Quitting in Protest:
A Theory of Presidential Policymaking and Civil Service Response

Charles M. Cameron and John M. de Figueiredo*
Princeton University and Duke University
January 22, 2018

Abstract
We formally model the impact of presidential policymaking on the willingness of bureaucrats to exert effort and stay in the government. In a simple model, centralized policy initiative by the president is a substitute for initiative by civil servants, though total effort is enhanced when both work. However, centralized policymaking often impels policy-oriented bureaucrats ("zealots") to quit rather than implement presidential policies they dislike. Those most likely to quit are a range of moderate bureaucrats. More extreme bureaucrats may be willing to wait out an incumbent president in the hope of shaping future policy. As control of the White House alternates between ideologically opposed extreme presidents, policy-minded moderates depart from bureaucratic agencies leaving only policy extremists or poorly performing "slackers." These departures degrade policy initiative in moderate agencies.
I. Introduction

In November 2017, President Trump announced, “I’m the only one that matters” in setting U.S. foreign policy. This comment culminated a year of departures of high ranking civil servants and diplomats from the State Department. One report noted that over one-half of career diplomats in the two highest ranks of the Foreign Service had departed government service and that lower level diplomats had their ranks depleted by 17% (Stephenson 2017). High level non-diplomatic civil servants also departed, such as the Director of the Diplomatic Security Service (DSS) who had served in the DSS since for 30 years, the award-winning Acting Director of the Bureau for International Organization Affairs, and the careerist Assistant Secretary of State of International Narcotics and Law Enforcement Affairs with 38 years of service. Departing and former civil servants characterized the administration as having “complete and utter disdain for our expertise,” creating a situation that is “untenable”\(^2\), and engaging in a “[perilous] political climate.”\(^3\)

Meanwhile, similar events unfolded at the Environmental Protection Agency (EPA). In July 2017, President Trump’s White House Office of Management and Budget (OMB) detailed when and how executive agencies would repeal numerous Obama-era environmental regulations regarding air pollution, water pollution, fossil fuel extraction, and climate change.\(^4\) During the same time, there was a mass exodus of senior level civil servants from the EPA. The Acting Head of the Office of Water with 37 years of EPA experience, the Acting Head of the Office of Research and Development with 33 years of scientific research leadership at the agency, and an award- winning Senior Executive Service scientist with 40 years of government service, all departed the EPA. Some former EPA employees decried the perceived anti-environmental policies of the Trump Administration and refused to be part of its implementation. Others were said to soldier on, providing the politicians the “facts” necessary to make good decisions.\(^5\) One departing scientist noted, “[Many] EPA staff are becoming increasingly alarmed about the direction of the EPA... The policies this Administration is advancing are contrary to what the majority of the American people want the
Stories of this kind abound in the Trump era. But are the dramatic departures merely artifacts of one extraordinary administration or are they indicative of patterns, perhaps less dramatic but nonetheless discernable, at other times? In fact, recent empirical research detects an increase in departures among civil servants after a party change, particularly at the highest levels and among those whose views differ most dramatically from the new president (Bolton et al 2016, Doherty et al 2016, see also Bertelli and Lewis 2013, Richardson 2017). Thus, the Trump examples may well be just extreme instances of pre-existing practices.

One is then led to ask: What logic drives the departure patterns? In particular, what calculations underlie the stay/go decisions of civil servants? For example, should professionals wait out a new president, hoping for a new and better successor? Should they stay and try to make a difference in the current administration? Or, should they quit and leave with clean hands rather than implement policies they believe to be misguided? The new empirical research, while fascinating or even disturbing, leaves unclear the mechanisms at play. Indeed, relatively little effort has been devoted to building theory about the career decisions of civil servants in highly politicized environments.

In this paper we address this theoretical lacuna. We study the effects of centralized presidential policymaking on work and careers in federal agencies. We develop a formal model of authority in public organizations that reflects actors’ commitment to policy, their rational decisions about work effort, and their strategic calculations about careers. The paper examines how presidents, by centrally directing policymaking, dishearten and demotivate policy-oriented bureaucrats ("zealots"), who would otherwise willingly exert effort and initiative to innovate new policy. Centralization thus undermines bureaucratic initiative. However, the effects of centralization are even more deleterious over time. In the model, zealots on the opposite end of the ideological spectrum from the president resign their position because departing affords them clean hands – distasteful policies that will be implemented regardless of the zealot’s presence or absence are less painful if the agent is not directly implicated in
their administration. However, the model uncovers two dynamics mitigating policy-induced departures. The first, which we dub "wait them out" (WTO), occurs when a zealous bureaucrat, faced with a hostile president who forces distasteful policy on the agency, nonetheless stays because of the possibility of implementing a better policy under a friendlier president in the future. It is extremist zealots opposed to the current president who are most inclined to WTO, which requires a turn-over in party control of the presidency. The second dynamic, which we call "I can make a difference" (IMD) occurs when a very moderate zealot, faced with a friendly president who insists on an extreme policy, remains in the agency because she may be able to craft a more moderate policy under such a friendly president in the future. It is moderate bureaucrats who are the players in IMD, which requires continuity in party control of the presidency.

Despite the WTO and IMD dynamics, policy-induced departures – "quitting in protest" – are frequent among zealous civil servants, at least in the model. Policy-induced departures then strip an agency of its most motivated employees, those whose initiative generates new policies when the president’s centralized apparatus fails to do so. Moreover, the model shows that in the longer run, as party control of the presidency alternates and presidents press policies on agencies, the departure of moderate zealous bureaucrats tends to hollow out the agencies. In starkest form, only two types of civil servants remain in the government: highly motivated extremist zealots on the left in some agencies and the right in others, and moderate slackers who exert little effort on policy innovation.

We briefly discuss some extensions to the analysis, for example, incorporating an opposition Congress or a skeptical judiciary, or the possibility of offering bureaucrats "political efficiency wages" to offset the incentives for policy-induced departures.

The paper is organized as follows. Section II briefly reviews the rise of centralized presidential policymaking and discusses studies of the ensuing incentive effects. Section III presents a model of presidential-bureaucratic interaction in which centralized presidential policymaking has incentive effects in the agencies. Section IV develops the WTO and IMD
dynamics, studies the effects of centralization on work effort, and examines how alternating party control of the presidency polarizes agencies. Section V analyzes the president’s incentives to centralize policymaking, thereby providing formal micro-foundations for the famous observations on presidential strategy in Moe 1985. Section VI discusses the results and briefly explores extensions. Section VII offers some conclusions. All formal results are contained in Appendices.

II. The Rise of the Centralized Presidency

Political scientists have documented the rise and growth of the centralized presidency (Schlesinger 1973; Rudalevige 2005). The Great Depression and Second World War impelled a dramatic expansion of the administrative state and presidential power (Higgs 1987). Congress and presidents created scores of programs and agencies staffed by hundreds of thousands of new federal employees. Concerned about weaknesses in administration, President Roosevelt appointed the President’s Committee on Administrative Management (the Brownlow Committee) to make recommendations about how to improve the administration of government. The Committee recommended the creation of a permanent Executive Office of the President (EOP) and an expansion of the White House staff. The Committee proposed that the Executive Office of the President include the White House Office, along with its expanded staff, and other staff agencies such as the Bureau of the Budget. To a great extent, these recommendations became reality (Burke 1992, Dickinson 1997, Hart 1992, Milkis and Nelson 2012). And, later presidents and Congresses continued to expand the Executive Office of the President, adding new employees and units such as the National Security Council and Council of Economic Advisers (Burke 1992). The expansion of the EOP reflects a frank admission by the nation’s policymakers that the role of the president in the constitutional system has changed. As the scope, volume and complexity of government work has expanded, Congress has increasingly delegated responsibility to the executive establishment to solve national problems (Epstein and O’Halloran 1999; Huber and Shiman...
The burgeoning of the institutional presidency allows presidents to play a much greater role in policymaking than formerly, not only through increased control over budgets and legislation but also through appointments and direct presidential action such as executive orders, presidential memoranda, presidential findings, and so on (de Figueiredo and Stiglitz 2017; Fisher 2000; Howell 2003; Lewis 2008; Neustadt 1954; Weko 1995). Most germane to this paper, a well-developed literature examines how unilateral actions by the president play out in a separation of powers context (Cooper 2002; Deering and Maltzman 1999; Howell 2003; Mayer 2001). This literature argues that the president, by administratively altering a status quo policy yet keeping it within an expansive congressional gridlock region, can advance his policy interests while assuring that Congress cannot offer an effective legislative riposte. Thus the administrative presidency emerges as a powerful tool of executive policymaking (Nathan 1975; Waterman 2009, but see Chiou and Rothenberg 2017 for a partial demurral).

The extent of presidential centralized policymaking has varied from administration to administration as well as across policy areas. This is no surprise since survey research, both individual and expert, reveals significant ideological variation across the agencies in the executive establishment (see, e.g., Aberbach et al. 1981, Clinton et al 2012). Such variation implies that the choice of whether to centralize or rely on a particular agency is apt to be consequential for outcomes in a specific policy domain, and apt to differ in application across presidents of different parties (Rudalevige 2002).

Despite its important insights about presidents’ use of unilateral policymaking, this branch of the political science literature has placed little emphasis on the incentive effects in the agencies so often by-passed by the White House. In contrast, the incentive effects of centralized decision-making are a major theme in the literature on organization economics. This literature considers the issue as an incomplete contracting problem (Williamson 1975, Williamson 1985) and examines how the allocation of managerial decision rights within and
across firms can have a substantial effect on organizational performance (Grossman and Hart 1986; Baker, Gibbons, and Murphy 1999). Williamson extends the incomplete contracting lens to include an analysis of public and private bureaucracies (Williamson 1999).

In an important contribution, Aghion and Tirole 1997 extend these ideas. Their classic analysis of authority in organizations develops a model of formal authority (who has the right to decide) and real authority (who has effective control over decisions). A subordinate may have real authority because she maintains an information advantage over a superior, despite the superior having formal decision rights. The superior can exercise control through his decision rights, but this undercuts the initiative of the subordinate.

A small number of papers in political science pick up on these insights and incorporate agency incentives in separation of powers games between agencies and other branches. One strand argues that if courts frequently veto agency regulations, agencies will respond by reducing their policy initiative (Bueno de Mesquita and Stephenson 2007, Stephenson 2007). Another strand examines these incentives in the context of Congress-agency interactions (Gailmard and Patty 2007). This analysis shows how limited writs of statutory discretion from Congress may discourage policy-oriented bureaucrats from investing in expertise and may even induce them to leave the agency.

We extend this line of analysis to president-agency interactions. To do so, we adapt the Aghion and Tirole model to presidential-agency relations. First, we ground the model in a one dimensional policy space, so the principal has preferences over policy, as is foundational in much analytical political science. Second, following the extensive literature on mission-oriented government servants, we incorporate both "zealous" bureaucrats – individuals who care about policy and agency mission – and "slackers", those who care only about wages and not policy (Bertelli 2007; Dewatripont et al. 1999; Downs 1967; Gailmard and Patty 2007; Perry and Wise 1990). Third, we allow bureaucratic agents to quit their job due to policy differences with the political principal (Bertelli and Lewis 2013; Hirschman 1970; Lee and Whitford 2008). Fourth, we extend the analysis to two periods so first period bureaucrats
make decisions in the shadow of the future. Then, the first period decisions of the principal and agent affect organizational performance in the second period. With this apparatus, we study the effects of centralized policymaking on 1) policy-induced departures of personnel in public agencies, "quitting in protest," and 2) policy initiative in the agencies.

