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conomic fluctuations. We provide tools for doing inference on variance decom-

positions in a general semiparametric moving average model, disciplined only

by the availability of external instruments. The share of the variance that can

be attributed to a shock is partially identified, albeit with informative bounds.

Point identification of most parameters, including historical decompositions, can

be achieved under additional assumptions that are weaker than invertibility, a

condition imposed in conventional Structural Vector Autoregressive analysis. In

fact, we prove that invertibility is testable in the presence of external instruments.

We illustrate the practical usefulness of our methods by obtaining a tight upper

bound on the importance of monetary policy shocks for U.S. inflation dynamics.
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nichenko, Ed Herbst, Marek Jarociński, Peter Karadi, Lutz Kilian, Michal Kolesár, Byoungchan Lee, Sopho-
cles Mavroeidis, Pepe Montiel Olea, Ulrich Müller, Emi Nakamura, Giorgio Primiceri, Eric Renault, Giovanni
Ricco, Luca Sala, Jón Steinsson, Jim Stock, Harald Uhlig, Mark Watson, and seminar participants at several
venues. The first draft of this paper was written while Wolf was visiting the Bundesbank, whose hospitality
is gratefully acknowledged. Wolf also acknowledges support from the Alfred P. Sloan Foundation and the
Macro Financial Modeling Project.

1



1 Introduction

Empirical macroeconomists increasingly seek to estimate impulse response functions using

easily interpretable and credible identification approaches. For example, local projections

(LPs) have become a popular direct regression-based alternative to Structural Vector Autore-

gressions (SVARs) (Jordà, 2005; Angrist et al., 2018). Additionally, instrumental variable

(IV, also known as proxy variable) methods are now routinely used to conduct structural

analysis (Stock, 2008; Stock & Watson, 2012; Mertens & Ravn, 2013). Several recent pa-

pers have combined these two ideas, yielding an appealing semiparametric method, LP-IV,

with a transparent framework for identification and estimation of impulse response functions

(Mertens, 2015; Ramey, 2016; Stock & Watson, 2018).

However, researchers often care not just about impulse responses – they want to know how

important different shocks are in driving economic fluctuations. In theoretical and applied

macroeconomics, shock importance is usually quantified through variance decompositions

and historical decompositions. Variance decompositions measure the fraction of the overall

(unconditional or forecast) variance of a variable that can be attributed to each of the

shocks, while historical decompositions measure the contributions of each shock to observed

fluctuations at specific points in time. These decompositions have served as key tools for

distinguishing between competing business cycle theories since Kydland & Prescott (1982).1

Although identifying shock importance is straight-forward in SVARs due to the implicit

invertibility assumption, there exist no such methods in the less restrictive LP-IV framework.

In the LP-IV model, existing results on how to identify (normalized) impulse responses do not

yield identification of variance/historical decompositions. This is because the IV is usually

assumed to be a noisy measure of the true shock, and we do not know the signal-to-noise ratio

a priori. Traditional SVAR methods are able to identify the shock of interest because these

methods assume invertibility : The shock must be obtainable as a linear function of current

and past (but not future) values of the observed macro variables. This stark requirement

implies the often unrealistic property that the econometrician’s forecast errors must also

be surprises to economic agents who observe the underlying shocks (Hansen & Sargent,

1991; Lippi & Reichlin, 1994; Nakamura & Steinsson, 2018). The invertibility restriction is

1For example, variance decompositions have been used to quantify the importance of productivity shocks
(King et al., 1991), monetary shocks (Romer & Romer, 1989; Christiano et al., 1999), investment shocks
(Justiniano et al., 2010), news shocks (Schmitt-Grohé & Uribe, 2012), financial shocks (Jermann & Quadrini,
2012; Christiano et al., 2014), and sentiment shocks (Angeletos et al., 2018). Cochrane (1994) and Smets &
Wouters (2007) perform comprehensive shock accounting exercises.
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especially implausible in applications where agents have (perhaps imperfect) foresight about

economic fundamentals (Blanchard et al., 2013; Leeper et al., 2013). Stock & Watson (2018)

highlight as a key attraction of the LP-IV framework that impulse responses are identified

without assuming invertibility. It is therefore unfortunate that it has hitherto been unknown

whether variance/historical decompositions are identifiable without assuming invertibility.

In this paper, we show precisely to what extent the data are informative about the

importance of shocks in a general linear dynamic model disciplined by IVs. Hence, we expand

the applied macroeconomist’s toolkit to allow identification of not just impulse responses

but also variance/historical decompositions, without requiring invertibility of shocks. We

allow for an unrestricted moving average structure of shock transmission, consistent with

essentially all linearized structural macroeconomic models. Assuming only validity of the

instruments, we derive sharp – and informative – bounds on variance decompositions. Point

identification of most parameters of interest, including historical decompositions, can be

achieved under the additional assumption that the shock of interest is recoverable from the

infinite past, present, and future values of the endogenous macro variables. This requirement

is substantially weaker than the invertibility assumption. Finally, to perform inference,

we develop easily computable, partial identification robust confidence intervals for variance

decompositions and other objects of interest.

Throughout, we adopt the LP-IV model of Stock & Watson (2018), which, although

linear, is semiparametric in the sense that we allow for a completely general infinite moving

average structure for the transmission of shocks to observed variables.2 Our sole assumption

on the IVs is the usual exclusion restriction – the IVs correlate with the shock of interest,

but not with the other macro shocks. Importantly, we allow the number of underlying

exogenous shocks to be unknown and potentially exceed the number of observed endogenous

variables. In particular, and unlike standard SVAR models, we do not restrict the shocks to

be invertible. Stock & Watson (2018) show in this setting that relative impulse responses can

be point-identified through simple two-stage least squares regressions; however, these do not

pin down the scale of the shock of interest, which is crucial for identifying variance/historical

decompositions.

In this baseline LP-IV model, we show that variance decompositions are only partially

identified, albeit with informative bounds. Hence, even with an infinite sample, it would be

impossible to pinpoint the exact importance of the shock of interest. Intuitively, as in the

2This Structural Vector Moving Average Model has been analyzed recently from a Bayesian viewpoint
by Barnichon & Matthes (2018) and Plagborg-Møller (2019), although with little emphasis on IVs.
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classical measurement error model, the challenge is that we do not know the signal-to-noise

ratio in the IV equation a priori. We show, however, that the data are informative about

this ratio. Specifically, the identified set of the variance decomposition is an interval, with

nontrivial lower and upper bounds computable from the joint spectral density of the macro

variables and the IV. The bounds depend on the strength of the external IV and the informa-

tiveness of the observed macro variables about the shock of interest. A sufficient condition

for our upper bound to be tight is that the shock of interest is close to being invertible;

yet, we show through theory and examples that our bounds can be highly informative about

shock importance even when the shock is far from being invertible.

As the LP-IV model does not assume a priori that shocks are invertible, we are able to

characterize the extent to which the data are informative about the “degree” of invertibility.

Inference about invertibility is useful for gauging the ability of VAR models to perform valid

structural analysis and for distinguishing between different classes of structural models, such

as models with anticipated versus surprise shocks. The degree of invertibility of a shock

is given by the R2 in an (infeasible) regression of the shock on past and current values

of the endogenous variables. We show that this R2 measure is partially identified: The

distribution of the data is inconsistent with invertibility if and only if the IV Granger-causes

the observed endogenous variables. Without invertibility, the popular SVAR-IV estimator,

which uses IVs to partially identify conventional SVARs, is inconsistent and overstates the

(impact) forecast variance decomposition of the shock.3 With invertibility, both SVAR-IV

and our upper bound consistently estimate true shock importance.

Although the baseline model is partially identified, we additionally provide assumptions

that guarantee point identification of certain variance decompositions and the degree of

invertibility. We prove that point identification obtains if the shock of interest is recoverable,

i.e., spanned by the infinite past, present, and future of the endogenous macro variables. This

assumption also yields point identification of historical decompositions. The recoverability

condition – although restrictive – is satisfied in certain classes of macro models, such as news

and noise shock models, and it is substantially weaker than the invertibility condition that

is automatically, if unintentionally, assumed in SVAR analysis. In particular, recoverability

obtains if there are as many observed variables as shocks – a necessary, but not sufficient

condition for invertibility. Still, we stress that researchers do not need to adopt any auxiliary

assumptions to partially identify variance decompositions.

