii Ocean Time series (HOT) site. Ito and Deutsch [2006] derived an analytical expression that related the supersaturation concentration, ΔC, induced by diapycnal mixing on a surface of constant density to the product of: the second derivative of the equilibrium saturation value as a function of temperature, the diapycnal diffusion coefficient, K_z, and the square of the change in temperature with respect to depth.

$$\frac{\partial C}{\partial T} = K_z \left(\frac{\partial^2 C}{\partial T^2} \right) \left(\frac{\partial^2 C}{\partial z^2} \right)$$

Adopting a mixing-induced saturation anomaly for Ar, of 0.5%, results in mixing-induced supersaturation for ΔNe and ΔKr of $+0.2\%$, and $+0.7\%$, respectively. For the ratio Δ(N$_2$/Ar) the mixing increase is only 0.1% because the solubility temperature dependences are similar for these two gases (Figure 2). These corrections are applied to the data in the third column of Table 2.

Table 2. Measured Gas Supersaturation and Supersaturation Ratios (in %) in the Density Range, $\sigma_0 = 26.0 - 26.7$ Taken From the Data Base Described in the Text

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔNe</td>
<td>$+1.7 \pm 0.2$ (n=5)</td>
<td>$+1.6$</td>
<td>$+2.0$</td>
</tr>
<tr>
<td>ΔAr</td>
<td>$+0.1 \pm 0.3$ (n=11)</td>
<td>-0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>ΔKr</td>
<td>$+0.4 \pm 0.2$ (n=2)</td>
<td>-0.2</td>
<td>$+0.2$</td>
</tr>
<tr>
<td>Δ(N$_2$/Ar)</td>
<td>$+0.2 \pm 0.1$ (n=11)</td>
<td>$+0.7$</td>
<td></td>
</tr>
<tr>
<td>Δ(Kr/Ar)</td>
<td>$+0.2 \pm 0.3$ (n=2)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

*Data in column 3 have been corrected for diapycnal diffusion (-0.1, -0.5, and -0.6% for ΔNe, ΔAr, and ΔKr and -0.1% for Δ(N$_2$/Ar) and Δ(Kr/Ar), see text). Data in column 4 have been corrected for both diapycnal diffusion and the atmospheric pressure at the location and time of the surface outcrop ($+0.4\%$ for all gases and no correction for gas ratios).

The biological correction for Δ(N$_2$/Ar) is $+0.05\%$ and the diffusion correction is -0.1% so they are assumed to cancel (see text).
the ocean interior caused by denitrification in locations where oxygen concentrations are low [Chang et al., 2010]. We correct the $D(N_2/Ar)$ ratios in Figure 3 for the N_2 concentrations added by denitrification using values of N^* determined from the same water. N^* is defined as the deficiency of NO_3 relative to that expected from the concentration of total dissolved phosphorus (DIP) times the N/P Redfield ratio [Gruber and Sarmiento, 1997].

\[
N^* = |NO_3^-| - 16 \times DIP \quad \text{(mol m}^{-3}\text{)}
\]

During denitrification the concentration of N_2 should increase by one half the NO_3 decrease, so the $D(N_2/Ar)$ ratio corrected for this effect is defined as:

\[
\Delta(N_2/Ar) = \Delta(N_2/Ar) - 0.5 \times \frac{N^*}{[Ar]} \times \frac{N_2}{Ar} \times 100 \quad \text{(4)}
\]

The conservative tracer $\Delta(N_2*/Ar)$ was determined from the data used here by calculating N^* from the nutrient data of the HOT program (http://www.hahana.hawaii.edu). The correction is very small, $\sim +0.05\%$ and of the same magnitude but of the opposite sign to that estimated for the mixing correction for this ratio, so we elected to make no change for these effects (Table 2).

The final correction to the data is due to atmospheric pressure during the winter months at about 40° N in the Northwest Pacific where the mode waters form. Sea level pressure in the wintertime at this location from reanalysis models was 1009 mbar, which is 0.4% below one atmosphere (Table 1). The data (Figure 3) assume one atmosphere for the gas supersaturation calculation. If the true wintertime value is below one atmosphere, environmentally-induced supersaturations are 0.4% greater than indicated. Supersaturations are corrected for this effect (column 4 in Table 2) except for gas ratios where differences in the ambient atmospheric pressure cancels.

3.1.2. NE Pacific Surface Ocean N_2 Data

Surface water N_2 measurements determined every 3 h during the year 2012 at Ocean Station Papa (OSP, 145° W, 50° N) derive from a combination of in situ oxygen and gas tension device (GTD) [see McNeil et al., 1995] measurements on a surface mooring. The GTD determines highly accurate total gas pressure using a Paroscientific pressure sensor and oxygen is measured using an Aanderaa optode calibrated by Winkler oxygen titrations. Assuming argon concentrations are near the value expected for saturation equilibrium with the atmosphere yields N_2 gas pressures that are accurate to a few tenths of one percent. (See
Emerson et al. [2002], for a description of the methods used to determine \(N_2\) from \(O_2\) and GTD measurements. The measurements (Figure 4) indicate supersaturation in summer caused mainly by warming, and then fluctuations around \(\Delta N_2 = 0\) in winter caused by the combination of cooling and bubble processes. The \(\Delta N_2\) data have a spikey nature primarily because short-term changes in atmospheric pressure due to local storms create an immediate response for atmospheric \(pN_2\) but a much slower response of the \(pN_2\) in the surface ocean.