III. The Model

A. Set-Up

A policy is a unilateral action undertaken by the President’s administration, implemented directly by the Bureaucrat’s agency at the direction of the President, for example in response to an executive order, presidential memorandum, or presidential directive to the agency. We employ the standard formalization in which a policy, \(x \), is a point on a closed and bounded subset of the real line \(X = [-z, z] \). A distinguished policy is the status quo \(q = 0 \). The President is either \(L \) or \(R \) with policy utility \(\psi^i(x; p) \) defined over \(X \) with ideal policy \(p = \ell < 0 \) if \(i = L \) and \(p = r > 0 \) if \(i = R \). Bureaucrats are either slackers or zealots; the former cares only about wage utility while the latter also derives utility from policy, especially the implementation of an attractive policy. A zealous Bureaucrat \(B \) has policy utility \(\psi^B(x; b) \) and ideal policy \(b > 0 \). (There is a mirror set of bureaucrats with ideal policies less than zero; the results below extend straightforwardly to the mirror cases.) We employ subscripts to denote time periods, either 1 or 2. As in Aghion and Tirole 1997, the probability of successfully creating a policy innovation in Period \(t \) is \(e^i_t \in [0, 1] \) for the President and \(e^B_t \in [0, 1] \) for the Bureaucrat. In other words, the two actors must employ costly effort to uncover, search, innovate, and craft policies. In the event of a successful effort, an actor (in essence) is able to distinguish the elements of the policy space and propose any one of them. If policy search fails, the actor cannot distinguish the elements of the policy space other than \(q \). Only the President can approve a policy, so the President has both formal and real authority (Aghion and Tirole 1997, Baker, Gibbons, and Murphy 1999).

The model has two periods; each period has seven stages. We assume an incumbent
zealous Bureaucrat at the start of Period 1. In Period 1:

1. Nature sets the status quo policy \(q = 0 \) and determines the winner of the presidential election (either \(L \) or \(R \)) using common-knowledge probability \(\pi \).

2. The incumbent Bureaucrat \(B \) (a "zealot" in Period 1) and the elected President simultaneously choose policymaking efforts \(e_B^1 \) and \(e_i^1 \) \((i = (L, R)) \) searching for a policy initiative that the Bureaucrat can implement at the President’s order via unilateral executive action.

3. The policy searches of the Bureaucrat and the President succeed with probabilities \(e_B^1 \) and \(e_i^1 \) respectively.

4. \(B \) offers the President a policy recommendation \(x_B^1 \in X = [-z, z] \). If the Bureaucrat’s policy search succeeded in Stage 3, \(B \)'s recommendation reveals \(\psi^i(x_B^1) \) to the President via hard information. If the Bureaucrat was not informed in Stage 3, the Bureaucrat does not know the policy value of any policy (other than \(q \)) and hence the policy recommendation reveals nothing to the President about the policy value of the recommended policy.

5. The President chooses the final policy \(x_F^1 \in X \).

6. After the President’s policy choice, \(B \) may either stay in the public service \((g_1 = 0) \) or depart (go) for the private sector, quitting in protest \((g_1 = 1) \). If \(B \) quits, she is replaced by another bureaucrat (a "slacker") and \(x_F^1 \) is nonetheless implemented.\(^8\)

7. Players receive per-period payoffs.

Stages 1-7 repeat in Period 2 with either the same incumbent zealous bureaucrat if she stayed in Period 1 or her slacker replacement if she exited.
B. Preferences and the Four Regions

In the model Presidents and zealous bureaucrats care about policy. We employ the following single-peaked per-period policy evaluation function for the President and Bureaucrat:

\[
\psi^i(x, p) = |p - q| - |p - x|
\]
\[
\psi^B(x, b) = |b - q| - |b - x|
\]

where \(i = (L, R) \) and \(p = \ell < 0 \) if \(i = L \) and \(p = r > 0 \) if \(i = R \). These "tent" utility functions are normalized so that the utility value of the status quo \(q = 0 \) is zero for all players, that is \(\psi^i(q) = \psi^B(q) = 0 \) (see Matthews 1989). Because these von Neumann-Morgenstern utility functions are simply an affine transformation of the more familiar zero-ideal point normalized utility functions, they are fully equivalent to them. However, the zero-status quo normalization affords very substantial savings in algebraic complexity in this setting.

Figure 1 illustrates the policy evaluation functions. In the figure, each curve is a policy evaluation function \(\psi^i(\cdot) \) for a specific actor (the figure includes 6 such curves). The two solid curves indicate the policy evaluation function of an illustrative \(L-\)President and an illustrative \(R-\)President. The dashed lines indicate policy evaluation functions for four different bureaucrats. As shown, each actor has a most-preferred policy, the argmax of \(\psi^i(x) \). The most-preferred policy for an \(L-\)President is \(\ell \) and that for an \(R-\)President is \(r \) (both points are indicted in the figure), while that for a Bureaucrat is denoted \(b \) (not shown in the figure). Each evaluation function is scaled so that the utility value of the status quo – the origin in the figure – is zero. Each actor also evaluates a policy \(t^i \) as equivalent to the status quo. For an \(L-\)President, \(t^L = 2\ell \), for an \(R-\)President \(t^R = 2r \), and for a bureaucrat \(t^B = 2b \).

A President (weakly) prefers policies in the interval defined by \(q \) and \(t^i \) to \(q \) (\(i = R, L \) as appropriate) and a Bureaucrat (weakly) prefers policies in the interval defined by \(q \) and \(t^B \) to \(q \). Thus, there are a range of policies an \(R-\)President and an \(R-\)side Bureaucrat both agree are preferable to the status quo, but there are no policies an \(L-\)President and an \(R-\)side
Figure 1: Policy Utility for President and Bureaucrat. Utility for the President (L and R) is shown with solid lines, that of Bureaucrats with dashed lines. The ideal point of L is ℓ and that of R is r. The four regions of R-side bureaucrats are labeled. In addition, utility functions for bureaucrats in each region are shown.
Bureaucrat agree are preferable to the status quo.

It proves very convenient to define four regions in the policy space, defined by the relative placements of the ideal policies of the R–President and the Bureaucrat. The four regions, which are labeled in Figure 2, are:

- **Region 1:** $0 < b < r/2$. "Very moderate bureaucrats." In this region, implementation of an R–President’s ideal policy r is worse for B than retention of the status quo $q = 0$. However, implementation of B’s ideal policy is better for an R–President than the status quo.

- **Region 2:** $r/2 \leq b \leq r$. "Somewhat moderate bureaucrats." In this region, for both actors implementation of the other actor’s ideal policy is better than retention of the status quo. However, B is somewhat more moderate than the R–President.

- **Region 3:** $r < b < 2r$. "Somewhat extreme bureaucrats." In this region, for both actors implementation of the other actor’s ideal policy is better than the status quo. However, B is somewhat more extreme than R.

- **Region 4:** $b \geq 2r$. "Very extreme bureaucrats". In this region, implementation of B’s ideal policy is worse for the R–President than retention of the status quo. However, implementation of R’s ideal policy is better for B than the status quo.

Also important is the hostile president configuration, in which b for Bureaucrats in all four regions. Figure 1 displays a policy evaluation function for a Bureaucrat in each of the four regions (that is, the Bureaucrat’s ideal policy lies within the indicated interval). For instance, the dashed line whose peak is closest to the origin displays the policy evaluation function of a Region 1 Bureaucrat.

The Bureaucrat’s utility depends not just on the policy evaluation function $\psi^B(x, b)$ but also on wages w, whether the Bureaucrat is a slacker ($\theta = 0$) or a zealot ($\theta = 1$), whether she has quit her policymaking job, and how hard she works if she remains in the public sector.
Specifically

\[u^B(x, e^B, b, w, \theta) = \begin{cases}
\theta \psi^B(x, b) + w^{in} - c(e^B_i) & \text{if employed in the public sector} \\
\gamma \theta \psi^B(x, b) + w^{out} & \text{if employed in the private sector}
\end{cases} \]

The parameter \(\gamma, 0 \leq \gamma < 1 \), captures the "clean hands" phenomenon in which a zealous bureaucrat is less sensitive to the impact of policies if she is not implicated in their administration. The function \(c(\cdot) \) captures the cost of expending effort searching for policies.

For simplicity and tractability we adopt several assumptions. First we assume \(\gamma = 0 \), so zealots who have exited have entirely clean hands. This allows us to focus neatly on the key points about career decisions. Second, as in Gailmard and Patty 2007, we assume slackers care only about their wages and are completely unmoved by the content of the policies they implement. Third, we assume \(w^{in} = w^{out} \), so that wages in the public sector are equivalent to wages in the private sector. Moe 2013 emphasizes that \(w^{in} \geq w^{out} \) is an important constraint in models with slackers and zealots because if \(w^{in} < w^{out} \) slackers will abandon the public sector, effectively shutting down the government. In a model without specialized human capital, one would expect labor markets to equilibrate to \(w^{in} = w^{out} \). In fact the empirical literature offers no consensus on whether a wage differential prevails between the public and private sectors (see Bradley 2012 and U.S. Government Accountability Office 2012) so the assumption is defensible on empirical as well as theoretical grounds. Given the assumption \(w^{in} = w^{out} \), we normalize both to 0 (so \(w^{in} = w^{out} = 0 \)) to focus on policy-induced quitting.

We return briefly to the subject of wages in Section VI. Fourth, we assume \(c(e^B_i) = (e^B_i)^2 \). Finally, we assume bureaucrats are forward-looking and make career decisions in the shadow of the future while the incumbent president perceives "the future is now," that is, focuses only on payoffs in the current period. Both positions find support in empirical studies.
IV. Policy Centralization and Agency Response

We begin by examining a natural baseline, the absence of centralization, a scenario that corresponds roughly to the pre-WWII, pre-Brownlow Committee presidency. We then turn to the centralization game. We focus throughout on administrative policymaking with a President who is unconstrained by Congress, e.g., a unified party President. (We briefly discuss the implications of constraints on sustainable unilateral actions in Section VI.) Our discussion focuses primarily on action in Period 1 when the shadow of the future affects the stay/go decision of the Bureaucrat. To appreciate the impact of the shadow of the future, however, one needs an understanding of play in Period 2.

A. Baseline: No Presidential Centralization

Consider the game when only the Bureaucrat can undertake a policy innovation. It will be seen that this game is a variant of a Romer-Rosenthal game since, conditional on successful policy search by the Bureaucrat, she will be able to make a take-it-or-leave-it offer to a President who can only accept or decline (Romer and Rosenthal 1978). However, the costly, probabilistic search effort by the Bureaucrat alters the standard analysis somewhat, as detailed in Appendix A. The following points stand out.