3The SVAR-IV estimator was developed by Stock (2008), Stock & Watson (2012), and Mertens & Ravn
(2013). We characterize the population bias of SVAR-IV under non-invertibility in Online Appendix B.4.
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To make our identification analysis practically useful, we develop partial identification

robust confidence intervals for all objects of interest. In a first step, the researcher estimates

a reduced-form VAR jointly in the macro variables and IVs. To be clear, this step merely

uses the reduced-form VAR as a convenient tool for approximating the second moments of

the data; it does not assume an underlying structural VAR model with invertible shocks.4

The second step then constructs sample analogues of our population partial identification

bounds and inserts these into the confidence procedure of Imbens & Manski (2004) and Stoye

(2009). We prove that our confidence intervals have asymptotically valid frequentist coverage

under weak nonparametric conditions on the data generating process. We also discuss a test

of invertibility that has power against all falsifiable noninvertible alternatives.

We illustrate the usefulness of our identification bounds through the lens of the well-

known structural business cycle model of Smets & Wouters (2007). We assume that the

econometrician observes aggregate output, inflation, and a short-term policy interest rate,

but she does not exploit the underlying structure of the model for inference. We separately

consider external instruments for three different shocks: a standard monetary policy shock,

a forward guidance (anticipated monetary) shock, and a technology shock. These three

shocks vary greatly in terms of their degree of invertibility and recoverability, and we show

that SVAR-based identification of the latter two shocks is severely biased. Nevertheless, our

partial identification bounds are informative in all cases. This result is particularly striking

for the technology shock, since the macro aggregates provide little information about its

short- or medium-run cycles.

Finally, we apply our method to study the importance of monetary shocks in driving U.S.

macroeconomic aggregates. Following Gertler & Karadi (2015), the external instrument for

monetary policy shocks is constructed from changes in interest rate futures during short time

windows around Federal Open Market Committee announcements. As discussed in Ramey

(2016), the rising importance of forward guidance since the early 1990s is likely to invalidate

the invertibility assumption and so threatens consistency of the standard SVAR-IV estimator;

consistent with her concerns, we reject invertibility. Applying our novel methodology, we find

that monetary shocks are almost irrelevant for aggregate inflation: Our partial identification

robust 90% confidence intervals for the forecast variance contribution of monetary shocks

rules out values above 8% at all horizons. This conclusion resonates with the recently

4We view the reduced-form VAR step as a dimension reduction technique, to address finite-sample con-
cerns about unrestricted local projections raised by Kilian & Kim (2011). It is straight-forward to base
inference on other first-step estimators of the joint spectrum of the data.
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documented unconditional divorce of inflation from other macroeconomic aggregates (Hall,

2011). Thus, to the extent that inflation is a monetary phenomenon, it is so because of the

systematic part of U.S. monetary policy, not because of its erratic conduct. Importantly,

our results are obtained under much weaker identifying assumptions than existing methods.

Literature. A growing literature has provided inference tools for the LP-IV model, al-

though variance/historical decompositions have been neglected. External IVs relax the as-

sumption that the shock in a local projection is directly observed (or consistently estimable).

Theoretical results on LP-IV estimation of impulse response functions were established by

Mertens (2015), Ramey (2016), Barnichon & Brownlees (2018), Jordà et al. (2018), Ramey

& Zubairy (2018), and Stock & Watson (2018). These papers identify relative impulse re-

sponses (e.g., the responses of the macro variables to a shock which raises the first variable

by 1 unit). We go further and derive the identified set of all LP-IV model parameters.

Our identification results for variance decompositions generalize several results in the

literature. Variance decompositions are frequently reported in SVAR analysis, where identi-

fication is straight-forward due to the invertibility assumption (Kilian & Lütkepohl, 2017, Ch.

4). Stock & Watson (2018) assume invertibility of all shocks to identify forecast variance de-

compositions and historical decompositions in an LP-IV model; we substantially strengthen

this result by showing that much weaker assumptions than invertibility (e.g., recoverability)

are in fact sufficient for point identification of some of these objects. Our results are com-

plementary to Gorodnichenko & Lee (2017), who consider finite-sample inference on what

we call the “forecast variance ratio” in local projection models where the shock is assumed

to be directly observed.

A key attraction of the LP-IV framework is that it allows for noninvertible shocks, unlike

the standard SVAR model. Noninvertibility is now known to occur in many classes of struc-

tural models where economic agents observe better information than the econometrician,

such as models with news shocks, private signals, or measurement error. Hence, the issue

has received a lot of attention in the SVAR literature (see references in Plagborg-Møller,

2019, Sec. 2.3). Stock & Watson (2018) develop an LP-IV-based test of noninvertibility.

Our contribution in this area is to sharply characterize the identified set for the degree of

invertibility of the shocks, which in turn shows under what conditions the distribution of the

data is consistent with invertibility. These conditions are related to Granger causality, as in

the SVAR settings studied by Giannone & Reichlin (2006) and Forni & Gambetti (2014).

The weaker concept of “recoverability” has precursors in the literature. Our definition
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of recoverability has independently been proposed by Chahrour & Jurado (2018). Their

generic framework does not specifically consider the LP-IV model, where the recoverability

assumption is testable, as we show. As discussed below, recoverability is formally equivalent

to recovering shocks from dynamic rotations of reduced-form VAR errors, as used by Lippi

& Reichlin (1994), Mertens & Ravn (2010), and Forni et al. (2017a,b).

Our confidence interval procedure applies the generic methods for interval-identified pa-

rameters developed by Imbens & Manski (2004) and Stoye (2009). Our analysis is distinct

from and complementary to the literature on inference in sign-identified SVARs (Gafarov

et al., 2018; Giacomini & Kitagawa, 2018; Granziera et al., 2018).

Outline. Section 2 defines the LP-IV model and the parameters of interest. Section 3

contains our main identification results. Section 4 interprets the results through the lens

of a structural macro model. Section 5 develops confidence intervals. Section 6 contains

the empirical application. Section 7 concludes. Appendix A provides inference formulas and

proofs of our main results. A supplementary appendix and Matlab code are available online.5

2 Model and parameters of interest

We begin by defining the Local Projection Instrumental Variable (LP-IV) model and its

parameters of interest. The LP-IV model allows for an unrestricted linear shock transmission

mechanism and, unlike standard SVAR analysis, does not assume shocks to be invertible.

We assume the availability of valid external IVs (proxy variables) – variables that correlate

with the shock of interest, but not with the other shocks. Although the model we study is

identical to that of Stock & Watson (2018), our parameters of interest are entirely different:

They study relative impulse responses, whereas we study variance decompositions, historical

decompositions, and the degree of invertibility.

Model. We start out by describing the LP-IV model’s semiparametric assumptions on

shock transmission and the instrument exclusion restrictions. For notational clarity, we as-

sume throughout that all time series below have mean zero and are strictly non-deterministic.

First, we specify the weak assumptions on shock transmission to endogenous variables.

5https://scholar.princeton.edu/mikkelpm/decomp_iv
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Assumption 1. The ny-dimensional vector yt = (y1,t, . . . , yny ,t)
′ of observed macro variables

is driven by an unobserved nε-dimensional vector εt = (ε1,t, . . . , εnε,t)
′ of exogenous economic

shocks,

yt = Θ(L)εt, Θ(L) ≡
∞∑
`=0

Θ`L
`, (1)

where L is the lag operator. The matrices Θ` are each ny × nε and absolutely summable

across `. Θ(x) is assumed to have full row rank for all complex scalars x on the unit circle.

The shocks are mutually orthogonal white noise processes:

εt ∼WN (0, Inε),

where In denotes the n-dimensional identity matrix.

The (i, j) element Θi,j,` of the moving average coefficient matrix Θ` is the impulse response

of variable i to shock j at horizon `. The j-th column of Θ` is denoted by Θ•,j,` and the i-th

row by Θi,•,`. The full-rank assumption guarantees a nonsingular stochastic process. This

condition requires nε ≥ ny, but – crucially – we do not assume that the number of shocks nε

is known. The mutual orthogonality of the shocks is the standard assumption in empirical

macroeconomics. The model is semiparametric in that we place no a priori restrictions on

the coefficients of the infinite moving average, except to ensure a valid stochastic process. In

particular, we do not impose the usual invertibility conditions that point-identify Θ(L) in

reduced-form time series analysis. It is well known that the infinite-order Structural Vector

Moving Average model (1) is consistent with discrete-time Dynamic Stochastic General

Equilibrium (DSGE) models as well as stable SVAR models for yt. However, the appeal of

LP-IV analysis is that it does not require any specific underlying structure.