3.2. Upper Ocean Models

3.2.1. Surface Ocean and Ventilated Thermocline

The model used to interpret the inert gas data from the North Pacific thermocline is a simple quasi-steady-state solution for gas concentrations in an idealized mixed layer of constant depth, \(h\) (Figure 5), which is horizontally homogeneous and has no exchange with water below the mixed layer. Wintertime temperature in the model decreases linearly with time and gases exchange with the atmosphere via both surface air-water exchange, \(F_s\), and bubble processes, \(F_b\). This is clearly a crude representation of surface ocean processes before the water ventilates into the thermocline, but we believe it captures the main processes controlling inert gas supersaturation: surface water cooling and atmosphere-ocean gas exchange by both air-water interface diffusion and bubble processes.

The change in concentration of gas \(C\) in the ocean mixed layer is described by:

\[
\frac{h}{\partial C}{\partial t} = F_s + F_b \quad \text{(mol m}^{-2}\text{d}^{-1})
\]

where \(F_s\) and \(F_b\) are defined for the four different air-sea exchange models described in the Appendix A.

The gas saturation concentration, \([C_s]\), is:

\[
[C_s] = [C_s^0] + m \tau \quad \text{(mol m}^{-3})
\]

where, \([C_s^0]\) is the initial saturation concentration at \(t=0\) and the saturation concentration temperature, \(T\), dependence with time, \(t\), is described by

\[
m = \frac{\Delta [C_s]}{\Delta T} \frac{\Delta T}{\Delta t} \quad \text{(mol m}^{-3})
\]

The time dependent solution to this ordinary differential equation is (see the Appendix A for a description of the terms and their units):

\[
[C_s](t) = \left(m + \frac{m \Delta P_{kp}}{h a} \right) t - \left(\frac{m}{a} \right) (1 - e^{-at}) - \frac{m \Delta P_{kp}}{h a^2} (1 - e^{-at}) + \left(\frac{A}{a} \right) (1 - e^{-at}) + C_s^0 e^{-at}
\]

with

\[
A = a[C_s^0] + \frac{\Delta P_{kp}}{h} [C_s^0] + \frac{k_s}{h} X_c
\]

and

\[
a = \frac{k_s + k_p}{h}
\]

At quasi steady state, when the degree of supersaturation becomes invariant in time because the rate of cooling, and hence production of undersaturation, is balanced by the air-sea exchange processes, the above equation becomes:

\[
\frac{[C] - [C_s]}{[C_s]} = -h \Delta [C_s] \frac{\Delta T}{\Delta t} [C_s] \left(\frac{1}{k_s + k_p} + \frac{\Delta P_{kp}}{(k_s + k_p)^2} \right) + \frac{\Delta P_{kp}}{k_s + k_p} + \frac{k_c}{k_s + k_p} [C_s]
\]
This equation is applied to the data in two ways. First, the degree of supersaturation (the left side of equation (9)) is calculated as a function of wind speed for the mass transfer coefficients \(k_s, k_c, a \) and \(k_p \) given in four different models of gas exchange described in the Appendix A. In this case we assumed that the rate of cooling, \(\Delta T/\Delta t \), is known from reanalysis (Table 1). The second approach involves simultaneous solution of three versions of equation (9) for the data: \(\Delta (N_2/Ar) \), \(\Delta Ne \) and \(\Delta (Kr/Ar) \) to obtain values for \(\Delta T/\Delta t \), \(k_p \) and \(k_s \). We use \(\Delta T/\Delta t \) as an unknown so we can compare the result to what we expect from the reanalysis estimates and thus verify that the solutions are accurate. The different approaches give similar results, and are both used in the next section. Calculation of the degree of supersaturation as a function of wind speed (\(U_{10} \)) is compared with data to determine the bubble model accuracy, and the simultaneous solution was used for the error analysis.