- The bureaucrat will never quit, since the president cannot impose loses on her. Therefore, each period is stand-alone.
- Given an L–President, the Bureaucrat does not work at all (since the president would never accept a policy the Bureaucrat prefers to the status quo).
- Given an R–President, the Bureaucrat’s work effort increases monotonically from Region 1 to Region 3, plateauing at a relatively high level in Region 4.

In Section V we examine the implications for the President’s expected utility from the Bureaucrat’s work performance.
B. Presidential Centralization: Summary of Play in Period 2

We now take up the game with presidential policy centralization. Appendix B provides a formal analysis of play in Period 2. Summarizing, in Period 2 the President always imposes his most-preferred policy if he is informed. If an \(R \)-President is uninformed he is willing to accept \(B \)'s most-preferred policy as a take-it-or-leave-it offer if \(B \)'s ideal point lies in Regions 1-3, while an uninformed \(R \)-President will not accept a Region 4 \(B \)'s most-preferred policy. However, an uninformed \(R \)-President will accept the compromise policy most-preferred by a Region 4 \(B \), a policy affording \(R \) a utility equivalent to the status quo \((x_B^R = 2r) \). An \(L \)-President is unwilling to accept any policy \(B \) prefers to the status quo.

These basic facts about policy choice have strong implications for \(B \)'s career decisions in Period 2 as well as both parties' work efforts. In particular, the Bureaucrat's stay/go decision is simple: the Bureaucrat stays if the President’s policy choice is as good or better than the status quo; otherwise, \(B \) departs in order to mitigate the sting of complicity in a bad policy. As a result, when the President’s policymaking effort fails, \(B \) stays in public service, since either \(q \) prevails or (even better under an \(R \)-President) an informed \(B \) gets to shape the policy in a favorable way. However, if \(B \) faces an \(L \)-President and the President succeeds in his policy search, \(L \) imposes \(x^F = \ell \) and \(B \) exits. In addition, when an \(R \)-President is in power, a very moderate \(B \) (a \(B \) in Region 1) exits if \(R \)'s policymaking succeeds, since the President’s ideal policy \(r \) is worse for \(B \) than the status quo. More extreme \(B \)'s (those in Regions 2-4) stay even when the \(R \) president succeeds, because they prefer the President’s policy over the status quo.

The work effort chosen by the Bureaucrat anticipates her subsequent stay/go decisions. In addition, the work efforts of both players reflect the strategic interaction of their joint policymaking. Critically, the work efforts for an \(R \)-President and \(B \) are strategic substitutes in the sense of Bulow, Geanakoplos, and Klemperer 1985: additional effort from one party reduces the marginal return on effort exerted by the other party. (We explore the implications when discussing work effort in Period 1). The interaction of an \(L \)-President and \(B \) is even
more stark: because L will not accept any policy preferred by B over the status quo, B undertakes no work effort. Hence, an L–President has to "go it alone."

C. Career Choice in Period 1: The Stay/Go Decision

To make her career decision in Period 1, the Bureaucrat compares two alternatives: on the one hand, the payoff from remaining in government service in Period 1 plus the continuation value $V(0)$ of the game in Period 2 given a stay decision in Period 1 ($g_1 = 0$); on the other hand, the payoff from leaving government service in Period 1 plus the continuation value $V(1)$ of the game in Period 2 given an exit from government service in Period 1 ($g_1 = 1$). For bureaucrats in all regions, the continuation value $V(1)$ from departing in Period 1 is 0. This reflects the clean hands effect on the value of future policy plus the fact that B will not undertake costly policymaking initiative in the future if she is no longer employed in the government.

Formally, the Bureaucrat departs if and only if:

$$\psi^B(x_1^F; g = 0) + V(0) < \psi^B(x_1^F; g = 1) + V(1) = 0$$

implying "depart" if and only if

$$-\psi^B(x_1^F; g = 0) > V(0)$$

In words, the Bureaucrat departs if the loss from implementing the selected policy is greater than the continuation value of the game.

Figure 2 illustrates the stay/go calculation (discussed momentarily). In the panels, the dark line displays the continuation value $V(0)$ to a zealous B from staying in Period 1 (see Table 1 in Appendix B). The four regions are distinctly visible in the figure. An important fact to note is that B’s continuation value from staying is positive regardless of region (this
is easily seen in the figure). The reason for this is simple: the continuation value reflects optimal effort and optimal quitting in Period 2. In Period 2, \(B \) can always guarantee herself utility of zero by not working and quitting so that in expectation any other optimal course of action must yield utility greater than or equal to zero.

The fact that the continuation value of staying in government service \(V(0) \) is positive has important implications for \(B \)'s career decisions. First, if the President is unsuccessful in his policy search, \(B \) remains in government whether the President is an \(R \)-President or an \(L \)-President. Second, if the President is successful in his policy search the Bureaucrat may still stay in government if the imposed policy isn’t too bad and the continuation value of the game is sufficiently attractive. More precisely, the only situation leading to a quit decision in Period 1 requires \(\psi^B(x^F) \) to be negative, that is, the Period 1 policy must be worse for \(B \) than the status quo. This situation can arise in only two circumstances: 1) when a successful \(L \)-President imposes the policy \(\ell \) on a relatively moderate \(B \), or 2) when a successful \(R \)-President imposes the policy \(r \) on a very moderate \(B \) (\(b \) lies within Region 1). In that configuration, \(R \)'s policy choice \(x^F = r \) yields \(B \) utility \(2b - r < 0 \) (by construction). These situations give rise to two distinct career dynamics, "wait them out" and "I can make a difference."

Wait Them Out (WTO).—If an incumbent \(L \)-President’s policy search succeeds he sets \(x^F = \ell \). This unattractive policy imposes an immediate loss of \(-\ell \) on \(B \). \(B \) can mitigate this loss by quitting and retaining clean hands. Nonetheless, \(B \) may choose to remain in government and suffer the loss if the continuation value of staying \(V(0) > -\ell \) (from Equation 1). In words, \(B \) will *wait them out* if the prospect of participating in attractive policymaking in a future \(R \)-President’s administration is large enough to offset the immediate loss from the incumbent \(L \)-President’s policy.

The left-hand panel in Figure 2 illustrates the calculation of \(B \) in the face of a successful \(L \)-President. The dark line in the figure is the continuation value of staying \(V(0) \); the gray line is the immediate loss \(-\ell \) from \(L \)'s imposed policy \(x^F = \ell \). In the example in the figure,
Figure 2: The Stay/Go Calculation in Period 1. The dark line is the continuation value of the game if the Bureaucrat stays, $V(0)$. The gray line is the immediate loss from staying given a presidentially imposed policy. B stays if the former is greater than the latter. The left-hand panel shows the "wait them out" calculation. The right-hand panel shows the "I can make a difference" calculation.

all Region 1 and 2 bureaucrats exit, as do many Region 3 bureaucrats. However, a portion of Region 3 bureaucrats and all Region 4 bureaucrats remain. These bureaucrats decide to wait out the opposition President and remain in government service despite the unattractive policy imposed on them. They do so in the hope of serving under an R—President next period.

From inspection of $V(0)$ (see Table 1 and Equation 1) the comparison of present losses and future gains is more likely to result in waiting-them-out when 1) an R—President is more likely to be elected (π is higher) and 2) the incumbent L—President is less extreme ($|\ell|$ is smaller). Both results are intuitive.

I Can Make a Difference (IMD).—If an incumbent R—President’s policy search succeeds, he sets $x_1^F = r$, an attractive policy for Bureaucrats whose ideal policy falls in Regions 2-4. Consequently they remain in government in Period 1. But Bureaucrats in Region 1 face an immediate loss from R’s policy choice, of size $2b - r$. Nevertheless, they may stay in government in order to have a chance to set policy themselves in Period 2 under an unsuccessful R. In other words, they reason *I can make a difference* in the future (note that this cannot occur is an L—president succeeds to the office in Period 2). This
calculation requires the continuation value of remaining $V(0) > r - 2b$ (using Equation 1). The comparison of $V(0)$ and $r - 2b$ is shown in the left-hand panel of Figure 2. Remark 12 in Appendix C shows that a small group of Region 1 Bureaucrats near the boundary of the region (that is, near $\frac{r}{2}$) will not quit. Remark 13 in Appendix C shows that this small group of Region 1 stayers is somewhat larger when 1) an R–President is more likely to be elected president in the future (because then R’s search may fail and B can achieve her most-preferred policy), 2) when b is closer to the boundary $r/2$, and 3) when the incumbent R-President is less extreme, so the policy r is less painful for B.

Three broad theme’s stand out about career choice in Period 1. First, not surprisingly but importantly, policy extremity by an opposing incumbent president impels exits by zealous bureaucrats, at least if the President is successful in his policy search. Second, and also not surprisingly, good election prospects for the same side President encourage policy-sensitive bureaucrats to remain in government. And, this is true regardless of which president is incumbent. Third, almost all Region 1 zealous bureaucrats exit if the President is successful regardless of the president’s party.\(^{10}\)

Together, these results imply that if presidents are ideologically extreme relative to many bureaucrats, the bureaucrats’ tenure in government may well be short, especially if presidents exert much centralized policy effort.

D. Presidential Effort and Bureaucratic Initiative

Figure 3 displays the reaction functions in effort of an R–President and the Bureaucrat in Period 1 (see Equations C1-C3 in Appendix C). These functions show how each actor’s choice of policy effort responds to that of the other actor. The critical feature of the efforts exerted by the Bureaucrat and the R–President is that they are strategic substitutes: an increase in the policymaking effort of one party reduces the marginal return on effort for the other party and thus creates an incentive to reduce its effort. Consequently, the reaction functions in Regions 1, 2, and 3 are negatively sloped (panels 1 and 2 of Figure 3). In Region
Figure 3: Reaction Functions in Period 1. In each panel, the reaction function of the President is shown as a dashed line while that of the Bureaucrat is a solid line. In all three panels $r = \frac{3}{4}$. In the left Panel, $b = \frac{1}{4}$; in the middle panel $b = 1$; in the right pane $b \geq \frac{3}{2}$.

4, however, the President is insensitive to the effort of the Bureaucrat. In this configuration, if B’s search is successful, she proposes a policy that is utility-equivalent to the status quo for the President. Accordingly, from the President’s perspective the Bureaucrat’s effort is no substitute for his own. However, the converse is not true for a Region 4 Bureaucrat, since effort by the President can bring a better policy for the Bureaucrat. Consequently, in Panel 3 of Figure 3 B’s reaction function continues to be downward sloping but the R–president’s is constant, insensitive to B’s effort.

An L–President faces a very different strategic situation. There is no policy the Bureaucrat prefers to the status quo that an L–President does as well. Therefore, L would reject all the policies the Bureaucrat would like to recommend. Given this fact the Bureaucrat exerts no policymaking initiative at all. Consequently an L–President facing an R–side Bureaucrat must go it alone.