Second, we assume the availability of one or more external IVs for the shock of in-

terest. We specify the shock of interest to be the first one, ε1,t. Each of the nz IVs

zt = (z1,t, . . . , znz ,t)
′ are assumed to correlate with the first shock but not the other shocks,

after controlling for lagged variables: For all i = 1, . . . , nz,

E(z̃i,tε1,t) 6= 0, E(z̃i,tεj,τ ) = 0 for all (j, τ) 6= (i, t), (2)

where z̃i,t is the population residual from projecting zi,t on all lags of {zt, yt}. The key

exclusion restrictions are that the shock of interest ε1,t is the only contemporaneous shock

to correlate with the IVs. Thus, z̃t is a proxy for ε1,t (up to scale) that is contaminated by

classical measurement error. This is a strong assumption that must be carefully defended
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in applications. Ramey (2016) and Stock & Watson (2018) survey the extensive applied

literature that has constructed plausibly valid external IVs for various shocks. In Online

Appendix B.3 we discuss how our analysis changes if the exclusion restriction is relaxed.

Using linear projection notation, we can equivalently express the IV exclusion restrictions

(2) as follows. ‖ · ‖ refers to the Euclidean norm.

Assumption 2. The IVs zt = (z1,t, . . . , znz ,t)
′ satisfy

zt =
∞∑
`=1

(Ψ`zt−` + Λ`yt−`) + αλε1,t + Σ1/2
v vt, (3)

where Ψ` is nz × nz, Λ` is nz × ny, λ is an nz-dimensional vector normalized to unit length

(‖λ‖ = 1) and with its first nonzero element being positive, α ≥ 0 is a scalar, and Σv is a

symmetric positive semidefinite nz × nz matrix. The elements of Ψ` and Λ` are absolutely

summable across `, and the polynomial x 7→ det(Inz−
∑∞

`=1 Ψ`x
`) has all its roots outside the

unit circle. The disturbance vector vt is a white noise process that is dynamically uncorrelated

with the structural shocks εt:

vt ∼WN (0, Inz), Cov(εt, vτ ) = 0nε×nz for all t, τ.

The scale parameter α (along with the residual variance-covariance matrix Σv) measures

the overall strength of the IVs, while the unit-length vector λ determines which IVs are

stronger than others. We emphasize that the linearity of equation (3) is not a structural

assumption; it arises from a linear projection (as in the “first stage” of cross-sectional IV).6

Since we restrict attention to identification from second moments, we simplify notation

by further assuming that the structural shocks and IV disturbances are Gaussian.

Assumption 3. (ε′t, v
′
t)
′ is i.i.d. jointly Gaussian.

The Gaussianity assumption is strictly for notational convenience. We could instead

have maintained the above white noise assumptions and phrased all our results using linear

projection notation.7 The sole meaningful restriction is that we only consider identification

6We allow for lagged values of zt and yt on the right-hand side of (3) because this is precisely enough to
ensure that the LP-IV model is untestable (using second moments) in the case of a single IV, cf. Proposition 1
below. The model with multiple instruments is testable, as further discussed in Section 3.3. If lagged terms
can be excluded a priori, it presents no difficulties for identification or inference.

7Simply replace conditional expectations by linear projections and replace conditional variances by vari-
ances of projection residuals.
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from the second-moment properties of the data, as is standard in the applied macro literature

(and without loss of generality for Gaussian data).8 We will drop the Gaussianity assumption

when considering inference in Section 5.

Note that we have normalized the variances of all shocks to 1, without loss of generality,

as this simplifies our notation. Stock & Watson (2018) study the same LP-IV model as us,

but they instead normalize certain impact impulse responses to equal 1, while letting the

the shock variances be unrestricted. Hence, when Stock & Watson discuss identification of

“impulse responses”, this translates into our notation as identification of relative impulse

responses of the type Θi,1,`/Θ1,1,0. The choice of normalization of course does not matter for

the identification analysis. Finally note also that Assumptions 1 to 3 together imply that

the (ny + nz)-dimensional data vector (y′t, z
′
t)
′ is strictly stationary.

Invertibility and recoverability. We now define invertibility, the degree of invert-

ibility, and recoverability.

The shock ε1,t is said to be invertible if it is spanned by past and current (but not

future) values of the endogenous variables yt: ε1,t = E(ε1,t | {yτ}−∞<τ≤t). Invertibility

of all structural shocks is assumed automatically by SVAR models, but the condition may

or may not hold in a given moving average model (1), depending on the impulse response

parameters Θ`. A sufficient condition for invertibility of all shocks is that nε = ny and the

polynomial x 7→ det(Θ(x)) has all its roots outside the unit circle. In many structural macro

models, at least some of the shocks cannot be recovered from only past and current observed

macro variables, i.e., the moving average representation is noninvertible. For example, this

is often the case in models with news (anticipated) shocks or noise (signal extraction) shocks

(Blanchard et al., 2013; Leeper et al., 2013). Furthermore, if nε > ny, it is impossible for all

shocks to be invertible.

A continuous measure of the degree of invertibility is the R2 value in a population regres-

sion of the shock on past and current observed variables. More generally, define

R2
` ≡

Var(ε1,t)− Var(ε1,t | {yτ}−∞<τ≤t+`)
Var(ε1,t)

= 1− Var(ε1,t | {yτ}−∞<τ≤t+`)

as an R2 measure of invertibility of the shock of interest using data up to time t + `. If

8If we were to take the assumption of i.i.d. shocks seriously, and the shocks were not Gaussian, higher-
order moments of the data would be informative about the parameters. However, we agree with most of the
literature that the assumption of i.i.d. shocks is too strong due to the likely presence of stochastic volatility
(SV). Our identification results allow for SV since we only require shocks to be white noise.
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the shock is invertible in the sense of the previous paragraph, then R2
` = 1 for all ` ≥ 0.

If R2
` < 1 for some ` ≥ 0, then the model is noninvertible and thus no SVAR model could

generate the impulse responses Θ(L), although the model may be nearly consistent with an

SVAR structure if the R2 values are close to 1, as we discuss further in Online Appendix

B.4 (Sims & Zha, 2006, pp. 243–245; Forni et al., 2018; Wolf, 2018). For noninvertible

models, a plot of R2
` for ` = 0, 1, 2, . . . reveals how quickly the econometrician learns about

the structural shock over time. To illustrate, we derive the R2
` value for an MA(1) model in

Online Appendix B.5.

A weaker condition than invertibility is that the shock of interest is recoverable from

all leads and lags of the endogenous variables – that is, if E(ε1,t | {yτ}−∞<τ<∞) = ε1,t, or

equivalently if R2
∞ = 1.9 This property will become important when we consider assumptions

that guarantee point identification.

Variance decompositions. Variance decompositions are the key parameters of interest

in this paper. We now define several variance decomposition objects, including forecast

variance decompositions (either conditioning on past observables or on past shocks) and a

frequency-specific unconditional variance decomposition.

We consider two forecast variance decomposition concepts. First, define the forecast

variance ratio (FVR) for the shock of interest for variable i at horizon ` as

FVRi,` ≡ 1− Var(yi,t+` | {yτ}−∞<τ≤t, {ε1,τ}t<τ<∞)

Var(yi,t+` | {yτ}−∞<τ≤t)
=

∑`−1
m=0 Θ2

i,1,m

Var(yi,t+` | {yτ}−∞<τ≤t)

The FVR measures the reduction in the forecast variance that would come from knowing

the entire path of future realizations of the first shock. The larger this measure is, the

more important is the first shock for forecasting variable i at horizon `. The FVR is always

between 0 and 1. An unappealing feature, however, is that the FVR conflates two different

sources of uncertainty: fundamental forecasting uncertainty (uncertainty related to future

shock realizations) and noninvertibility-induced uncertainty (uncertainty related to imperfect

knowledge about past shocks).10 This means that, when ε1,t is noninvertible, the FVR does

9Chahrour & Jurado (2018) independently propose this definition. Recoverability is formally equivalent
to the assumption that the structural shock is spanned by current and future reduced-form forecast errors
ut ≡ yt − E(yt | {yτ}−∞<τ≤t−1). Such dynamic rotations of ut have been exploited for identification by
Lippi & Reichlin (1994), Mertens & Ravn (2010), and Forni et al. (2017a,b).

10Var(yi,t+` | {yτ}−∞<τ≤t) =
∑`−1
m=0 Θi,•,mΘ′i,•,m + Var

(∑∞
m=` Θi,•,mεt+l−m

∣∣∣ {yτ}−∞<τ≤t).