3.2.2. Surface Ocean \(N_2 \) Data at OSP

A separate upper ocean model is used to compare the nitrogen supersaturation measurements in surface waters at OSP with values predicted from the four separate gas exchange formulations. The model used here is described in Bushinsky and Emerson [2015] and will be reviewed only briefly. This upper ocean model compartmentalizes the surface 150 meters of the ocean into a variable-height mixed layer above a series of 1.5 m layers. Changes in the concentration of \(N_2 \) in all layers are stepped forward in time for a period of 1 year considering independently derived advective fluxes, mixed layer entrainment, eddy diffusion, and air-sea gas transfer. Advection velocities are calculated from reanalysis currents and horizontal gradients from climatological estimates of \(N_2 \) supersaturation. Eddy diffusion coefficients below the mixed layer are those described from heat and salt balances by Cronin et al. [2015]. The model incorporates values of \(T, S \) and mixed-layer depth measured by profiling floats in the OSP area. In this way the \(N_2 \) saturation value and hence \(\Delta N_2 \) in the mixed layer are not dependent on the ability of the model to reproduce measurements of \(T \) and \(S \). With this model we give up prognostic ability to accurately incorporate the factors that determine gas supersaturation. The most important terms in the \(N_2 \) mass balance are the time rate of change, and air-sea fluxes. Entrainment is significant when the mixed layer deepens rapidly, and vertical diffusion is influential in the winter when the mixed layer is deepest [see Bushinsky and Emerson, 2015].

3.3. Model-Data Comparisons

3.3.1. North Pacific Thermocline

Predicted inert gas supersaturations in the ocean thermocline as a function of wind speed (Figures 6–9) vary dramatically depending on the different gas exchange models used. We show later that the error in predicting the supersaturation given our best guess uncertainties for the input terms is on the order of \(\pm 0.2–0.5\% \) supersaturation for the gas ratios and \(\Delta Ne \) and more like \(\pm 1.0–1.5\% \) supersaturation for \(\Delta Ar \) and \(\Delta Kr \). The first conclusion from this analysis is that the gas exchange model without bubble processes cannot explain the inert gas data. The degree of supersaturation predicted from the W09 model is less than the data in every case (Figures 6–9), presumably because there is no explicit mechanism for inserting atmospheric gases into the upper ocean when cooling tends to produce undersaturation. For more soluble gases (i.e., \(CO_2 \)) a mass transfer coefficient-wind speed dependence that includes a cubic term at high winds may approximate reality, but not for the more insoluble atmospheric gases.

Figure 6. Comparison of model results with \(N_2/Ar \) supersaturation data in the Mode Water density interval of the North Pacific. Lines represent the quasi steady-state model solution (equation (9)) as a function of wind speed for different gas exchange models labeled by the symbols described in the caption for Figure 1. The gray field labeled “Data” represents the data in the mode waters between \(\sigma_r = 26.0 – 26.7 \) presented in Figure 3 and Table 2 and the line labeled “Data” is the mean and standard deviation of the winter time wind speed in this region from NOAA-ESRL reanalysis (Table 1). Each model line has a confidence interval of \(\pm 0.2\% \) on the ordinate as discussed in the text and indicated in Table 3.
The second major observation is that the model of S09 predicts much higher supersaturation for the most insoluble gases—DN2/Ar and DNe (Figures 6 and 7) than the observations. The S09 model predicts a quadratic function for interface air-sea exchange similar to that of Wanninkhof [1992] and Nightingale et al. [2000] and a strong forcing for bubbles that collapse (k_c) with very little contribution due to larger bubbles (k_p). This dominance of small bubbles was not found in other similar studies [Hamme and Emerson, 2006, Liang et al., 2013] and appears to be unable to explain the inert gas data here as well. The model of S09 predicts the observed DAr supersaturation at a wind speeds that are ~2 m s\(^{-1}\) slower than the predictions by the L13 and W97 models. This difference is not great enough to distinguish the models given the error associated with the model and data results (see later).

Both of the models that predict gas transfer from simulated bubble plumes [Woolf, 1997, hereinafter W97] and Liang et al. [2013, hereinafter L13] are able to reproduce the DN2/Ar, DNe and DAr data (Figures 6–8). These two models also suggest an important role for larger bubbles that exchange gases (k_p) because large bubble processes are necessary in these models to interpret data at wind speeds greater than 10 m s\(^{-1}\) (Figure 1).

Finally, the DKr/Ar supersaturation data (Figure 9) are not explained by any of the models. Among the tracers used here, Krypton is the least dependent on collapse of small bubbles and most dependent on larger bubbles and interface air-sea exchange. The measurements indicate supersaturations that are 1–2% greater than the model results. It is possible that some of the data-model difference may have to do with the uncertainty of the krypton solubility, which was determined almost 40 years ago [Weiss and Kyser, 1978]. More recent, but as yet unpublished laboratory experiments (D. Lott and W. Jenkins, Woods Hole Oceanographic Institution, personal communication, 2016), indicate Kr solubility in seawater at 10°C that is about 1% higher than previously published values. Definitive interpretation of the krypton data will require more certainty in the atmospheric equilibrium solubility.