The intersection of the two reaction functions yields the equilibrium effort levels (e^{R*}, e^{B*}) (see Equation C4 in Appendix C). Figure 4 displays the equilibrium policymaking efforts exerted by an R–President and by a zealous Bureaucrat separately and jointly, as a function of the location of B’s ideal point b. As shown in the left-hand panel of the figure, policymaking effort by the Bureaucrat increases as her most-preferred policy b is increasingly distant from the status quo $q = 0$, at least in Regimes 1-3. In Regime 4, however, the Bureaucrat is constrained to recommend the same policy while the policymaking effort of the President
Figure 4: Policy Making Effort in Period 1. The left-hand panel shows equilibrium levels of effort in Period 1 exerted by the President and Bureaucrats in the 4 regions (the President’s effort is the dashed line while the Bureaucrat’s is the solid line). The right-hand panel shows the sum of the two efforts. In the figure $r = \frac{3}{4}$.

is a constant; hence, all Regime 4 bureaucrats undertake the same high level of effort. An R-President works harder than B when the R–President is more extreme than B, while B works harder than an R-President when B is more extreme than R. An R–President works hardest when the Bureaucrat’s effort is low (that is, when $b = 0$) or when a successful effort by B yields a policy recommendation utility equivalent to the status quo (Region 4). In these two situations, an R-President effectively goes it alone and exerts effort $e^{R*} = \frac{r}{2}$.\(^{11}\) If the President were unable to exert centralized policymaking effort, zealous bureaucrats in Regions 1-3 would exert effort $e^{B*} = \frac{b}{2}$ while those in Region 4 would exert effort $e^{B*} = r$.\(^{12}\) These "go it alone" efforts for B exceed the strategic, jointly determined efforts for B shown in the figure. In this sense, policymaking effort by the President undercuts bureaucratic initiative.

The right-hand panel in Figure 4 displays total policymaking effort ($e^{R*} + e^{B*}$) given an R-President and zealous Bureaucrat. Total policymaking effort is greatest when the R president faces a Regime 4 Bureaucrat, for both work hard to change the distant status quo. Total policymaking effort is lowest when the Bureaucrat favors the status quo ($b = 0$). In this case, only the President exerts effort. This situation would be compatible with the common observation of unmotivated or "lazy" bureaucrats who force the president to
compensate for their inaction. In this situation, though, even zealots would exert little policy initiative, because they favor current policy. Though the efforts of the two actors are strategic substitutes, total policymaking effort is nonetheless higher when both work than when one actor "goes it alone." Of course, under an L-President, the Bureaucrat exerts no effort and the effort exerted by L is a constant, the go-it-alone level $\frac{d}{2}$.

With an R–President, the probability of a policy departure from the status quo is $1 - (1 - e^{R_s})(1 - e^{B_s})$ (the probability at least one of the two actors is successful in innovating policy). This quantity closely tracks total policymaking effort.

E. The Policy Consequences of Quitting in Protest

From the President’s perspective, the immediate consequence of bureaucrats who quit in protest is negligible. After all, the President has identified the policy he wants and ordered it (otherwise, the Bureaucrat will not quit), and slacker agents in the agency are willing to implement it. The result is a policy the President likes and that he or his party can take to the electorate. The real consequences fall on the President’s successor. Two cases are important: 1) when an R–President follows a successful R–President predecessor, and 2) when an R–President follows a successful L–President predecessor. To make matters concrete, the first scenario corresponds to (say) George H.W. Bush succeeding Ronald Reagan or, counter-factually, Hillary Clinton succeeding Barack Obama. The second scenario corresponds to a Democrat succeeding Donald Trump: recalling the vignettes about the State Department and EPA at the beginning of the paper, what are the future policy consequences for a Democratic successor? The model affords a structured analysis.

An R–President Following a Successful R Predecessor.—Suppose an R–President is elected in Period 1. At the beginning of Period 1, expected policy in that period is $E(x^F_1) = e^i r + (1 - e^i) e^{R_s} x^B_1$, where x^B_1 is the policy recommendation of the Bureaucrat. This expected policy is shown in the upper left-hand panel of Figure 5 as a function of the location of B’s ideal policy. Not surprisingly, ex ante expected policy in Period 1 tracks total poli-
Figure 5: The Effect of Policy-Induced Departures on Expected Policy. The two left-hand panels show expected policy at the beginning of Period 1. If the President’s policy search succeeds, the calculations shown in Figure 2 ensue and many moderate zealots depart. Expected policy in Period 2, given a successful Period 1 president, are shown in the two right-hand panels. Given an R president in Period 1, the policy consequences in Period 2 are very modest. But they are dramatic given a Period 1 L president.
cymaking effort. Recall from the earlier results that a Region 1 Bureaucrat exerts modest policy initiative, since he does not find the status quo particularly onerous. Hence, expected changes in policy in that region largely reflect Presidential policymaking efforts, which are considerable.

But, the incumbent \(R \)–President’s Period 1 policy search is either successful or not. If unsuccessful, \(B \) does not exit regardless of the location of her ideal policy. However, if the incumbent \(R \)–President is successful, he orders \(B \) to implement the President’s most-preferred policy, \(r \). If \(B \)’s ideal policy lies in Regions 2-4, she perceives this change as an improvement over the status quo. Hence, \(B \) will not exit. Because she doesn’t exit, expected policy in Period 2 remains the same as the ex ante expected policy in Period 1 (the upper left-hand panel in Figure 5). But if the zealous Period 1 \(B \)’s ideal policy lies in Region 1, she will exit unless her ideal policy is very close to \(r/2 \) (this calculation was shown in the right-hand panel of Figure 2).

What then are the implications for policymaking in Period 2 if a Period 1 \(R \)–President’s policy search succeeds? The results are shown in the upper right-hand panel of Figure 5, which displays expected policy in Period 2 as a function of the location of \(b \). Even if \(b \) lies in Region 1, the impact of a policy-induced departure is small. Of course, the Period 2 president must work harder than he would have if the zealous Region 1 \(B \) had remained in government. But since the president would have worked hard in any event, while \(B \) would not have displayed much initiative, the impact of \(B \)’s departure is modest in terms of expected policy.

An \(R \)–President Following a Successful \(L \) Predecessor.—The situation is quite different when an \(R \)–President follows a successful \(L \)–President. Suppose \(L \) is elected in Period 1. Because \(B \) will not assist \(L \) (who would not take \(B \)’s advice in any case), expected policy reflects only \(L \)’s go-it-alone efforts. The resulting expected policy is shown in the lower left-hand panel of Figure 5. Again, though, the incumbent \(L \)–President’s Period 1 policy search is either successful or unsuccessful. If unsuccessful, \(B \) will not exit. In this
case, expected policy in Period 2 is the same as that shown in the upper left-hand panel of Figure 5. On the other hand, if the Period 1 L–President’s search is successful, he orders B to implement L’s most-preferred policy, ℓ. As discussed earlier, only if B’s ideal point is rather extreme will she be willing to remain in government, hoping to "wait them out" (recall the left-hand panel in Figure 2).

The departure of moderate zealous agents then has real impact in Period 2, at least for an R–President. The results are shown in the lower right-hand panel of Figure 5, which displays expected policy in Period 2 as a function of the location of b. In the example in the figure, B will depart if her ideal policy lies in Region 1, Region 2, and the more moderate part of Region 3. Accordingly, expected policy reflects only the Period 2 president’s go-it-alone effort. In the example, only if B’s ideal policy was rather extreme (in the less moderate part of Region 3 or in Region 4) does she stay and work in Period 2. Not surprisingly, expected policy in Period 2 is quite different from what it would have been absent the departure (compare the lower right-hand panel and the upper left-hand panel in Figure 5). The new R–President is quite handicapped by the L–President’s legacy of policy-induced departures.

These results suggest that even future-oriented presidents would have little incentive to forbear from centralization, because the resulting loss of bureaucratic initiative will fall mainly on opposition-party presidents, not same-party presidents.

V. The President’s Incentive to Centralize policymaking

In Terry Moe’s famous analysis of presidential incentives to centralize executive branch policymaking, he argued that those incentives are almost completely unproblematic for a president: "Because the president can count on unequaled responsiveness from his own people, increases in White House organizational competence – for example, through greater size, division of labor, specialization, hierarchic coordination, formal linkages with outside organizations and constituencies – appear to him to have direct, undiluted payoffs for the pursuit of presidential interests" (Moe 1985:244). Does this evaluation change when we explicitly
Figure 6: Centralization and the Expected Utility of the President. The left-hand panel displays the expected utility of a period of play for the President absent centralization (gray line) and with centralization (darker line). Centralization is always weakly better. The right-hand panel displays the expected utility differential for the President across the two regimes. The analysis assumes a zealous Bureaucrat.

account for the perverse effects of centralization on bureaucratic initiative and retention? Furthermore, under what circumstances are presidential incentives to centralize policymaking most powerful? Our simple model provides an avenue to address these questions.

In the no-centralization regime, the President’s expected utility is simply $\psi_i(q)(1 - e^{B^*}) + \psi_i(x^{B*})e^{B^*}$ (see Equation A4 in Appendix A). In words, the President’s expected utility at the start of a period play reflects the Bureaucrat’s optimal effort allocation and policy recommendation contingent on success, for any location of the Bureaucrat relative to the President (the President cannot undertake independent policy innovation in this regime). The gray line in the left-hand panel of Figure 6 displays the expected utility of an $R-$President in the no-centralization regime as the ideal point of the Bureaucrat, b, varies. As shown, the expected utility of the President is zero (the utility afforded by the status quo) when facing an $L-$side Bureaucrat or a Region 4 Bureaucrat. Expected utility rises as the Bureaucrat’s ideal point approaches that of the President (r in the figure), reaching a maximum when the two ideal points coincide.

The expected utility of the President under centralization is somewhat more complicated because it now reflects the effort and policy choices of both players, to wit, for an $R-$President $\psi^R_i(r)(e^{R^*}) + \psi^i(x^{B*})(1 - e^{R^*})e^{B^*} - (e^{R^*})^2$ (see Equation C5 in Appendix...
C). The dark line in the left-hand panel of Figure 6 displays the expected utility of an
R-President in the centralization regime as the ideal point of the Bureaucrat, b, varies. The
right-hand panel in the figure displays the utility differential between the two regimes, the
critical issue.

Three points, clearly visible in the right-hand panel of Figure 6, stand out about the
relative attractiveness of centralized policymaking over no-centralization:

1. The President’s expected utility with centralized policymaking is unambiguously greater
 than without, irrespective of the relative location of the Bureaucrat;

2. The greatest gain from centralization relative to decentralization occurs when the Pres-
 ident faces a hostile Bureaucrat, that is, either an L-side Bureaucrat who wishes to
defend the status quo or a Region 4 Bureaucrat who desires rather radical changes in
 the status quo;

3. Even if the policy preferences of the President and the Bureaucrat coincide, so there is
 no policy disagreement between them, the President is still better off with a capacity
 for centralized policymaking.