11



not equal 1 even if ε1,t is solely responsible for driving the i-th variable in equation (1).

The second variance decomposition concept is the forecast variance decomposition (FVD)

for the shock of interest for variable i at horizon `,

FVD i,` ≡ 1− Var(yi,t+` | {ετ}−∞<τ≤t, {ε1,τ}t<τ<∞)

Var(yi,t+` | {ετ}−∞<τ≤t)
=

∑`−1
m=0 Θ2

i,1,m∑nε

j=1

∑`−1
m=0 Θ2

i,j,m

. (4)

The FVD measures the reduction in forecast variance that arises from learning the path

of future realizations of the shock of interest, supposing that we already had the history

of structural shocks εt available when forming our forecast. Because the econometrician

generally does not observe the structural shocks directly, the FVD is best thought of as

reflecting forecasts of economic agents who observe the underlying shocks. The FVD always

lies between 0 and 1, purely reflects fundamental forecasting uncertainty, and equals 1 if the

first shock is the only shock driving variable i in equation (1). The software package Dynare

reports FVDs after having estimated a DSGE model.

While the FVR and FVD concepts generally differ, they coincide in the case where all

shocks are invertible, since in that case the information set {yτ}−∞<τ≤t equals the information

set {ετ}−∞<τ≤t. This explains why the SVAR literature has not made the distinction between

the two concepts.11

For completeness, we also consider the frequency-specific unconditional variance decom-

position (VD) of Forni et al. (2018, Sec. 3.4). The VD for variable i over the frequency band

[ω1, ω2] is given by

VD i(ω1, ω2) ≡
∫ ω2

ω1
|Θi,1(e

−iω)|2 dω∑nε

j=1

∫ ω2

ω1
|Θi,j(e−iω)|2 dω

, 0 ≤ ω1 < ω2 ≤ π, (5)

where Θi,j(L) is the (i, j) element of the lag polynomial Θ(L). VD i(ω1, ω2) is the percentage

reduction in the variance of yi,t – after passing the data through a bandpass filter that retains

only cyclical frequencies [ω1, ω2] – caused by entirely “shutting off” the shock of interest ε1,t.

The software package Dynare automatically reports VD i(0, π) after solving a DSGE model.

Historical decomposition. The historical decomposition of variable yi,t at time t at-

tributable to the shock of interest is defined as E(yi,t | {ε1,τ}−∞<τ≤t) =
∑∞

`=0 Θi,1,`ε1,t−`.

11Forni et al. (2018) point out the bias caused by noninvertibility when estimating the FVD using SVARs.
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3 Identification

This section studies the identification of our parameters of interest in the LP-IV model. For

exposition, we start by deriving results for a static version of the model. We then turn

to the general dynamic model, which applies the static results to the frequency domain

representation of the data.

3.1 Static model

We use an illustrative static model to motivate why variance decompositions are partially

identified in the general case but can be point-identified under additional assumptions. Al-

though the static model does not capture all the nuances of the dynamic LP-IV model, it

provides useful intuition for the general case.

Model. Consider a static version of our model with a single IV:12

yt = Θ•,1,0ε1,t + ξt,

zt = αε1,t + σvvt,

(ε1,t, vt, ξt)
′ i.i.d.∼ N

(
0,

(
I2 02×ny

0ny×2 Σξ

))
.

Here α, σv ≥ 0 are scalars, ξt ≡
∑nε

j=2 Θ•,j,0εj,t is an ny-dimensional random vector that

captures all the structural shocks other than the one of interest, and Σξ ≡ Var(ξt).

Note that the static model is nothing but a multivariate classical measurement error

model: To gauge the importance of ε1,t in driving yt, we would like to regress yt on ε1,t;

however, instead of the shock, we only observe the noisy proxy zt. By the usual measurement

error logic, the importance of ε1,t for yt is not point-identified because the signal-to-noise ratio

α2/σ2
v for the proxy zt is not known a priori : A high (low) observed correlation Corr(yi,t, zt)

may be due to ε1,t being an important (unimportant) driver of yi,t or due to the proxy zt

being strong (weak). However, as in the measurement error literature, we now show that we

12While the static model is primarily intended for gaining intuition, the results in this subsection are
directly relevant for SVAR analysis with an external IV. In that framework, yt would be the reduced-form
VAR residuals, which are a linear function of the vector εt of contemporaneous structural shocks. Textbook
SVAR analysis further assumes that nε = ny, so the model is identified up to an orthogonal rotation matrix.
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can obtain bounds on the importance of ε1,t.
13

In the static model there is no distinction between the FVR, FVD, and VD, so our

parameter of interest for now is

FVDi,1 = 1− Var(yi,t | ε1,t)
Var(yi,t)

=
Θ2
i,1,0

Var(yi,t)
.

This is the usual population R2 value in the (infeasible) regression of yi,t on ε1,t.

Identification. We can easily construct lower and upper bounds for FVDi,1. For a lower

bound, consider a simple regression of yi,t on the proxy zt = αε1,t + σvvt. The R2 from this

regression is
Var(E[yi,t | zt])

Var(yi,t)
=

Cov(yi,t, zt)
2

Var(zt) Var(yi,t)
=

α2

α2 + σ2
v

× FVDi,1.

This is the familiar attenuation bias: We are regressing on a noisy measure of the shock, thus

understating its importance in driving fluctuations in yi,t.
14 For an upper bound, consider a

regression of yi,t on the “index” E(zt | yt). The R2 from this regression is

Var(E[yi,t | E(zt | yt)])
Var(yi,t)

=
Cov(yi,t, E(zt | yt))2

Var(E(zt | yt)) Var(yi,t)
=

Var(ε1,t)

Var(E(ε1,t | yt))
× FVDi,1.

We are now overstating the importance of the shock. Intuitively, by constructing the first-

step fitted value E(zt | yt) = αE(ε1,t | yt), we remove the measurement error vt that

causes attenuation bias. However, since 1 = Var(ε1,t) ≥ Var(E(ε1,t | yt)), we are effectively

removing too much variation, thus overstating the importance of ε1,t.

Putting the pieces together, we have thus obtained the bounds

1− Var(yi,t | zt)
Var(yi,t)

≤ FVDi,1 ≤ 1− Var(yi,t | E(zt | yt))
Var(yi,t)

. (6)

It is not hard to show (and it follows from our general results below) that these bounds are

sharp, i.e., exploit all information about FVDi,1 afforded by the distribution of the data.15

13Because our parameters of interest are not regression coefficients as in Klepper & Leamer (1984), these
bounds do not follow immediately from the existing literature, to our knowledge.

14A related argument appears in Gorodnichenko & Lee (2017, Appendix D).
15Given any positive semidefinite variance-covariance matrix for wt = (y′t, zt)

′, and given any value of
FVDi,1 in the interval between the bounds, we can construct a static model which matches the given Var(wt)
and FVDi,1 (we just have to choose α, Θ0, and σv appropriately).
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The width of the identified set for FVDi,1 depends on the degree of invertibility of ε1,t and on

the strength of the proxy/IV zt. Intuitively, attenuation bias decreases (so the lower bound

in (6) is larger) when the IV strength α2/σv is larger. And if ε1,t is invertible, meaning

E(ε1,t | yi,t) = ε1,t, then E(zt | yt) ∝ ε1,t, so the upper bound in (6) equals FVDi,1.

It is immediate from the previous discussion that point identification obtains under a

variety of auxiliary assumptions. For example, if we assume that the shock of interest is

invertible (which in the static model is the same as being recoverable), then we have argued

that the upper bound for FVDi,1 binds. Alternatively, point identification obtains if the

instrument is assumed to be perfect, i.e., σv = 0; then the lower bound for FVDi,1 binds.

3.2 General dynamic model

We now present our main identification results for the general dynamic model, applying the

logic of the static model frequency-by-frequency to the frequency domain representation of

the data. Relative to the static case, the dynamic case involves additional challenges in

characterizing the informativeness of the data for the hidden shock at all frequencies.

We maintain Assumptions 1 to 3 throughout, but for the moment, we carry out the

analysis for the case of a single IV (nz = 1), leaving the generalization to Section 3.3. That

is, zt is a scalar and λ = 1 in equation (3). We write Σ
1/2
v = σv ≥ 0, a scalar.

Preliminaries. For the identification analysis, it will prove convenient to define the IV

projection residual that removes any dependence on lagged observed variables:

z̃t ≡ zt − E(zt | {yτ , zτ}−∞<τ<t) = αε1,t + σvvt. (7)

Note that z̃t is serially uncorrelated by construction.