3.3.2. Surface Ocean N2 Data at OSP

Interpretation of nearly continuous N\(_2\) data at Ocean Station Papa using the different...
gas exchange models (Figure 10) reveals trends that are similar to those from the thermocline data: during summertime when wind speeds are relatively slow (Figure 4) all the gas exchange models, with the possible exception of S09, reproduce the data to within a few percent of supersaturation. However in winter, when wind speeds are higher and bubble processes become more important, the model with no explicit bubble processes, W09, predicts greater undersaturation than the data and S09 dramatically overpredicts supersaturation. The models of W97 and L13 do the best job of reproducing the data with L13 being the better of these two. Even these latter two models; however, predict supersaturations in late winter and early spring that are systematically higher than the data by about 2%, which probably indicates that they over predict the impact of bubbles at high wind speeds. It is certainly possible that other mechanisms not included in this simple model could be part of the reason for the data-model differences in late winter/early spring. For example, large eddies from eastern continental boundary are known to pass through OSP. Water inside the eddy would have a temperature and salinity history different from the surrounding water that might not be captured in the model even though measured temperature and

Figure 9. Comparison of model results as a function of wind speed with data for Kr/Ar supersaturation. The lines and field are as described in the caption for Figure 6. Each model line has a confidence interval of ± 0.6% on the ordinate as discussed in the text and indicated in Table 3. There is no model line for W97 because the Δ_v value for Kr was not determined for this model.

Figure 10. (top) Comparison of model results for the nitrogen supersaturation with a full year of surface ocean data at OSP. The surface model is presented in Bushinsky and Emerson [2015] and described briefly in the text. The black line is smoothed data (also presented in Figure 4) and the colored lines are model solutions using different gas exchange models with the symbols described in the caption to Figure 2. (bottom) The bottom figure is the difference in supersaturation between the data and each of the four models so values closest to the zero line best match the data.
salinity are used to determine the N$_2$ saturation equilibrium value. Resolving the sources of these uncertainties and improving the prediction of bubble processes in even the best performing models will require many more data-model comparisons.

3.4. Error Analysis

Perhaps the most rigorous error analysis of the calculations here is interpretation of two completely independent data sets by totally different models and obtaining a similar result. Nonetheless it is important to know how well the different lines in Figures 6–9 are constrained given uncertainties in the data used to generate them. We do this by solving three simultaneous equations of the type in equation (8). The first test, which is not tabulated here, was to determine three unknowns: the time rate of change of surface temperature, dT/dt, and the mass transfer coefficients for small and large bubbles, k_c and k_p, respectively (equations (A20) and (A21)) using input data for ΔN$_2$/Ar, ΔN$_e$, and either ΔAr, or ΔN$_e$/Kr presented in Table 2 and the model of Liang et al. [2013, hereinafter L13]. The dT/dt values derived for these unknowns were between -0.02 and $-0.04 \, (^\circ C/d^{1})$, which is consistent with the reanalysis result (Table 1). Mass transfer coefficients determined by this exercise were within $\pm 30\%$ of those suggested by the L13 model. This result established the acceptability of the simultaneous equation approach to the error analysis.

The sensitivity of the noble gas concentrations and their ratios to the main environmental uncertainties was determined using a Monte Carlo error analysis for input values of the mixed layer depth ($h = 175 \pm 50$), wind speed ($U_{10} = 12.3 \pm 1.2 \, m \, s^{-1}$) and surface water cooling ($dT/dt = 0.03 \pm 0.01 \, (^\circ C/d^{1})$). Five hundred solutions for these input values varying randomly and independently about their means yielded uncertainties to the argon supersaturation of about $\pm 0.5\%$ for each input value individually resulting in a total uncertainty for ΔAr of $\pm 1.0\%$ (Table 3). The total error for the gas ratio ΔN$_2$/Ar is $\pm 0.2\%$, which suggests that this data is most effective in constraining the importance of the different bubble models. If we assume that the Monte Carlo error for each of the gas exchange models is similar to those calculated in Table 3 the uncertainty of the lines in Figures 6–9 is given in Table 3 and in the figure captions. The N$_2$/Ar data (Figure 6) clearly distinguish the different gas exchange models; however, it is not possible to say whether L13 or W97 is preferred because of uncertainty in the wind speeds and the model results. An uncertainty of $\pm 0.6\%$ for ΔN$_e$ lines (Figure 7) indicate that the data are in accord with prediction of the L13 model. An error of $\pm 1.0\%$ for the lines in Figure 8 still rules out the model of W09 but the uncertainty is too large to distinguish among the others. A ΔKr/Ar uncertainty of $\pm 0.6\%$ is not large enough to explain the mismatch between the data and model noted previously.

4. Conclusions

Comparison of noble gas and N$_2$ measurements in the thermocline and surface ocean using two separate upper-ocean models indicate that bubble processes are an important mechanism controlling the saturation state of inert atmospheric gases, particularly in winter when wind speeds are high. Comparison of four different bubble models chosen to represent the breadth of current mechanistic model approaches indicates that formulations originating from the theoretical interpretation of bubble plumes do the best job of reproducing the measurements. Models of Woolf [1997] and Liang et al. [2013] come closest to explaining the data, but still overpredict the supersaturation of N$_2$ in late winter-early spring in the NE Pacific. The model of Liang et al. [2013] is presently preferred because it derives from a highly resolved bubble model, can be
applied to all insoluble gases, and it includes mechanisms for both bubbles that completely collapse, and those that are large enough to be submerged and reemerge to the atmosphere. Both of these mechanisms are important for interpreting observations of gases with a wide variety of solubilities. Improvement of present models so that they more accurately predict observed supersaturations of nonreactive gases will help interpret in situ measurements of oxygen supersaturation on unmanned platforms in terms of net community biological production.