The first point indicates that the President always has an incentive to centralize pol-
licymaking. Moe’s expectation goes through even when accounting for the perverse effects
of centralization on bureaucratic performance. The second point is entirely intuitive – the
biggest gains for centralization come in the face of a hostile bureaucracy. The third point
may be somewhat unexpected. It reflects the fact that, although the efforts of the President
and the Bureaucrat are strategic substitutes, overall policy effort is greatest when both work.
Or, to put it another way, even if the Bureaucrat is completely ideologically attuned to the
President, the President will not wish to free-ride completely on the Bureaucrat’s effort; the
President’s central staff will also work, bringing net policy benefits to the President.

In sum, in our simple model of presidential-agency relations, presidents continue to
have a strong incentive to centralize to policymaking, despite its adverse consequences in the
VI. Discussion: Extensions

The preceding sections lay out an explicit theory of incentives in presidential-agency interactions. Here we briefly discuss some obvious extensions or worthwhile departures.

The Impact of Other Branches.—Restrictions on presidential policymaking arise naturally in a system of separated powers. A hostile or skeptical judiciary or a Congress held by the opposition party can constrict the range of sustainable unilaterally imposed policies. For example, if presidential unilateral action is to be invulnerable to a legislative reversal, the President must locate his new policy so at least one-third of the members in a chamber will sustain a presidential veto of legislation over-turning the President’s unilateral action. In the conventional analysis, this implies that the President must locate policy within the Pareto set between the median legislator and the chamber’s veto or filibuster pivot (Howell 2003). If the President’s most-preferred policy lies within the relevant Pareto set, as would typically be the case in unified party government, then the President’s ideal policy will be legislatively sustainable. This is the scenario of the previous sections. But suppose the President’s ideal policy lies outside that Pareto set, as is common during divided party government (Cameron 2000). Then the best policy the president can sustainably achieve is the policy at the nearest edge of the Pareto set, namely, the ideal point of the relevant veto pivot. In turn, this enforced moderation has implications for bureaucrats’ stay/go decisions, for policymaking efforts by both the president and bureaucrat, and for expected policy.\(^{13}\)

Space prevents a full consideration of separation of powers effects on president-agency incentives but several deserve brief mention. It is easy to see that congressional restrictions on a \(L\)–President may benefit a right-side Bureaucrat. First, the restrictions imply that an \(L\)–President will not expend as much effort on policymaking, hence, he will succeed less frequently. This in turn implies \(B\) will not exit as frequently in Period 1 when an \(L\)–President holds power. In addition, less extreme \(B\)’s may be more willing to "wait them
out" even in the face of a successful policy search by \(L \) since that success will result in less extreme policies from \(L \). The effect of restrictions with an \(R \)-President are more complex. Given limits on sustainable policy by an \(R \)-President, very moderate \(B \)’s (those in Region 1) will find it less distasteful when \(R \)’s policy search succeeds. Hence, they will be less inclined to depart – "I can make a difference" becomes more compelling. But, extreme \(B \)’s will find this constrained policy less attractive. So, if an extreme Bureaucrat faces an \(L \)-President in Period 1 and anticipates a constrained \(R \)-President in Period 2, the reduced Period 1 continuation value may induce the Bureaucrat to exit. In other words, "waiting them out" may become insufficiently attractive to keep the Bureaucrat in government.

\textit{Bureaucratic Efficiency Wages.}—An obvious question given the crippling effects of personnel departures is: Why not pay bureaucrats enough to keep them in the government even when they must implement policies they dislike? The required wage structure would strongly resemble so-called efficiency wages, which pay more than market-clearing wages to valuable employees so that they do not quit in the face of occasional temptations to do so (Shapiro and Stiglitz 1984). In the context of our simple model, wages would overpay Region 2-4 Bureaucrats under an \(R \)-President (successful or unsuccessful) so that the bureaucrats do not quit in the face of a successful \(L \) president. And such wages would overpay Region 1 bureaucrats under an unsuccessful \(R \) president so that these bureaucrats do not quit in the face of a successful \(R \) president.

Though conceptually simple, bureaucratic efficiency wages are deeply problematic politically. First, tying wages to the political orientation of bureaucrats or their agencies is anathema to the concept of a non-partisan civil service and would likely be subject to political abuse. Second, if presidents are constrained to offer the same wages across agencies and employees, much of the extra wage bill would go to slackers who do not need efficiency wages. This would be quite costly and likely unpopular with economy-minded voters. But, the biggest sticking point is surely the following: the necessary wage structure would require \(L \) presidents to pay premium wages to \(R \)-side bureaucrats \textit{with the benefit from decreased}
exits accruing to R presidents rather than L presidents. And similarly, R presidents would need to pay premium wages to L side bureaucrats with no immediate benefit to themselves. Perhaps such a wage structure could be sustained by a relational contract between R and L presidents; but this thorny question deserves a closer and more acute analysis of the politics of bureaucratic wage setting than we can offer here. The political economy of public sector wage setting appears a worthwhile topic of research (Cameron et al 2016).

Learning-By-Doing, Investing in Human Capital, Recruiting Zealots, and Revolving Doors.—Other extensions appear promising or intriguing. First, experience with policymaking may make long-term zealots more capable than less experienced individuals. Learning-by-doing may thus lead to greater effective effort from agencies even in the face of presidential centralization, but conversely imply greater relative losses from policy-induced departures. Similarly, zealous bureaucrats may be willing to invest in valuable agency-specific human capital (similarly to Gailmard and Patty 2007). Presidential centralization may then imply the departure not only of the most motivated bureaucrats but the most skilled ones as well. On the other hand, the ability to recruit new zealots may partly offset policy-induced departures, at least over time. Finally, the market for ex-bureaucrats – the revolving door – appears quite under-studied and could interact with centralized policymaking in important ways. All these topics appear reasonably tractable as extensions to the analysis here.

VII. Conclusion

Presidential scholars have long recognized departures like those at the State Department and EPA sketched at the beginning of the paper. For instance, following President Nixon’s centralization of foreign policy and Henry Kissinger’s ascendancy as National Security Advisor in the White House, morale in the State Department plummeted and key aides including some in the NSC quit in protest (Burke 1992, 132). Similarly, in the wake of President Obama’s extensive use of White House czars, the Environmental Protection Agency found
The analysis presented here suggests that the Trump departures and other earlier incidents may not be isolated flukes but instead reflect systematic long-term changes in presidential-agency relations. Our model offers three insights about the effects of presidentially centralized policymaking on executive agencies.

First, when presidents make policy on their own using devices like executive orders or presidential memoranda, they undermine the incentives for bureaucrats to work hard, display initiative, and devise policy innovations. Some bureaucrats derive satisfaction from the opportunity to improve public policy (both relative to the status quo and their ideal policy). Without the potential to influence policy, these bureaucrats have less incentive to expend effort. In turn, their failure to expend effort influences the ability of government to find improvements to existing policies or respond to new and emerging ones, to the detriment not just of the president but the bureaucrat as well.

Second, centralized presidential policymaking can lead bureaucrats to quit in protest. When presidents make policy unilaterally, they often override advice from the agency and sometimes impose changes opposed by agency employees. As a result, bureaucrats may leave rather than be implicated in the administration of the policy. The principal exception (according to the model) is a class of very extreme zealots who will be willing to wait out presidents. These bureaucrats are willing to wait out bad times in anticipation of a president from their own party and the policies that will result from that president’s election. In addition, a relative handful of moderate bureaucrats may be willing to put up with an extreme president from their own party in the hope that they might have a moderating influence on his policies in the future.

With these exceptions, the general prediction for many ranges of bureaucratic preferences is that bureaucrats who care about policy will resign when a hostile president is elected and engages in unilateral policymaking. Regular electoral turnover over time can systematically remove from government the kinds of bureaucrats who seek out innovations.
and improve policy, except perhaps in the most extreme agencies. These departures can have adverse long term consequences for the quality of policymaking. If presidents from both parties use centralized policymaking processes, there can be a significant decline in the competence and initiative of the permanent government.

Third, the effort and career decisions of bureaucrats will be influenced by whether presidents succeed in setting policy on their own. Some presidents will try but not succeed. They will expend effort to craft an innovation yet fail to fashion an acceptable one. In addition, because the capacity of the White House staff is finite and the attention of the President limited, the White House might not even try to move unilaterally. In these cases, even hostile bureaucrats will stay on in the hope of a more receptive administration in the future. For large swaths of the government, bureaucrats may continue from administration to administration expending little effort to improve policy but not departing either. They await the opportunity to pick up the policymaking task when they serve under a president with policy views compatible with their own. In this sense, presidential failure can lead to bureaucratic success.

In sum, presidents influence policymaking in the modern administrative state by politicizing agencies via appointments, but also by bypassing standing agencies. Scholars have described how modern presidents have increasingly centralized policymaking authority in the White House and politicized the bureaucracy (Lewis 2008; Moe 1985; Rudalevige 2002; Weko 1995). There is a sizeable literature exploring how the politicization of the bureaucracy influences bureaucratic capacity (see, e.g., Derlein 1996; Gailmard and Patty 2007; Suleiman 2003). What has been missed, however, is how centralization of the policymaking process can drive zealous civil servants from agencies and undermine the long-term ability of the government to mount policy initiatives.

A Baseline: No Presidential Centralization

In this version of the game the President has no central capacity for policy formulation, so his policy effort must be $e^{i} = 0$.

The following lemma assures that, if the Bureaucrat’s attempt at policy innovation fails, the President will not choose a new policy at random. Let $F(x)$, with density $f(x)$, be the distribution of policies over the policy space. Assume $F(x)$ is uniform on $[-z, z]$. The critical feature is that draws of policies outside the interval $[q, t]$ be sufficiently probable.

Lemma 1. (No Guessing Lemma) If the Bureaucrat’s search is unsuccessful, the President chooses no policy (retains the status quo), so $x^F = q$.

Proof. For the President, choosing the status quo $q = 0$ brings policy utility of zero. Suppose an unknowledgeable president selects a policy at random, that is, implements a random draw from $F(x)$, which is uniform on $[-z, z]$, $z > 0$. For an $R-$president the expected utility of a random policy (using the Matthews normalized policy function) is:

$$
\int_{-\frac{z}{2}}^{\frac{z}{2}} \psi^R(x; r) f(x) dx = \begin{cases}
\int_{-z}^{r} \frac{x}{2z} dx + \int_{r}^{z} \frac{2x-r}{2z} dx = -\frac{(r-z)^2}{2z} & \text{if } z > r \\
\int_{-\frac{z}{2}}^{\frac{z}{2}} \frac{x}{2z} dx = 0 & \text{if } z \leq r
\end{cases}
$$

So expected utility must be less than or equal to zero and the random draw cannot be profitable. Similarly for L

$$
\int_{-\frac{z}{2}}^{\frac{z}{2}} \psi^L(x; \ell) f(x) dx = \begin{cases}
\int_{-z}^{\ell} \frac{x}{2z} dx + \int_{\ell}^{z} \frac{-x}{2z} dx = -\frac{(\ell-z)^2}{2z} & \text{if } -z < \ell \\
\int_{-\frac{z}{2}}^{\frac{z}{2}} \frac{x}{2z} dx = 0 & \text{if } \ell < -z
\end{cases}
$$

which also must be weakly negative for all $-z < \ell$. Hence the President chooses the status quo rather than a random policy. □

No Bureaucrat ever quits absent centralized policymaking. To see this, note that no Bureaucrat will propose a policy worse for itself than the status quo, which has a utility
value of 0 (the policies that a successful Bureaucrat will propose are detailed in the next Proposition). In light of the No Guessing Lemma, the President will never select a policy at random, i.e., if the Bureaucrat fails to recommend a policy. Hence, the value to the Bureaucrat of \(x^F \) cannot be lower than 0. The value of quitting is 0. Hence, staying must (weakly) dominate exiting in both rounds of play. Moreover, because no period 1 bureaucrat exits, the two rounds of play simply involve repetition of the same situation.