Next, we need to define our notation for spectral density matrices. For any two jointly

stationary vector time series at and bt of dimensions na and nb, respectively, define the na×nb
cross-spectral density matrix function (Brockwell & Davis, 1991, Ch. 4 and 11)

sab(ω) ≡ 1

2π

∞∑
`=−∞

e−iω` Cov(at, bt−`), ω ∈ [0, 2π].

For any vector time series at, we denote its spectrum by sa(ω) ≡ saa(ω).
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Relative impulse responses. Absolute impulse responses to the first shock are identi-

fied up to the scale parameter α:

Cov(yt, z̃t−`) = αΘ•,1,`. (8)

Thus, relative impulse responses Θi,1,`/Θ11,0 are point-identified, as shown by Stock & Watson

(2018) and others.16 Relative impulse responses answer a useful question: How much does

yi,t+` increase following a shock ε1,t of a magnitude that increases y1,t by one unit on impact?

However, variance decompositions and the degree of invertibility depend on the absolute

impulse responses, not just the relative ones. Hence, as is clear from the above display,

although the scale parameter α is not economically interesting in itself, it is key to identifi-

cation of our parameters of interest.

Scale parameter. We now show that the identified set for the scale parameter α is an

interval with informative bounds, proceeding as we did in the simple static model.

First, the variance of the instrument provides an upper bound for the scale parameter:

α2 ≤ Var(z̃t) ≡ α2
UB. (9)

As in the static model, the boundary case α = αUB corresponds to perfect IV informativeness.

Second, for the lower bound, we apply a version of the argument from the static case to

the joint spectrum of the data at every frequency. Define first the projections of z̃t and ε1,t,

respectively, onto all lags and leads of the endogenous variables yt:

z̃†t ≡ E(z̃t | {yτ}−∞<τ<∞), (10)

ε†1,t ≡ E(ε1,t | {yτ}−∞<τ<∞).

Note that z̃†t is the analogue of E(zt | yt) in the static identification analysis. Then, for every

frequency ω ∈ [0, 2π], we have

sz̃†(ω) = α2sε†1
(ω) ≤ α2sε1(ω) = α2 × 1

2π
, (11)

where the inequality is the frequency-domain analogue of “the explained sum of squares is

16Some authors employ the alternative but equivalent unit effect normalization where Θ11,0 = 1, but
shocks have non-unit variances.
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smaller than the total sum of squares”.17 Hence, we obtain the lower bound

α2 ≥ 2π supω∈[0,π] sz̃†(ω) ≡ α2
LB. (12)

Intuitively, a small value of α requires z̃t to be nearly unpredictable by yt at every frequency

ω, e.g., both in the long run and at business cycle frequencies. The boundary case α = αLB

corresponds to the observed macro aggregates being perfectly informative about the hidden

shock ε1,t at some frequency ω ∈ [0, π], i.e., the projection residual ε1,t − ε†1,t has a spectral

density sε1−ε†1
(ω) = sε1(ω)− sε†1(ω) that vanishes at frequency ω.

The main theoretical result of this paper is that the above bounds α2
LB, α

2
UB are sharp.

Proposition 1. Let there be given a joint spectral density for wt = (y′t, z̃t)
′, continuous

and positive definite at every frequency, with z̃t unpredictable from {wτ}−∞<τ<t. Choose any

α ∈ (αLB, αUB]. Then there exists an LP-IV model as in Assumptions 1 and 2 with the given

α such that the model-implied spectral density of wt matches the given spectral density.

Recall that the previous discussion has already shown that any value of α2 /∈ [α2
LB, α

2
UB]

is impossible. Thus, the distribution of the data tells us that α2 ∈ [α2
LB, α

2
UB], but the

data cannot rule out any values of α2 in this interval. The proposition does not cover the

knife-edge case α = αLB due to economically inessential technicalities.

The width of the identified set for the scale parameter α depends on the application,

although the set is never empty. To interpret the identified set, we express it in terms of the

(unknown) model parameters. We focus on the identified set for 1
α2 , as this transformation

is most relevant for identifying FVD i,` and R2
` , as shown below. This identified set equals[

α2

α2 + σ2
v︸ ︷︷ ︸

instrument strength

× 1

α2
,

1

1− 2π infω∈[0,π] sε1−ε†1
(ω)︸ ︷︷ ︸

informativeness of data for shock

× 1

α2

]
.

Analogously to the static case, the lower bound of the identified set for 1
α2 is larger (and closer

to the true 1
α2 ) when the instrument is stronger in the sense of a higher signal-to-noise ratio.

The upper bound of the identified set for 1
α2 is smaller (and closer to the true 1

α2 ) when the

data are more informative about the shock of interest, at least at some frequency. Compare

with the static case, where only Var(ε1,t | yt) mattered for the tightness of the bound. The

17Brockwell & Davis (1991, Remark 3, p. 439) show that sz̃†(ω) = syz̃(ω)∗sy(ω)−1syz̃(ω) and sε†1
(ω) =

syε1(ω)∗sy(ω)−1syε1(ω). Since the joint spectrum is positive semidefinite, sε1(ω) ≥ sε†1(ω) for all ω.
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identified set for 1
α2 does not collapse to a point unless the instrument is perfect and there

exists a frequency ω for which the data are perfectly informative about the frequency-ω

cyclical component of the shock.

To further interpret α2
LB, we derive a lower bound to this object that is explicitly tied to

the degree of recoverability/invertibility. First, we have

α2
LB = 2π sup

ω∈[0,π]
sz̃†(ω) ≥

∫ 2π

0

sz̃†(ω) dω = Var(z̃†t ). (13)

The far right-hand side above depends on the degree of recoverability of the shock:

Var(z̃†t ) = Var(E(z̃t | {yτ}−∞<τ<∞)) = α2(1− Var(ε1t | {yτ}−∞<τ<∞)) = α2 ×R2
∞.

An even lower bound on α2
LB is given by

Var(E(z̃t | {yτ}−∞<τ≤t)) = α2(1− Var(ε1t | {yτ}−∞<τ≤t)) = α2 ×R2
0.

Thus, if the shock is close to being invertible – or more generally, recoverable – α2
LB will be

close to α2. In fact, as discussed above, the bound will be tight provided the full time series

{yt} of the macro variables is informative about ε1,t at least at some frequency (e.g., low

frequencies or high frequencies). These comparisons illustrate how our lower bound on α is

a natural generalization of the familiar invertibility requirement. In Section 4 we provide

several concrete examples where invertibility fails, but nevertheless α2
LB is close to α2.

Degree of invertibility. The identified set for the degree of invertibility at horizon `

follows directly from the identified set for α2, since (recalling Var(ε1,t) = 1)

R2
` = 1− Var(ε1,t | {yτ}−∞<τ≤t+`) =

1

α2
× Var(E(z̃t | {yτ}−∞<τ≤t+`)),

and the variance on the right-hand side above is point-identified. Now similarly define

R̃2
` ≡ 1− Var(z̃t | {yτ}−∞<τ≤t+`)

Var(z̃t)
=

Var(E(z̃t | {yτ}−∞<τ≤t+`))
Var(z̃t)
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as the (point-identified) R2 in a population regression of z̃t on lags and leads of yτ up to

time τ = t+ `. Then the identified set for the degree of invertibility R2
` at horizon ` equals[

R̃2
` ,

Var(z̃t)

2π supω∈[0,π] sz̃†(ω)
× R̃2

`

]
. (14)

This identified set implies conditions under which the distribution of the observable data is

consistent with invertibility or recoverability.

Proposition 2. Assume α2
LB > 0. The identified set for R2

0 contains 1 if and only if the

instrument residual z̃t does not Granger cause the macro observables yt. The identified set

for R2
∞ contains 1 if and only if the projection z̃†t is serially uncorrelated.

According to Proposition 2, ε1,t is certain to be noninvertible if and only if z̃t Granger

causes yt. Moreover, ε1,t is certain to be non-recoverable if and only if z̃†t , defined in (10),

is serially correlated at some lag. Thus, the IV makes the extraneous invertibility and

recoverability assumptions testable.

Variance decompositions. We now turn to the identification of variance decomposi-

tions, the main parameters of interest. The identified sets for the FVR and FVD defined in

Section 2 are different. For the FVR, simply observe that

FVRi,` =

∑`−1
m=0 Θ2

i,1,m

Var(yi,t+` | {yτ}−∞<τ≤t)
=

1

α2
×
∑`−1

m=0 Cov(yi,t, z̃t−m)2

Var(yi,t+` | {yτ}−∞<τ≤t)
.