Appendix A

Models used to describe the role of bubbles in the air-sea exchange of gases have evolved over the past 30 years from two separate origins: (1) physical models of bubble plume distributions and their effects on air-sea exchange [Merlivat and Memery, 1983; Wooll and Thorpe, 1991; Vagle et al., 2010; Liang et al., 2013] and (2) empirical models of noble gas (originally He) supersaturation so that the air-sea exchange of bomb-produced \(^3\)He could be calculated [Fuchs et al., 1987; Jenkins, 1988; Stanley et al., 2009]. Wind-speed-dependent mass transfer coefficients derived from ocean tracer distributions [Wanninkhof, 2014; Nightingale et al., 2000, and references therein] have no explicit bubble mechanism even though bubbles probably affect the exchange process at high wind speeds. (See text Introduction.) In this Appendix A, we describe four different models of air-sea gas exchange that are used to derive the results in Figures 6–9. Definitions of the symbols and their units are listed in Table A1. Square brackets, [], indicate concentrations.

The diffusive exchange at the air-sea interface is described in all the models as a mass transfer coefficient, \(k_s\) (m s\(^{-1}\)), times the concentration difference between the mixed layer of the ocean, \([C]\) (mol m\(^{-3}\)) and the concentration at saturation equilibrium with the atmosphere gas partial pressure, \([C_s]\).

\[
F_s = -k_s ([C] - [C_s]) \text{ (mol m}^{-2} \text{s}^{-1} \text{)}
\]

(A1)

Table A1. The Meaning of Symbols Used in Text Equations and Their Units

\([C]\)	mol m\(^{-3}\)	Concentration of gas C
\([C_s]\)	mol m\(^{-3}\)	Concentration of gas, C, at Henry's Law equilibrium with the atmospheric pC
\(C_p\)	unitless	Drag coefficient at the air-water interface
\(D^C\)	cm\(^2\) s\(^{-1}\)	Molecular diffusion coefficient of gas, C
\(D_0\)	cm\(^2\) s\(^{-1}\)	term used to make units balance (\(D_0 = 1.0\))
\(\Delta_s\)	unitless	The fraction of supersaturation due to the “Equilibrium” supersaturation caused by bubble fluxes in the WT91 model
\(F_s\)	mol m\(^{-2}\) s\(^{-1}\)	Air-sea flux across the surface air-sea interface
\(F_{10}\)	mol m\(^{-2}\) s\(^{-1}\)	Air sea flux due to bubbles
\(F_{20}\)	mol m\(^{-2}\) s\(^{-1}\)	Air sea flux due to large bubbles that do not collapse
\(F_e\)	mol m\(^{-2}\) s\(^{-1}\)	Air-sea flux due to small bubbles that due collapse
\(G\)	m s\(^{-2}\)	Acceleration due to gravity
\(k_s\)	mol m\(^{-3}\) atm\(^{-1}\)	Henry's Law coefficient
\(k_t\)	m s\(^{-1}\)	Mass transfer coefficient for surface air-sea transfer
\(k_{1s}\)	m s\(^{-1}\)	Mass transfer coefficient for both surface air-sea interface and bubbles (unique to the WT91 model)
\(k_{1b}\)	m s\(^{-1}\)	Mass transfer coefficient for all bubbles
\(k_{2s}\)	m s\(^{-1}\)	Mass transfer coefficient for exchange across large bubble interface
\(k_{2b}\)	mol m\(^{-2}\) s\(^{-1}\)	Flux of air due to collapsing bubbles
\(P_a\)	Pascals	Atmospheric pressure
\(P_{w20}\)	Pascals	Equilibrium water vapor pressure
\(\Delta P\)	unitless	The fraction of supersaturation inside large bubbles that do not collapse in the models of 509 and L13
\(R\)	m Pa mol \(^{-1}\) K\(^{-1}\)	The gas constant
\(S\)	unitless	Schmidt number, \(= (D/\nu)^{1/2}\), where \(\nu\) is the kinematic viscosity
\(T\)	°K	Absolute temperature
\(U_{10}\)	m s\(^{-1}\)	Wind speed at 10 m height above the ocean
\(U_{1s}\)	m s\(^{-1}\)	Threshold wind speed at which equilibrium saturation equal 1% (WT91 model)
\(U_{1e}\)	m s\(^{-1}\)	Friction velocity on the air side of the air-water interface
\(U_{e}\)	m s\(^{-1}\)	Friction velocity on the water side of the air-water interface
\(X\)	unitless	Mole fraction of gas C in a dry atmosphere
\(z_b\)	m	Depth of large bubble penetration
\(B\)	unitless	Bunson solubility coefficient
\(\beta_{u}\)	unitless	Constant in the formula for \(k_s\) given in W97
\(\rho_a\)	kg m\(^{-3}\)	Atmospheric density
\(\rho_w\)	kg m\(^{-3}\)	Seawater density
A grand summary equation for the wind speed dependence of the gas exchange mass transfer coefficient is presented in Wanninkhof et al. [2009, hereinafter W09]:

\[k_r^* = \left(3 + 0.1(U_{10}) + 0.64(U_{10})^2 + 0.011(U_{10})^3 \right) \left(\frac{5}{600} \right)^{-0.5} \text{ (cm hr}^{-1}) \] (A2)

\[k_r (\text{m s}^{-1}) = k_r^* (\text{cm h}^{-1})/(3600 \text{ s h}^{-1} \times 100 \text{ cm m}^{-1}) \text{ (m s}^{-1}) \] (A3)

There are no explicit bubble terms in equation (A2), but it does have a cubic dependence on wind speed at the highest range, which is the expected wind speed dependence for white caps. This expression is constrained by both the bomb-produced distribution of carbon-14 in the ocean and by results from purposeful tracer release experiments. Wanninkhof et al. [2009] and Wanninkhof [2014] demonstrate that this expression is only slightly different from the quadratic equations that preceded it.

Woolf and Thorpe [1991] determined the role of bubbles in air-sea gas exchange using a bubble plume model and suggested a simple expression in which a single parameter, \(\Delta \), (unitless), represents the enhancement of surface gas saturation caused by bubble processes.

\[F_T = -k_r^* |C| (1 + \Delta) - |C| \text{ (mol m}^{-2} \text{ s}^{-1}) \] (A4)

At \(\Delta = 0 \), when bubble processes are unimportant, this equation is equal in form to equation (A1). The mass transfer coefficient, \(k_r^* \), in this model was determined by the two linear regions in the lower wind speed range of the gas exchange expression of Liss and Merlivat [1986] because it was assumed that bubble processes are unimportant in this range. Woolf and Thorpe assumed that the second linear region of the Liss and Merlivat expression continued at higher wind speeds. In the presence of bubbles, \((1 + \Delta) \) is the fractional supersaturation caused by bubble processes at steady state when there is no net gas flux across the air-water interface. In this condition the flux of gas into the ocean by bubble processes exactly balances the flux out of the ocean by surface exchange across the air-sea interface. The value of the bubble induced supersaturation in their model was related to wind speed by:

\[\Delta = 0.01 \left(\frac{U_{10}}{\bar{U}_{10}} \right)^2 \] (A5)

where \(U_{10} \) is the ten meter wind speed at which the value of \(\Delta \) is 1%. In their model \(U_{10,N_2} = 7.2 \text{ m s}^{-1} \), \(U_{10,O_2} = 9.6 \text{ m s}^{-1} \) and \(U_{10,CO_2} = 49 \text{ m s}^{-1} \).

This expression was later modified by Wolf [1997] to consist of two mass transfer coefficients: one for the surface air-sea exchange, \(k_s \), and the other caused by bubbles, \(k_b \):

\[F_T = -(k_s + k_b)|C|(1 + \Delta) - |C| \text{ (mol m}^{-2} \text{ s}^{-1}) \] (A6)

where \(k_s \) was defined from wind tunnel experiments [Jahne et al., 1987] and is a linear function of the air-side friction velocity, \(\bar{u}^* \):

\[k_s = 1.57 \times 10^{-4} \bar{u}^* \left(\frac{5}{600} \right)^{-0.5} \text{ (m s}^{-1}) \] (A7)

(Note that the units of \(k_s \) are given as cm hr}^{-1} \) in Woolf [1997], but they are really m s}^{-1} \) as indicated above.) The expression suggested for the bubble mass transfer coefficient was

\[k_b = 9.4 \times 10^{-3} U_{10}^{0.41} \beta_b^{-1} \left[1 + (14 \beta_b \bar{u}^* \frac{5}{600}^{-0.5} \right]^{-1.2} \text{ (cm hr}^{-1}) \] (A8)

\[k_b (\text{m s}^{-1}) = k_b (\text{cm h}^{-1})/(3600 \text{ s h}^{-1} \times 100 \text{ cm m}^{-1}) \text{ (m s}^{-1}) \] (A9)

The mass transfer coefficient determined by equation (A6) is very close to that in the first two wind speed regimes of Liss and Merlivat [1986, see Figure 1]. The relationship between \(\bar{u}^* \) and the 10 meter wind speed is presented by Large and Pond [1981].