The following is a subgame perfect set of policy choices and recommendations in both periods; this Proposition is identical to the central result in Romer and Rosenthal 1978.

Proposition 2. *(Agency Recommendation and Presidential Policy Choice).* The President sets final policy

\[
x^F = \begin{cases}
 x^B & \text{if } B \text{ was successful and } x^B \in [\min\{q, t^i\}, \max\{q, t^i\}] \\
 q & \text{otherwise}
\end{cases}
\]

The bureaucrat’s policy recommendation in each period is

\[
x^B = \begin{cases}
 b & \text{if own search was successful, } i = R \text{ and } b < t^R \\
 t^R & \text{if own search was successful, } i = R \text{ and } b \geq t^R \\
 q & \text{if own search not successful or } i = L
\end{cases}
\]

Proof. Part 1, Presidential policy choice. If the Bureaucrat’s policy search was successful, the President is placed in the position of the receiver in a Romer-Rosenthal take-it-or-leave-it (TILI) game: he accepts any policy that is as good or better than the status quo (that is, where \(\psi^i(x^B) \geq 0 \)) and rejects all others. (Recall: if the Bureaucrat is informed, the utility value of her recommendation is verifiable for the President). The set \([\min\{q, t^i\}, \max\{q, t^i\}]\) indicates all the policies that are weakly better for the President than the status quo. From the No Guessing Lemma, if B’s search was unsuccessful the President will not choose a policy at random so the status quo \(q \) again continues. Part 2, Bureaucrat’s policy recommendation.
Given the President’s policy choice strategy in Part 1, an informed zealous Bureaucrat is able to make a recommendation as if she were the proposer in a Romer-Rosenthal TILI game. That is, an informed zealous Bureaucrat offers the policy that maximizes $\psi_B(x)$ among those policies that the President will accept, namely the set of policies $[\min\{q, t^i\}, \max\{q, t^i\}]$. The indicated offers follow immediately (see Romer and Rosenthal 1978). If Bureaucrat’s search was unsuccessful, the President will not accept any recommendation from Bureaucrat other than q so Bureaucrat may as well recommend q (no recommendation is equivalent to recommending q). Note that if P is an L-President, there is no policy other than q that Bureaucrat could knowledgeably recommend that L would accept so B might as well recommend q. If B is a slacker she does not care about policies and may as well follow the indicated strategy; of course, if the slacker undertook no effort, she can only recommends q (which is equivalent to no recommendation). □

The recommendation strategy is effectively unique in the following sense. Uninformed bureaucrats (which will include all slackers in equilibrium) could recommend a random policy knowing that their recommendation will be rejected by the President who will understand that it is a random policy; but a random recommendation is thus equivalent to recommending q.

In light of the above, the expected utility of the Bureaucrat after the election but prior to undertaking effort is:

$$ Eu_B(e^B; i, b, \theta) = \begin{cases} w^{\text{in}} + \theta e^B b - \left(e^B_2\right)^2 & \text{if } i = R \text{ and } b \text{ in Regions 1-3} \\ w^{\text{in}} + \theta e^B 2r - \left(e^B_2\right)^2 & \text{if } i = R \text{ and } b \text{ in Region 4} \\ w^{\text{in}} - \left(e^B_2\right)^2 & \text{if } i = L \end{cases} $$

Using these expected utilities one may straightforwardly derive optimal effort for B:
\(e^B(b, r, \theta)^* = \begin{cases}
\frac{b}{2} & \text{if } i = R, \theta = 1, \text{ and } b \text{ in Regions } 1, 2, \text{ or } 3 \\
{r} & \text{if } i = R, \theta = 1, \text{ and } b \text{ is in Region } 4 \\
0 & \text{if } \theta = 0 \text{ or } i = L
\end{cases} \)

Note that these values require \(0 \leq b < 2 \) and \(0 \leq r \leq 1 \) in order to restrict \(e^B \) in \([0, 1]\).

Given the Bureaucrat’s optimal effort strategy and recommendation strategy and the President’s acceptance strategy, expected policy is simply \(0(1 - e^B) + x^B e^B \), to wit:

\(Ex^F = \begin{cases}
\frac{b^2}{2} & \text{if } i = R, \theta = 1, \text{ and } b \text{ in Regions } 1-3 \\
2r^2 & \text{if } i = R, \theta = 1, \text{ and } b \text{ is in Region } 4 \\
0 & \text{if } \theta = 0 \text{ or } i = L
\end{cases} \)

Finally, the per period expected utility of the President at the beginning of a round of play is \(\psi^i(q)(1 - e^B) + \psi^i(x^B)e^{B^*} \), to wit:

\(Eu^i(e^B, x^B; i, b, \theta) = \begin{cases}
\frac{b^2}{2} & \text{if } i = R, \theta = 1, \text{ and } b \text{ in Regions } 1 \text{ or } 2 \\
\frac{r^2}{2} & \text{if } i = R, \theta = 1, \text{ and } b \text{ in Region } 3 \\
0 & \text{otherwise}
\end{cases} \)

B The Game in Period 2

The following describes the Bureaucrats stay/go strategy in Period 2.

Proposition 3. (Stay/go Period 2) The Bureaucrat’s stay/go strategy in Period 2 is:

\(g_2(x_2^F; b) = \begin{cases}
1 & \text{if } \psi^B(x_2^F; b) < 0 \\
0 & \text{otherwise}
\end{cases} \)
Proof. B’s effort costs are sunk when deciding to stay or go, hence only the policy impact of \(x^F \) matters. If B quits \((g = 1)\) her utility is 0. If she stays \((g = 0)\) she receives \(\psi^B(x^F_2) \). The comparison of these two utility values determines the strategy. ☐

The following lemma extends the No Guessing Lemma to centralized policymaking. It assures that, if policy search fails, the president will not choose a new policy at random. Let \(F(x) \), with density \(f(x) \), be the distribution of policies over the policy space. For simplicity assume \(F(x) \) is uniform.

Lemma 4. (No Guessing Lemma [centralized policymaking]) If both the Bureaucrat’s and the President’s search is unsuccessful, the President chooses no policy (so \(x^F = q \)).

Proof. For the President, choosing the status quo \(q = 0 \) brings policy utility of zero. If the policy search of both actors has failed, opting for a policy change results in the implementation of a random draw from \(F(x) \), which is uniform on \([-z, z]\). For \(R \) the expected utility of a random policy (using the Matthews normalized policy function) is: \[
\int_{-z}^{z} \psi^R(x; r) f(x) dx = \int_{-z}^{r} \frac{x}{2z} dx + \int_{r}^{z} \frac{2x - r}{2z} dx = - \frac{(r-z)^2}{2z} \]
which must be negative for all \(z > r \). For \(L \) \[
\int_{-z}^{z} \psi^L(x; \ell) f(x) dx = \int_{-z}^{\ell} \frac{x - 2\ell}{2z} dx + \int_{\ell}^{z} \frac{x}{2z} dx = - \frac{(\ell+z)^2}{2z} \]
which also must be negative for all \(-z < \ell \). Hence the President chooses the status quo rather than a random policy. ☐

The following is a subgame perfect set of policy choices and recommendations in Period 2.

Proposition 5. (Agency Recommendation and Presidential Policy Choice in Period 2). The President sets final policy

\[
x^F_2 = \begin{cases}
p & \text{if i’s search was successful}
ex^B & \text{if i’s search was unsuccessful, B’s was successful, and } x^B \in [\min\{q, t^i\}, \max\{q, t^i\}]
q & \text{otherwise}
\end{cases}
\]
The bureaucrat’s policy recommendation is

\[
 x^B_2 = \begin{cases}
 b & \text{if own search was successful, } i = R \text{ and } b < t^R \\
 t^R & \text{if own search was successful, } i = R \text{ and } b \geq t^R \\
 q & \text{if own search not successful or } i = L
 \end{cases}
\]

Proof. Part 1, Presidential choice. If the President’s search was successful, he can act as the Dictator in a Dictator game. Accordingly, he orders the implementation of his own ideal policy, \(r \) if \(i = R \) and \(\ell \) if \(i = L \). If the President’s search was unsuccessful but the Bureaucrat’s was successful, the President is in the position of the receiver in a Romer-Rosenthal take-it-or-leave-it (TILI) game: he accepts any policy that is as good or better than the status quo \((\psi^i(x^B) \geq 0) \). The set \([\min\{q, t^i\}, \max\{q, t^i\}]\) indicates all those policies. If the President’s search was unsuccessful, the Bureaucrat’s search was successful, but \(\psi^i(x^B) < 0 \) the President rejects the recommendation so that \(q \) prevails. From the No Guessing Lemma, if neither search was successful the President will not choose a policy at random so the status quo \(q \) again continues. Part 2, Bureaucrat’s policy recommendation. The Bureaucrat makes her recommendation before knowing whether the President’s search was successful. And, if the Bureaucrat is informed, her recommendation is verifiable for the President. Given these facts and the President’s policy choice strategy in the prior Proposition, an informed zealous Bureaucrat has a weakly dominant strategy to make a recommendation as if she were the proposer in a Romer-Rosenthal TILI game (the strategy is strictly dominant when \(e^R < 1 \)). That is, an informed zealous Bureaucrat offers the policy that maximizes \(\psi^B(x) \) among those policies that the President will accept if his search was unsuccessful but \(B’s \) was successful, namely the set of policies \([\min\{q, t^i\}, \max\{q, t^i\}]\). The indicated offers follow (see Romer and Rosenthal 1978). If Bureaucrat’s search was unsuccessful the President will not accept any recommendation from Bureaucrat other than \(q \) so Bureaucrat may as well recommend \(q \) (no recommendation is equivalent to recommending \(q \)). Note that if \(P \) is an \(L \)-President, there is no policy other than \(q \) that Bureaucrat could knowledgeably recommend that \(L \) would
accept so \(B \) might as well recommend \(q \). If \(B \) is a slacker she does not care about policies and may as well follow the indicated strategy; if the slacker undertakes no effort, she can only recommends \(q \) (which is equivalent to no recommendation). □

The recommendation strategy is effectively unique in the following sense. Uninformed bureaucrats (which will include all slackers in equilibrium) could recommend a random policy knowing that their recommendation will be rejected by the President who will understand that it is a random policy; but a random recommendation is thus equivalent to recommending \(q \).

The following Corollary indicates the path of play with respect to exits.