Hence, as in the static case, the identified set for FVRi,` equals the identified set for 1
α2 , scaled

by the (point-identified) second fraction on the far right-hand side above. In particular, the

upper bound on the FVR depends on the informativeness of the macro variables for the

shock of interest. Hence, adding more variables to the vector yt of endogenous observables

leads to a weakly narrower identified set (in relative terms, since the estimand itself changes

if yt is changed).

Bounding the FVD requires more work. Online Appendix B.1 states the identified set for

the FVD, but we here summarize the result. The sharp upper bound on the `-period-ahead

FVD equals the trivial bound of 1, for any ` ≥ 1. This is achieved by a model in which all

shocks, except the first one, only affect yt after an `-period delay. The sharp lower bound on

the FVD is nontrivial and informative; see Online Appendix B.1 for the precise expression.

The reason that identification of the FVD is more challenging than for the FVR is that, even
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if we knew α, the IV zt provides no information about the other structural shocks εj,t, j 6= 1.

This matters because the definition (4) of the FVD, unlike that of the FVR, conditions on

knowing all past shocks.

Finally, and analogously to the FVR, the frequency-specific unconditional variance de-

composition VD i(ω1, ω2) is interval-identified with informative lower and upper bounds, since

VD i(ω1, ω2) =
1

α2
×
∫ ω2

ω1
|syiz̃(ω)|2 dω∫ ω2

ω1
syi(ω) dω

,

where syiz̃(ω) = αΘi,1(e
−iω) is the i-th element of syz̃(ω), cf. equation (5).

Absolute impulse responses. The identified set for the absolute impulse response Θi,1,`

is obtained by scaling the identified set for 1
α

, cf. equation (8). This generalizes existing

results on relative impulse responses, as discussed above (Stock & Watson, 2018).

Sufficient conditions for point identification. Although we have shown that par-

tial identification analysis is informative in the general model, we now give a variety of suf-

ficient conditions that ensure point identification of α and thus the FVR, VD, and degree of

invertibility.18 We also discuss identification of historical decompositions.

The first set of sufficient conditions relates to the informativeness of the macro aggregates

yt for the hidden shock ε1,t. In this category, our weakest condition for point identification is

that the data yt is perfectly informative about ε1,t at some frequency, i.e., the spectral density

of the projection residual ε1,t−ε†1,t vanishes at some frequency ω. Then α = αLB, so the FVR,

VD, and degree of invertibility are identified. This assumption is not testable; as emphasized

above, it is the weakest generalization of the familiar invertibility assumption of SVAR

analysis. A stronger but more easily interpretable identifying assumption is recoverability,

i.e., ε†1,t ≡ E(ε1,t | {yτ}−∞<τ<∞) = ε1,t. This assumption is testable, cf. Proposition 2.

Under recoverability, we have both α = αLB and z̃†t = αε1,t. Recoverability is a restrictive

assumption, but at least it is a meaningfully weaker requirement than invertibility in many

economic applications, as discussed further in Section 4. In fact, recoverability is implied by

the usual SVAR assumption that there are as many shocks as variables, nε = ny.
19 Our proof

18Online Appendix B.1 shows that even point identification of α is insufficient to point-identify the FVD,
although a sharp and informative lower bound can be computed.

19Since we have ruled out singularities, nε = ny implies that Θ(L)−1 is a well-defined two-sided lag
polynomial (Brockwell & Davis, 1991, Thm. 3.1.3), so that εt = Θ(L)−1yt and all shocks are recoverable.
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of Proposition 1 shows how restrictive this assumption really is: α is partially identified with

the same sharp bounds as above even if we know that the number of shocks nε can be at

most ny + 1. Thus, no identifying power is gained from the knowledge that the number of

shocks is “small”, unless that means nε = ny.

Point identification can also be achieved by assuming that the instrument is perfect, i.e.,

σv = 0. Then z̃t = αε1,t and identification proceeds in accordance with the logic behind local

projections (Jordà, 2005; Gorodnichenko & Lee, 2017). This assumption is not testable.

Under either recoverability or perfect instrument informativeness, we can point-identify

the historical decomposition corresponding to the identified shock, cf. the definition in

Section 2. This object is identified because both the absolute impulse responses and the

time series of the shock itself are identified, as argued above.

3.3 Extension: multiple instruments

We now argue that identification analysis in the model with multiple IVs for the shock of

interest (nz ≥ 2) can be reduced to the single-IV setting without loss of generality.

The multiple-IV model is testable, unlike the single-IV model. As in the single-IV case,

define the projection residual

z̃t ≡ zt − E(zt | {yτ , zτ}−∞<τ<t) = αλε1,t + Σ1/2
v vt. (15)

Online Appendix B.2 shows that the testable implication of the multiple-IV model is that

the cross-spectrum syz̃(ω) has a rank-1 factor structure. The validity of the multiple-IV

model can be rejected if and only if this factor structure fails.

When the multiple-IV model is consistent with the distribution of the data, identification

analysis can be reduced to the single-IV case in Section 3.2. Specifically, Online Appendix B.2

shows that (i) λ is point-identified, and (ii) the identified sets for α, variance decompositions,

and the degree of invertibility are the same as the identified sets that exploit only the scalar

instrument

z̆t ≡
1

λ′Var(z̃t)−1λ
λ′Var(z̃t)

−1z̃t. (16)

Intuitively, z̆t ∝ E(ε1,t | z̃t). Because z̆t is a linear combination of all nz instruments, the

identified sets are narrower than if we had used any one instrument zk,t in isolation.

In Online Appendix B.3 we consider the more general case of multiple instruments being

correlated with multiple structural shocks. In particular, we allow the instrument set to

21



be correlated with a pre-specified number of structural shocks and then bound the forecast

variance contribution of this combination of shocks to the macro aggregates of interest. The

derived bounds would for example be informative in the application of Mertens & Ravn

(2013), who use two external IVs plausibly correlated with two latent tax shocks.

4 Illustration using a structural macro model

We use the workhorse business cycle model of Smets & Wouters (2007) to illustrate the

informativeness of our partial identification bounds on the degree of invertibility and variance

decompositions. The nature of our exercise is as follows: We consider an econometrician

observing a small set of macroeconomic aggregates generated from the Smets-Wouters model

as well as noisy measures of some of the model’s true underlying structural shocks (i.e., valid

external instruments). For clarity, we abstract from any sampling uncertainty and assume

that the econometrician observes an infinite amount of data, so the joint spectral density of

observed macro aggregates and external IVs is perfectly known to her. Given this spectral

density, she uses our LP-IV bounds to draw conclusions about variance decompositions and

the degree of invertibility, without exploiting the underlying structure of the model.

We stress that the purpose of this section is merely to illustrate the workings of our

identification bounds in an economically interpretable setting. Hence, we deliberately con-

sider a small number of observable variables. Our results below are necessarily sensitive to

the set of observables, as shown through robustness checks in Online Appendix B.6. How-

ever, we caution against the belief that the use of a large number of observable variables will

automatically guarantee that shocks are recoverable (or invertible) in realistic applications.20

Model. We employ the Smets & Wouters (2007) model. Throughout, we parametrize the

model according to the posterior mode estimates of Smets & Wouters (2007).21 Following the

canonical trivariate VAR in the empirical literature on monetary policy shock transmission,

we assume the econometrician observes aggregate output, inflation, and the short-term policy

interest rate. These macro aggregates are all stationary in the model, so they should be

20Although most DSGE models in the literature feature a small number of shocks for simplicity, in reality
the addition of new observables will likely contaminate the analysis with additional nuisance shocks (includ-
ing, but not limited to, measurement error). While the recoverability assumption may in some settings be
justified from a theoretical standpoint, it should not be taken for granted.

21Our implementation of the Smets-Wouters model is based on Dynare replication code kindly provided
by Johannes Pfeifer. The code is available at https://sites.google.com/site/pfeiferecon/dynare.
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viewed as deviations from trend. The model features seven unobserved shocks, so not all

shocks can be invertible.

The econometrician observes a single external instrument zt for the shock of interest ε1,t:

zt = αε1,t + σvvt.

We normalize α = 1 throughout and compute identified sets for two different degrees of

informativeness of the external instrument, 1
1+σ2

v
∈ {0.25, 0.5}. We do not attach any specific

economic interpretation to the IV in the context of the Smets & Wouters (2007) model.