\[\bar{u}^* = \sqrt{C_d} U_{10} \text{ (m s}^{-1}) \] (A10)
Equations (A4)–(A9) comprise the gas exchange expressions of Woolf [1997, hereinafter W97]. Air-sea gas exchange expressions that derived originally from attempts to understand noble gas supersaturation [Fuchs et al., 1987] categorized bubble fluxes into two main types: the flux from small bubbles that totally collapse when they are forced below the air-sea interface, \(F_c \), and that from larger bubble that submerge, exchange gases and resurface, \(F_p \). In these models the total flux is the sum of the surface air-water flux, \(F_s \) and the bubble flux, \(F_b \):

\[
F_T = F_s + F_b \quad (\text{mol m}^{-2}\text{s}^{-1})
\]

where

\[
F_b = F_c + F_p
\]

Fluxes from the two different bubble types are controlled by very different mechanisms. Collapsing bubble fluxes are a function of a mass transfer coefficient, \(k_c \), and the atmospheric mole fraction, \(X \), only:

\[
F_c = -k_c X^C \quad (\text{mol m}^{-2}\text{s}^{-1})
\]

Larger bubbles that exchange gases across the bubble-water interface follow a mechanism analogous to that described by Woolf and Thorpe [1991] for the total gas exchange flux (A3):

\[
F_p = -k_p (\Delta P) [C]^1 - [C] \quad (\text{mol m}^{-2}\text{s}^{-1})
\]

where \(\Delta P \) in this model is the fractional increase in pressure experienced by the large bubbles.

In the model of Stanley et al. [2009, hereinafter S09], \(\Delta P \), is calculated as the hydrostatic pressure inside large bubbles that are forced below the air-sea interface:

\[
\Delta P = \frac{P_0 Q_b}{RT} \left(\frac{\rho X^C}{\rho_0} \right)
\]

where the mean depth of large bubbles is a function of wind speed:

\[
z_0 = (0.15U_{10} - 0.55) \quad (\text{m})
\]

Stanley et al. [2009] use the distribution of noble gases at the Bermuda Atlantic Time Series (BATS) to determine the mass transfer coefficients \(k_s \), \(k_c \), and \(k_p \) as:

\[
k_s = 8.67 \times 10^{-7} \quad U_{10}^2 \left(\frac{\rho}{\rho_0} \right)^{0.5} \quad (\text{m s}^{-1})
\]

\[
k_c = 9.1 \times 10^{-11} \quad \frac{(P_0 - P_{10}) X^C}{RT} (U_{10} - 2.27)^3 \quad (\text{mol m}^{-2}\text{s}^{-1})
\]

\[
k_p = 2.3 \times 10^{-3} \quad \frac{\rho X^C}{\rho_0} \left(\frac{\rho}{\rho_0} \right)^{0.67} (U_{10} - 2.27)^3 \quad (\text{m s}^{-1})
\]

The value of \(k_s \) determined in this model was similar to that proposed by the equations described in Wanninkhof et al., [2009, see Figure 1]. Equations (A1) and (A10) through (A18) describe the air sea flux in the model of Stanley et al., [2009, hereinafter S09].

The model of Liang et al. [2013, hereinafter L13], like that of Woolf [1997], was derived from a threedimensional model of bubble plumes and is formulated using the same terms as the Stanley et al. [2009]
model; however, the mass transfer coefficients were determined differently. The value for \(k_e \) in the L13 model was taken to be that suggested by the NOAA-COARE gas exchange model \cite{Fairall2011}, which is assumed to involve only the mechanism of surface air-sea exchange and is linear with respect to friction velocity.

\[
k_e = 1.04 \times 10^{-4} A \frac{u'^w}{\rho} \left(\frac{h_s}{H} \right)^{-0.5} \text{ (m s}^{-1}) \tag{A19}\]

where \(A \) is evaluated to be 1.3 \cite{Jeffery2010}. This relationship is very similar to the second linear range of mass transfer coefficient-wind speed relationship of \textit{Liss and Merlivat} \cite{Liss1986} and the wind-tunnel value of \textit{Jahne et al.} \cite{Jahne1987} (see Figure 1).

Wind speed dependencies of the two bubble coefficients, \(k_c \) and \(k_p \), and the bubble produced increment of supersaturation, \(\Delta P \), were determined by \textit{Liang et al.} \cite{Liang2013} from the model solution of the bubble distribution and gas transfer equations.

\[
k_c = 5.56 \left(\frac{u'^w}{\rho} \right)^{3.86} \text{ (mol m}^{-2}\text{s}^{-1}) \tag{A20}\]

\[
k_p = 5.5 \left(\frac{u'^w}{\rho} \right)^{2.76} \left(\frac{h_s}{H} \right)^{-0.67} \text{ (m s}^{-1}) \tag{A21}\]

\[
\Delta P = 1.52 \left(\frac{u'^w}{\rho} \right)^{1.06} \tag{A22}\]

where the water-side, \(u'^w \), and air-side, \(u'^a \), friction velocities are related by:

\[
u'^w = \left(\frac{\nu^w}{\nu^a} \right)^{0.5} \nu^a = 0.034 \sqrt{C_d U_{10}} \text{ (m s}^{-1}) \tag{A23}\]

The equations describing the model of \textit{Liang et al.} \cite{Liang2013}, hereinafter L13 are (A10)–(A13) and (A19)–(A23).