Corollary 6. (Equilibrium exits in Period 2) If \(P \)’s search is unsuccessful, \(B \) does not exit. If \(L \)’s policy search is successful, \(B \) exits. If \(R \)’s policy search is successful, Region 1 \(B \)’s exit but Region 2-4 \(B \)’s do not.

Proof. Follows from the Stay/go Proposition and the Policy Choice Proposition. That is, if \(L \)’s search succeeds, \(x^F = \ell \) and \(\psi^B(\ell) = \ell < 0 \) while exiting brings \(B \) a utility of 0; if \(R \)’s search succeeds \(x^F = r \) and \(\psi^B(r) = 2b - r < 0 \) for Regime 1 \(B \), but \(\psi^B(r) = 2b - r > 0 \) for Regime 3 \(B \) and \(\psi^B(r) = r > 0 \) for Regimes 3 and 4 \(B \). If President’s search fails then either \(B \)’s search fails and \(x^F = q \) and \(\psi^B(q) = 0 \) for all \(B \) (so don’t exit), or \(B \)’s search succeeds and \(x^F = b \) with \(\psi^B(b) = b > 0 \) for all \(B \). □

Reaction Functions in Effort in Period 2.—In light of the above results the expected utility of a zealous \(B \) after the election but prior to undertaking effort is:

\[
Eu^B_i(e^2_2; e^i_2, p, b, \theta = 1) = \begin{cases}
 e^R_2 w^\text{out} + (1 - e^R_2) (w^\text{in} + e^B_2 b) - \left(e^B_2 \right)^2 & \text{if } i = R \text{ and } b \text{ in Region 1} \\
 w^\text{in} + e^R_2 (2b - r) + (1 - e^R_2) \left(e^B_2 b \right) - \left(e^B_2 \right)^2 & \text{if } i = R \text{ and } b \text{ in Region 2} \\
 w^\text{in} + e^R_2 r + (1 - e^R_2) e^B_2 b - \left(e^B_2 \right)^2 & \text{if } i = R \text{ and } b \text{ in Region 3} \\
 w^\text{in} + e^R_2 r + (1 - e^R_2) e^B_2 r - \left(e^B_2 \right)^2 & \text{if } i = R \text{ and } b \text{ in Region 4} \\
 e^R_2 w^\text{out} + (1 - e^R_2) w^\text{in} - \left(e^B_2 \right)^2 & \text{if } i = L
\end{cases}
\]
The similar expected utility of a slacker B is:

$$Eu_2^B(e_2^B; \theta = 0) = w^{in} - (e_2^B)^2$$

The expected utility of R is:

$$Eu_2^R(e_2^R; e_2^B, r, b) = \begin{cases}
 e_2^R r + (1 - e_2^R)e_2^B b - (e_2^R)^2 & \text{if } b \text{ in Regions 1 or 2} \\
 e_2^R r + (1 - e_2^R)e_2^B(2r - b) - (e_2^R)^2 & \text{if } b \text{ in Region 3} \\
 e_2^R r - (e_2^R)^2 & \text{if } b \text{ in Region 4}
\end{cases}$$

The expected utility of L is

$$Eu_2^L(e_2^L; \ell) = e_2^L|\ell| - (e_2^L)^2$$

Using these expected utilities one may straightforwardly derive reaction functions in effort for the actors. These are:

(B2) \hspace{1cm} e_2^B(e_2^R; b, r) = \begin{cases}
 \frac{(1-e_2^R)b}{2} & \text{if } i = R, \theta = 1, \text{ and Regions 1, 2, or 3} \ B \\
 (1-e_2^R)r & \text{if } i = R, \theta = 1, \text{ and Region 4} \ B \\
 0 & \text{otherwise}
\end{cases}$$

(B3) \hspace{1cm} e_2^R(e_2^B; r, b) = \begin{cases}
 \frac{r-e_2^Bb}{2} & \text{if } \theta = 1 \text{ and } b \text{ in Regions 1 and 2} \\
 \frac{r-e_2^B(2r-b)}{2} & \text{if } \theta = 1 \text{ and } b \text{ in Region 3} \ B \\
 \frac{r}{2} & \text{if } \theta = 0 \text{ or } \theta = 1 \text{ and } b \text{ in Region 4} \ B
\end{cases}$$

(B4) \hspace{1cm} e_2^L(\ell) = \frac{|\ell|}{2}
The reaction functions \(e_2^B(e_i^B) \) and \(e_2^B(e_i^B) \) (Equations B2, B3, and B4) may be solved simultaneously to derive the equilibrium policymaking efforts:

\[
(e_i^B, e_2^B) = \begin{cases}
\left(\frac{2r-i^2}{4-b^2}, \frac{b(2-r)}{4-b^2} \right) & \text{if } i = R, \theta = 1, \text{ and } b \text{ in Regions } 1 \text{ and } 2 \\
\left(\frac{2r+b^2-2br}{4+b^2-2br}, \frac{b(2-r)}{4+b^2-2br} \right) & \text{if } i = R, \theta = 1, \text{ and } b \text{ in Region } 3 \\
\left(\frac{r}{2}, \frac{r(2-r)}{2} \right) & \text{if } i = R, \theta = 1, \text{ and } b \text{ in Region } 4 \\
\left(\frac{b}{2}, 0 \right) & \text{otherwise } (i = L \text{ and/or } \theta = 0)
\end{cases}
\]

Note that these values require \(0 \leq b < 2 \) and \(0 \leq r \leq 1 \). The former is the duopoly stability condition (see e.g., Dixit 1986). The latter is necessary to restrict \(e_2^B \) in \([0, 1]\).

\[\text{C The Game in Period 1}\]

We first consider \(B \)'s expected utility conditional on the outcome of the Period 2 election and the expenditure of efforts \((e_i^B, e_2^B)\). Call this expected utility \(Eu_2^B|R \). First, if \(L \) is elected \(Eu_2^B|L = 0 \) since \(B \) will quit if \(L \)'s search succeeds and only \(q \) can prevail if \(L \)'s search fails (since \(B \) will not have expended policymaking effort, reflecting the fact that \(L \) will not accept any policy \(B \) prefers to \(q \)). Second, if \(B \) is a slacker then her expected utility is also 0 since she receives no utility for policy and will not exert policy initiative. Third, if \(R \) is elected and \(B \) is a zealot, then \(B \)'s expected utility varies by region as shown in Equation B1. Substituting Period 2 equilibrium efforts (Equation B5) in the appropriate portions of Equation B1 yields a zealous \(B \)'s expected utility conditional on the election of \(R \).

Via algebra \(Eu_2^B|R \) are: Region 1: \(\frac{b^2(2-r)^2}{(4-b^2)^2} \); Region 2: \(\frac{2b^5-br^4-4b^3(2+r)+b^2(4+3r^2)+16br-8r^2}{(4-b^2)^2} \); Region 3: \(\frac{b^4r-4b^3r^2+b^2(4+3r^2+4r^3)-4br^2-4br^2(2+r)+8r^2}{(4+b^2-2br)^2} \); and Region 4: \(\frac{r^2(6-4r+r^2)}{4} \).

We now consider the continuation value to \(B \) at the end of Period 1. The continuation value of the game to \(B \) at the end of Period 1 depends on her stay/go decision in Period 1 \((g_1)\). If she goes \((g_1 = 1)\), then her continuation value \(V(1) = 0 \). Similarly, if she is a slacker she stays \((g_1 = 1)\) but her continuation value \(V(0) = 0 \). However if she is a zealot who stays in Period 1, her continuation value \(V(0) = \pi \left(Eu_2^B|R \right) + (1 - \pi) Eu_2^B|L \). As noted
Table 1: Continuation Values to Bureaucrat From Remaining in Government Employment immediately above, $E u_B^* | L = 0$ hence $V(0) = \pi (E u_B^* | R)$. The continuation values $V(0)$ of the game for zealous B are shown in Table 1.

Remark 7. In Table 1 $V(0) \geq 0$.

Proof. $V(0)$ reflects optimal stay/go and work decisions by a zealous Bureaucrat in Period 2. B can always assure herself zero net utility in Period 2 by not working and quitting for any election realization or equilibrium policy effort by R or L. Hence, any equilibrium choices in Period 2 by B must afford B expected net utility of at least 0 prior to Period 2. □

Proposition 8. (Stay/go strategy in Period 1). The Bureaucrat’s stay/go strategy in Period 1 is:

$$g_1(x_1^F; b) = \begin{cases}
1 & \text{if } \psi^B(x_1^F; b) + V(0) < 0 \\
0 & \text{otherwise}
\end{cases}$$

Proof. B’s Period 1 effort costs are sunk at the stay/go decision, hence only the policy impact of x_1^F and the continuation value matters. If B quits ($g_1 = 1$) her policy utility is 0 and her continuation value $V(1) = 0$. If she stays ($g_1 = 0$) she receives $\psi^B(x_1^F) + V(0)$. The comparison of these two utility values determines the strategy. □

Proposition 9. (Policy Choice and Recommendation in Period 1) President’s policy selection strategy and Bureaucrat’s policy recommendation strategy in Period 1 are the same as in Period 2.

Proof. Given a future-is-now president, the President’s policy choice in Period 1 must be the same as in Period 2. In addition, no deviation from B’s Period 2 recommendation strategy
could be profitable for B in Period 1, as B recommends the most profitable policy that an uninformed P will accept. Hence the earlier Proposition also describes Presidential policy choice and Bureaucrat’s policy recommendation strategies in Period 1. □

Given the two previous propositions and the fact that $V(0) > 0$, the following corollary is straightforward.

Corollary 10. (Actual Stay/Go in Period 1). In Period 1

$$g_1 = \begin{cases}
1 & \text{if } \begin{cases}
 L \text{ is president, } L’s \text{ search succeeded and } |\ell| > V(0) \\
 R \text{ is president, } R’s \text{ search succeeded, } b \text{ lies in Region } 1 \text{ and } 2b - r + V(0) < 0
 \end{cases} \\
0 & \text{if } \begin{cases}
 L \text{ is president and } \begin{cases}
 L’s \text{ policy search failed } \\
 L’s \text{ search succeeded but } |\ell| \leq V(0) \\
 R’s \text{ policy search failed } \\
 R’s \text{ search succeeded but } b \text{ lies in Regions } 2-4
 \end{cases} \\
 R \text{ is president and } \begin{cases}
 R’s \text{ search succeeded, } b \text{ lies in Region } 1 \text{ but } 2b - r + V(0) \geq 0
 \end{cases}
 \end{cases}
\end{cases}$$

Proof. Recall that B will go if and only if $\psi^B(x_1^F) + V(0) < 0$. Recall as well that $V(0) > 0$. If L is president and $L’s$ search failed, $x_1^F = q$ so $\psi^B(x_1^F) = 0$ and thus $\psi^B(x_1^F) + V(0) > 0$. If $L’s$ policy search succeeded, $x_1^F = \ell$ and $\psi^B(x_1^F) = \ell < 0$ for all B. So B stays or goes as $|\ell| \leq V(0)$. If R is president and $R’s$ policy search failed, either $x_1^F = q$ (when $B’s$ search failed), $x_1^F = b$ for a successful Region 1-3 B, or $x_1^F = 2r$ for a successful Region 4 B. In all these cases $\psi^B(x_2^F) \geq 0$ so $\psi^B(x_2^F) + V(0) > 0$ so B stays. If R is president and $R’s$ policy search succeeded, $x_1^F = r$. By construction $\psi^B(r) \geq 0$ for all B in Regions 2-4 so for such B $\psi^B(x_1^F) + V(0) > 0$ and they stay. And, by construction, $\psi^B(r) = 2b - r < 0$ for all B in Region 1. Region 1 B then stays or goes as $2b - r + V(0) \geq 0$. These exhaust all the cases. □

The corollary identifies two situations in which Period 1 zealous B might quit: 1) when L is president, $L’s$ policy search succeeded, and $\ell + V(0) < 0$, and 2) when R is president,
R’s search succeeded, b lies in Region 1, and $2b - r + V(0) < 0$. The comparative static results in the text on when quitting is "more likely" consider the effects of changes in exogenous variables on the magnitudes of $\ell + V(0)$ and $2b - r + V(0)$, respectively.