We separately consider three different shocks of interest: a monetary shock, a forward

guidance shock, and a technology shock. These shocks have been chosen to illustrate how the

informational requirements of our procedure are substantively less demanding than those of

familiar SVAR-IV analysis. The conventional monetary policy shock as well as the technology

shock are already included in the original Smets & Wouters (2007) model. For the forward

guidance shock, we depart from the original model by assuming that monetary policy shocks

are known two quarters in advance.22 With our set of observables, the monetary shock

is nearly invertible, but the others are not. The forward guidance shock is instead nearly

recoverable, whereas only the long-run cycles of the technology shock can be accurately

recovered from the data. Nevertheless, we show that our partial identification analysis is

informative about the effects of all three shocks.

Monetary shock. We first consider identification of monetary policy shocks. These are

defined as shocks to the serially correlated disturbance in the model’s Taylor rule.

The monetary shock is nearly invertible in our parametrization. Specifically, the collection

of all past and current values of the observable macro variables explain a fraction R2
0 = 0.8705

of the variance of the shock, as shown by Wolf (2018).23 The infinite past, present, and future

of the observables yield only slightly sharper identification, with R2
∞ = 0.8767. Figure 1

shows the spectral density sε†1
(·) of the two-sided best linear predictor of the monetary shock

based on all macro variables. The data are essentially equally informative about medium

and high frequencies of the monetary shock, whereas the long-run cycles of the shock cannot

22Formally, we implement forward guidance by changing the baseline Smets & Wouters (2007) model
so that the monetary shock has time subscript t − 2 instead of t. This is the notion of forward guidance
discussed, for example, in Del Negro et al. (2012).

23Wolf (2018) argues that the R2
0 of monetary policy shocks is robustly high because such shocks uniquely

move nominal interest rates and inflation in opposite directions.
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Monetary shock: Spectral density of best 2-sided linear predictor
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Figure 1: Scaled spectral density 2πs
ε†1

(·) of the best two-sided linear predictor of the monetary

shock. A frequency ω corresponds to a cycle of length 2π
ω quarters.

be accurately recovered from the data. At the peak of the spectral density, the observables

explain a fraction 0.8958 of the variance of that particular cyclical component of the monetary

shock; hence, αLB =
√

0.8958 = 0.9465, which is close to the truth of 1.

Because the shock is nearly invertible, the upper bounds of the identified sets for the

forecast variance ratios are close to the truth, while the lower bounds depend on the infor-

mativeness of the IV. Figure 2 displays the identified set of the FVR at different forecast

horizons.2425 The upper and lower bounds are proportional to the true FVRs. The lower

bound scales one-for-one with instrument informativeness, while the upper bound scales

one-for-one with the maximal informativeness of the data for the shock across frequencies.

The upper bounds are thus close to the true FVRs in this application with a near-invertible

shock. The informativeness of the lower bounds depends entirely on the strength of the IV.

Due to the near-invertibility of the shock, SVAR-IV identification of the monetary shock

would only be slightly biased (Forni et al., 2018; Wolf, 2018). This, however, is not the case

for the next two shocks we consider.

24We omit identified sets for FVDs as the upper bound is trivial, cf. Online Appendix B.1.
25Throughout this paper, the identified sets for FVRs are constructed horizon by horizon. However, the

joint uncertainty about FVRs at different horizons is caused by uncertainty about the single parameter α.
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Monetary shock: Identified set of FVRs
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Figure 2: Horizon-by-horizon identified sets for FVRs up to 10 quarters. The two lower bounds
are for 1

1+σ2
v

= 0.25 (lower dashed line) and 1
1+σ2

v
= 0.5.

Forward guidance shock. We now modify the model to include forward guidance

shocks, a type of news shock. As discussed above, a forward guidance shock is identical

to a monetary shock, except it is anticipated two quarters in advance by economic agents.

As is common with news shocks, the forward guidance shock is highly noninvertible but

approximately recoverable. The wedge between information contained in the infinite past and

information contained in the entire time series of observables is sizable: Contemporaneous

informativeness is limited, with R2
0 = 0.0792, but looking two quarters ahead basically

returns us to the level of informativeness for the standard monetary shock, with R2
2 = 0.8731

and R2
∞ = 0.8813. Intuitively, on impact, all macro aggregates move in the same direction,

suggesting to the econometrician that the economy was probably buffeted by a demand

shock. But two quarters from now, when the anticipated innovation finally hits, the interest

rate response suddenly switches sign, sending a strong signal that in fact a monetary policy

shock – and not some other kind of demand shock – had occurred. This is one example of

why, with news shocks, the incremental bite of two-sided analysis can be substantial.

Despite the high degree of noninvertibility, the identified sets for the FVRs of the forward

guidance shock are as informative as those for the monetary shock, as shown in Figure 3. This

demonstrates that our partial identification analysis is not only robust to noninvertibility – its

quantitative usefulness does not depend on the degree of invertibility per se. In stark contrast,

identification that incorrectly imposes invertibility (e.g., SVARs) would overstate variance
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Forward guidance shock: Identified set of FVRs
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Figure 3: Horizon-by-horizon identified sets for FVRs up to 10 quarters. The two lower bounds
are for 1

1+σ2
v

= 0.25 (lower dashed line) and 1
1+σ2

v
= 0.5.

decompositions by a factor of 1/0.0792 ≈ 13 (!).26 Recoverability-based identification would

err by a more modest factor of 1/0.8813 ≈ 1.13.

Technology shock. Finally, we consider identification of technology shocks, defined as

an innovation to the autoregressive process of total factor productivity.

Unlike the monetary and forward guidance shocks, the technology shock is far from re-

coverable, using our baseline set of observables; nevertheless, our bounds remain informative.

In the model, the technology shock is much more important in accounting for low-frequency

cycles of the data than it is for high-frequency cycles. The degrees of invertibility and re-

coverability are low: R2
0 = 0.2007 and R2

∞ = 0.2209. However, the data are very informative

about the lowest-frequency cycles of the technology shock, as shown in Figure 4. As a result,

α2
LB = 0.9092 is close to the true value of 1, and the upper bounds of our identified sets for

FVRs and the degree of invertibility (not shown) yield tight identification. In contrast, iden-

tification that incorrectly imposes either invertibility or recoverability of the shock overstates

the FVR by a factor of about 5.

26To be exact, standard SVAR-IV methods would overstate impact impulse responses by a factor of
1/
√

0.0792 ≈ 3.6 and so impact variance decompositions by a factor of 13. Subsequent impulse responses
would not be proportional to true responses, due to the imposed VAR dynamics (Stock & Watson, 2018).
We state formal results on the bias of SVAR-IV under noninvertibility in Online Appendix B.4.
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Technology shock: Spectral density of best 2-sided linear predictor
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Figure 4: Scaled spectral density 2πs
ε†1

(·) of the best two-sided linear predictor of the technology

shock. A frequency ω corresponds to a cycle of length 2π
ω quarters.

5 Inference

To make the identification analysis practically useful, we develop partial identification robust

confidence intervals and tests. In a first step, the researcher estimates a reduced-form VAR

model, which is then used in a second step to derive sample analogues of our population

bounds. Using the general partial identification confidence procedures of Imbens & Manski

(2004) and Stoye (2009), we construct confidence intervals for both the parameters and for

the identified sets. We also discuss a test of invertibility. The confidence intervals are shown

to be asymptotically valid under nonparametric regularity conditions. Finally, we show

through simulations that the LP-IV confidence intervals perform well in finite samples.

We assume the availability of a single instrument zt for notational simplicity. The gen-

eralization to multiple instruments is straight-forward, as discussed in Section 3.3.

Reduced-form VAR. We assume that the second-moment properties of the data are

captured by a reduced-form VAR in (y′t, zt)
′. The lag length p is initially assumed to be

finite and known, but this is relaxed below. Thus, assume that there exist (ny +1)× (ny +1)

matrices A`, ` = 1, 2, . . . , p, and a symmetric positive definite (ny + 1)× (ny + 1) matrix Σ
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such that the spectral density of Wt ≡ (y′t, zt)
′ is given by

sW (ω) =

(
Iny+1 −

p∑
`=1

A`e
−iω`

)−1
Σ

(
Iny+1 −

p∑
`=1

A`e
−iω`

)−1∗
, ω ∈ [0, 2π],

and such that all roots of the polynomial x 7→ det(Iny+1 −
∑p

`=1A`x
`) are outside the unit

circle. Let ϑ ≡ (vec(A1)
′, . . . , vec(Ap)

′, vech(Σ)′)′ denote the collection of true reduced-form

VAR parameters, and let ϑ̂ ≡ (vec(Â1)
′, . . . , vec(Âp)

′, vech(Σ̂)′)′ denote the least-squares

estimators. Under standard conditions, we have T 1/2(ϑ̂ − ϑ)
p→ N(0,Ω), where T is the

sample size, and the asymptotic variance Ω can be estimated consistently by Ω̂, say (Kilian

& Lütkepohl, 2017, Ch. 2.3).