Equations describing the bubble models of \textit{Woolf} 1997, \textit{S09}, and \textit{L13} share similarities that are not immediately obvious. Combining equations (A1), (A10), and (A11–A13) and using the Henry’s Law coefficient, \(K_H \) (mol m\(^{-3}\) atm\(^{-1}\)), with the approximation that the atmospheric gas partial pressure, \(p_C \), is equal to the mole fraction, \(X \), \([C] = p_C K_H - X K_H \) yields:

\[
FT = - \left(k_c + k_p \right) \left\{ 1 + \frac{k_c}{K_{HT} + k_p \Delta P} / \left(k_c + k_p \right) \right\} \times [C]_i - [C] \text{ (mol m}^{-2}\text{s}^{-1}) \tag{A24}\]

This equation is in the form of that proposed by \textit{Woolf} \cite{Woolf1997} (equation (A5)). If one equates the mass transfer coefficient for large bubbles in the S09 and L13 models, \(k_p \), with the mass transfer coefficient of \textit{Woolf} \cite{Woolf1997} used for all bubbles, \(k_c \), then the steady state supersaturation is equal to a combination of the mass transfer coefficients and the term for excess supersaturation in the surface waters caused by both small and large bubbles is:

\[
\Delta_c = \left(\frac{k_c}{K_{HT} + k_p \Delta P} / \left(k_c + k_p \right) \right) \Delta P \tag{A25}\]

Substituting values for \(k_c, k_p, k_s \) and \(\Delta P \) determined by the L13 model into equation (A25) results in a wind-speed dependence for \(\Delta_e \) shown in Table A2. Values suggested by \textit{Woolf} are not greatly different for those predicted by the L13 model. Increasing the value for \(U_{10,N2} \) in equation (A4) to 14 instead of 7.2, as suggested by \textit{Vagle et al.} \cite{Vagle2010} decreases the supersaturation value derived by the \textit{Woolf} model to values below those of L13.

<table>
<thead>
<tr>
<th>(U_{10}) (m s(^{-1}))</th>
<th>(C_d A9)</th>
<th>(u'^w) A8 (m s(^{-1}))</th>
<th>(u'^w) A23 (m s(^{-1}))</th>
<th>(k_c) A21 (x10(^{5})) (mol m(^{-2}) s(^{-1}))</th>
<th>(k_c) A20 (x10(^{5})) (mol m(^{-2}) s(^{-1}))</th>
<th>(k_c) A16 (x10(^{5})) (mol s(^{-1}))</th>
<th>(k_p) A22</th>
<th>(\Delta_c) (L13)</th>
<th>(\Delta_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0012</td>
<td>0.07</td>
<td>0.002</td>
<td>0.03</td>
<td>0.96</td>
<td>0.002</td>
<td>0.0002</td>
<td>0.0007</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0012</td>
<td>0.21</td>
<td>0.007</td>
<td>0.65</td>
<td>0.003</td>
<td>2.8</td>
<td>0.008</td>
<td>0.003</td>
<td>0.007</td>
</tr>
<tr>
<td>10</td>
<td>0.0012</td>
<td>0.35</td>
<td>0.012</td>
<td>2.7</td>
<td>0.02</td>
<td>4.8</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>14</td>
<td>0.0015</td>
<td>0.52</td>
<td>0.018</td>
<td>8.3</td>
<td>0.10</td>
<td>7.3</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>20</td>
<td>0.0018</td>
<td>0.85</td>
<td>0.029</td>
<td>31.3</td>
<td>0.64</td>
<td>11.8</td>
<td>0.04</td>
<td>0.05</td>
<td>0.08</td>
</tr>
</tbody>
</table>

*The value in the last column is from \textit{Woolf and Thorpe} \cite{Woolf1991}. The values next to this column are derived from equation (A25) with the terms on the right-hand side determined from the model of \textit{Liang et al.} [2013]. Appendix A equations used for each calculation are indicated under the symbol.
Acknowledgments

We acknowledge Roberta Hamme for curating tables of the noble gas and N2/Ar ratio data on her web site (www.uvic.ca/~hamme/). We thank Bill Jenkins and Dempsey Lott for sharing preliminary, unpublished results for the solubility of Kr. Henry Bittig and two anonymous reviewers pointed out inconsistencies that have been repaired resulting in a better paper. The surface ocean N2 data from Ocean Station Papa are unpublished and available from the first author. Parts of this research began as a problem in a graduate-level chemical tracers class at University of Washington. S. E. would like to thank the students for being involved in the initial phase of the arguments presented here. This research was funded by NSF grants Oce1154001 and Oce 1458888.

References