Remark 11. (WTO) For b in all four regions, $\ell + V(0)$ is increasing in π and decreasing in $|\ell|$.

Proof. From inspection of Table 1, $V(0)$ is increasing in π in all four regions. $V(0)$ is not a function of ℓ and $\ell < 0$ so $\ell + V(0)$ is decreasing for b in all four regions.

Remark 12. (IMD) A small group of bureaucrats in Region 1 do not exit when R’s policy search succeeds.

Proof. In Region 1 the stay condition after a successful R imposes $x_1^F = r$ is $2b - r + V(0) \geq 0$. Recall that in Region 1 $V(0) = \frac{b^2(2-r)^2}{(4-b^2)^2} \pi$. Note that $\lim_{b \to 0} \left(2b - r + \frac{b^2(2-r)^2}{(4-b^2)^2} \pi \right) = \frac{4(2-r)^2}{(16-r^2)^2} \pi > 0$, so as b approaches the upper bound of Region 1 ($r/2$) there is a group of bureaucrats who do not exit. A closed form solution for b such that $b - r + V(0) = 0$ is intractable but numerical solutions indicate that for plausible parameter values the range of staying bureaucrats is very small. □

Remark 13. (IMD) For b in Region 1, $2b - r + V(0)$ is increasing in π, increasing in b, and decreasing in r.

Proof. Recall that $0 \leq b < 2$, $0 \leq r \leq 1$, and $V(0) = \frac{b^2(2-r)^2}{(4-b^2)^2} \pi$. Hence $\frac{\partial}{\partial b} (2b - r + \frac{b^2(2-r)^2}{(4-b^2)^2} \pi) = \frac{b^2(2-r)^2}{(4-b^2)^2} \geq 0$; $\frac{\partial}{\partial b} (2b - r + \frac{b^2(2-r)^2}{(4-b^2)^2} \pi) = 2 + \frac{2b(4+b^2)(2-r)^2}{(4-b^2)^2} \pi > 0$; and $\frac{\partial}{\partial r} (2b - r + \frac{b^2(2-r)^2}{(4-b^2)^2} \pi) = -1 - \frac{2b^2(2-r)}{(4-b^2)^2} \pi < 0$. □

We now consider expected utilities in Period 1 in order to derive reaction functions. Assume an R president. Recall we assume a zealous B in Period 1. From above, B in Regions 2-4 will not quit in Period 1. Hence, prior to undertaking effort, the expected utility
for B in Regions 2-4 is:

$$Eu_B^1(e^B_1; e^R_1, r, b) = \begin{cases}
 e^R_1(2b - r) + (1 - e^R_1) e^B_1 b + V(0) - (e^R_1)^2 & \text{if } b \text{ is in Region 2} \\
 e^R_1 r + (1 - e^R_1) e^B_1 b + V(0) - (e^R_1)^2 & \text{if } b \text{ is in Region 3} \\
 e^R_1 r + (1 - e^R_1) e^B_1 2r + V(0) - (e^R_1)^2 & \text{if } b \text{ is in Region 4}
\end{cases}$$

For B in Region 1 there are two possibilities: 1) If R is successful, B exits; 2) If R is successful, B stays. Hence:

$$Eu_B^1(e^B_1; e^R_1, r, b) = \begin{cases}
 e^R_1(2b - r) + (1 - e^R_1) e^B_1 b + V(0) - (e^R_1)^2 & \text{if Region 1 } B \text{ stays when } R \text{ succeeds} \\
 (1 - e^R_1) (e^B_1 b + V(0)) - (e^R_1)^2 & \text{if Region 1 } B \text{ quits when } R \text{ succeeds}
\end{cases}$$

For R:

$$Eu_R^1(e^R_1; e^B_1, r, b) = \begin{cases}
 e^R_1 r + (1 - e^R_1) e^B_1 b - (e^R_1)^2 & \text{if } b \text{ is in Region 1 or 2} \\
 e^R_1 r + (1 - e^R_1) e^B_1 (2r - b) - (e^R_1)^2 & \text{if } b \text{ is in Region 3} \\
 e^R_1 r - (e^R_1)^2 & \text{if } b \text{ is in Region 4}
\end{cases}$$

Assume an L–President. For B there are two possibilities: 1) If L is successful, B exits; 2) If L is successful, B stays. Hence:

$$Eu_B^1(e^B_1; e^L_1, \ell, b) = \begin{cases}
 e^L_1 \ell + V(0) - (e^B_1)^2 & \text{if } b \text{ stays when } L \text{ succeeds} \\
 (1 - e^L_1) V(0) - (e^B_1)^2 & \text{if } b \text{ quits when } L \text{ succeeds}
\end{cases}$$

For L:

$$Eu_L^1(e^L_1; e^B_1, \ell, b) = e^L_1 |\ell| - (e^L_1)^2$$

Using these expected utilities one may straightforwardly derive reaction functions in effort for the actors. These are:
The reaction functions $e^B_i(e^i_B; b, r)$ and $e^R_i(e^i_R; r, b)$ (Equations ??, C2 and C3) may be solved simultaneously to derive the equilibrium policymaking efforts:

$$(C1) \quad e^B_1(e^i_1; b, r) = \begin{cases} \frac{(1-e^R_1)b}{2} & \text{if } i = R \text{ and } b \text{ is in Regions 1, 2, or 3} \\ (1 - e^R_1)r & \text{if } i = R \text{ and } b \text{ is in Region 4} \\ 0 & \text{if } i = L \end{cases}$$

$$(C2) \quad e^R_1(e^i_1; r, b) = \begin{cases} \frac{r-e^R_1 b}{2} & \text{if } b \text{ is in Regions 1 and 2} \\ \frac{r-e^R_1 (2r-b)}{2} & \text{if } b \text{ is in Region 3} \\ \frac{r}{2} & \text{if } b \text{ is in Region 4} \end{cases}$$

$$(C3) \quad e^L_1(\ell) = \frac{|\ell|}{2}$$

As in Period 2, these values require $0 < b < 2$ and $0 \leq r \leq 1$.

Expected policy in a period is simply $e^{i*}p + (1 - e^{i*})e^{B*}x^B$ and may readily be calculated using the above results.

Finally, consider the expected utility of an $R-$President at the beginning of Period 1. As noted in the text this is $e^R_1(e^{i*}_1, e^{B*}_1; b) = \psi^R(r)(e^{R*}) + \psi^i(x^{B*}) (1 - e^{R*})e^{B*} - (e^{R*})^2$. Using the definition of policy utility and optimal policy recommendations and choices, this
is:

\[e_1^R(e_1^{e_R}, e_1^{e_B}; b) = \begin{cases}
 r e^{R*} - (e^{R*})^2 & \text{if } b < 0 \ (L - \text{side Bureaucrat)} \\
 r e^{R*} + b (1 - e^{R*}) e^{B*} - (e^{R*})^2 & \text{if } 0 < b < r \ (\text{Regions 1 and 2)} \\
 r e^{R*} + (2r - b) (1 - e^{R*}) e^{B*} - (e^{R*})^2 & \text{if } r \leq b \leq 2r \ (\text{Region 3)} \\
 r e^{R*} - (e^{R*})^2 & \text{if } b > 2r \ (\text{Region 4)}
\end{cases} \]

and using Equation C4

(C5)

\[e_1^R(e_1^{e_R}, e_1^{e_B}; b) = \begin{cases}
 \frac{r^2}{4} & \text{if } b < 0 \ (L - \text{side Bureaucrat)} \\
 \frac{8b^2(1-r)-b^4(1-r)+4r^2}{(b^2-4r)^2} & \text{if } 0 < b < r \ (\text{Regions 1 and 2)} \\
 \frac{-b^4(1-r)+16b(1-r)r+4b^2(1-r)r+4r^2+4b^2(-2=2r-r^2+r^3)}{(4+b^2-4r)^2} & \text{if } r \leq b \leq 2r \ (\text{Region 3)} \\
 \frac{r^2}{4} & \text{if } b > 2r \ (\text{Region 4)}
\end{cases} \]

REFERENCES

Notes

*We thank Alex Bolton, Ernesto Dal Bo, Bob Gibbons, Bob Powell, Ken Shepsle, Pablo Spiller, Steve Tadelis, Oliver Williamson, seminar participants at the University of Chicago Harris School, the Institute for Advanced Study, the Haas/Sloan Conference on the Law and Economics of Organizations at the University of California Berkeley, and the Vanderbilt Conference on Political Institutions, and in particular, David Lewis for helpful comments on this paper and his leadership in the larger project of which this paper is a part. We gratefully acknowledge the financial support of the National Science Foundation (SES 1262230, SES 1061512, SES 1061600, ACI 1443014) and the Smith Richardson Foundation. Neither author has a conflict of interest with respect to the research reported here.

7 This stylized "peek-a-boo" technology conveniently sidesteps difficult problems of infor-
formation expropriation and policy learning that arise in spatially-based principal-agent models. Callander 2011 provides a discussion and offers an alternative approach.

8 We assume all zealous bureaucrats in an agency have the same ideal policy. If one zealot with ideal point b prefers to depart, all other zealots in the agency will as well. Hence, the replacement must be a slacker.

9 On forward-looking bureaucrats see inter alia Lewis 2008; on the present orientation of presidents, see Light 1982 and Lowi 1985.

10 If L is sufficiently close to 0, then fewer Region 1 zealous bureaucrats will quit after the L president’s search is successful, than after the R president’s search is successful. The relevant conditions are: 1) $V(0) + \ell \geq 0$ and 2) $V(0) + \ell > V(0) = 2b - r$, for $0 \leq b < r/2$. Because $V(0)$ is so small for Region 1 bureaucrats, the first requirement is quite stringent.

11 See the third line in Equation C4 in Appendix C.

12 See Equation A2 in Appendix A.

13 There is an additional scenario in which $r < v^r$ (where v^r denotes the ideal policy of the veto pivot) so the President is not constrained by Congress but some Region 3 and 4 Bureaucrats may be, if the president’s policy search fails but their’s succeeds.