Although not essential to our approach, we assume a reduced-form VAR structure for

three reasons. First, VARs are known to be able to approximate any spectral density func-

tion arbitrarily well as the VAR lag length tends to infinity. Second, the VAR structure

facilitates the development of a test of invertibility. Third, VAR-based inference amounts to

applying our population calculations from Section 3 to a spectrum of a particular functional

form (namely a VAR spectrum with the particular estimated parameters ϑ̂). All inequali-

ties satisfied in the population must then also hold in any finite sample, thus guaranteeing

nonempty identified sets, for example (up to numerical error, but not statistical error). The

advantages of the VAR approach notwithstanding, we remark that one could in principle use

any well-behaved estimator of the spectrum of (y′t, zt)
′.

While we here assume a finite VAR lag length for expositional simplicity, Online Appendix

B.9 proves that our VAR-based inference strategy is asymptotically valid under nonparamet-

ric regularity conditions, provided that the VAR lag length p = pT used for estimation

diverges with the sample size T at an appropriate rate. That is, the inference strategy is

valid even if the true data generating process (DGP) is a possibly non-Gaussian VAR(∞).

In practice, we suggest estimating the lag length p by information criteria or likelihood ra-

tio tests. We emphasize that assuming a reduced-form VAR is less restrictive than doing

SVAR-IV inference: We do not assume that the reduced-form VAR residuals span the true

structural shocks εt. For example, we continue to allow the number of structural shocks to

possibly exceed the number of variables in the VAR.

Invertibility test. It is straight-forward to test for invertibility of the shock of interest

using the estimated reduced-form VAR. We showed in Proposition 2 that the distribution

of the data is consistent with invertibility of ε1,t if and only if z̃t does not Granger cause yt.
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Granger non-casuality of z̃t for yt is equivalent with Granger non-causality of zt for yt. A test

of the Granger non-causality null hypothesis amounts to a test of the exclusion restrictions

that lags of zt do not enter the reduced-form VAR equations for yt. This test has power

against all Granger causal alternatives, so it has power against all falsifiable noninvertible

alternatives by Proposition 2.27

Confidence intervals. We now construct partial identification robust confidence in-

tervals for identified sets and for the true parameters. Here we simply apply the general

inference methods developed by Imbens & Manski (2004) and refined by Stoye (2009).

We start by defining notation. Given the reduced-form VAR model, all identified sets

derived in Section 3.2 are of the form [h(ϑ), h(ϑ)], where h(·) and h(·) are continuous functions

mapping the VAR parameter space into the real line, and such that h(·) ≤ h(·). A (pointwise)

consistent estimator of the identified set [h(ϑ), h(ϑ)] is then given by the plug-in interval

[h(ϑ̂) , h(ϑ̂)].

Let ∆̂ ≡ h(ϑ̂) − h(ϑ̂) denote the width of the estimate of the identified set. Assume h(·)
and h(·) are continuously differentiable at the true VAR parameters ϑ with 1 × dim(ϑ)

dimensional Jacobian functions ḣ(·) and ḣ(·). Define the standard errors of h(ϑ̂) and h(ϑ̂),

σ̂ ≡
√
T−1ḣ(ϑ̂)Ω̂ḣ(ϑ̂)′ , σ̂ ≡

√
T−1ḣ(ϑ̂)Ω̂ḣ(ϑ̂)′,

and their correlation,

ρ̂ ≡ T−1ḣ(ϑ̂)Ω̂ḣ(ϑ̂)′

σ̂ × σ̂
.

Finally, let Φ(·) denote the standard normal cumulative distribution function.

The interval [
h(ϑ̂)− Φ−1(1− β/2)σ̂ , h(ϑ̂) + Φ−1(1− β/2)σ̂

]
(17)

is a (pointwise) asymptotically valid level-(1 − β) confidence interval for the identified

set [h(ϑ), h(ϑ)]. That is, the above interval contains the entire identified set in at least

100(1 − β)% of repeated experiments, asymptotically. This follows immediately from the

27Stock & Watson (2018) develop an LP-IV invertibility test which directs power against alternatives with
impulse response functions that differ substantially from the invertible null. They do not discuss whether
their test has power against all falsifiable noninvertible alternatives.

29



delta method and the Bonferroni argument of Imbens & Manski (2004).

It is also possible to construct a confidence interval for the true parameter of interest. By

definition of the identified set, the true parameter is contained in [h(ϑ), h(ϑ)], but we know

nothing else about the true parameter. Although the interval (17) trivially has asymptotic

coverage of at least 1 − β for the true parameter, Imbens & Manski (2004) showed that

it is possible to develop a narrower interval with the same property. Online Appendix B.8

provides details on the simple computation, using Stoye’s (2009) refinement of the Imbens

& Manski procedure. In practical macroeconomic applications, however, we have found

that the Stoye (2009) confidence interval for the parameter itself is often only a few percent

narrower than the confidence interval (17) for the entire identified set. This is because the

estimated width ∆̂ of the identified set is usually large relative to the sampling uncertainty.

To implement the above confidence interval procedures, the researcher needs to compute

the VAR estimator ϑ̂, the asymptotic variance matrix estimate Ω̂, the bound estimates

h(ϑ̂) and h(ϑ̂), and the derivatives of the bounds ḣ(ϑ̂) and ḣ(ϑ̂). Appendix A.1 provides

formulas for the bounds and derivatives in terms of the VAR parameters. A simple bootstrap

implementation is also available, as we discuss below.

In practice, we recommend that inference be based on an alternative, conservative lower

bound on α2. Recall that α2
LB is given by the maximum of a certain function, cf. (12).

When this function has multiple maxima, continuous differentiability of α2
LB in the VAR

parameters ϑ may fail, rendering the delta method inapplicable (Gafarov et al., 2018). As

a simple remedy, we suggest replacing the maximum α2
LB = 2π supω∈[0,π] sz̃†(ω) in all our

bounds with the weakly smaller average α̃2
LB ≡

∫ 2π

0
sz̃†(ω) dω = Var(z̃†t ). The latter object is

continuously differentiable in the VAR parameters, so inference using the above methods is

unproblematic. If the true shock of interest is near-recoverable, then z̃†t is nearly white noise

(cf. Proposition 2), so the average α̃2
LB will be close to the supremum α2

LB, and little power

will be lost by using the conservative bound.28 We recommend the use of the conservative

bound α̃2
LB because it yields valid confidence intervals (regardless of recoverability) that are

easy to compute using the Imbens-Manski-Stoye procedures, and which are likely to perform

well when the researcher has taken care to employ a set of macro variables yt that are very

28An alternative, but more involved approach would be to apply the intersection bound confidence in-
tervals of Chernozhukov et al. (2013) or Andrews & Shi (2013, 2017). This would lead to better power
properties against a wider range of non-recoverable alternatives, although likely at the cost of lower
power in the near-recoverable case. If the researcher has prior information about the frequencies at
which yt is particularly informative about ε1,t, then a simpler approach would be to lower-bound α2

LB by

2π exp( 1
2π

∫ 2π

0
r(ω) log sz̃†(ω) dω), where r(·) is a nonnegative weight function such that

∫ 2π

0
r(ω) dω = 2π.
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informative about the shock ε1,t (in the sense of near-recoverability).

The resulting confidence intervals are pointwise valid in both senses of the word. First,

we focus on constructing a confidence interval for each parameter of interest separately,

as opposed to capturing the joint uncertainty of several parameters at once. Second, our

asymptotics are pointwise in the true parameters; we do not derive the coverage under the

worst-case data generating process.29 In particular, we ignore finite-sample issues caused by

weak instruments, i.e., αLB ≈ 0. We also ignore the familiar parameter-on-the-boundary

issue that may arise if one of the population bounds is at the boundary of its parameter

space (this issue can also arise in standard SVAR inference on variance decompositions).

Bootstrap implementation. The calculation of derivatives in the confidence interval

formulas above is obviated by the bootstrap. Suppose we bootstrap the VAR estimator ϑ̂

(Kilian & Lütkepohl, 2017, Ch. 12). Then we can compute σ̂ as the bootstrap standard

deviation of h(ϑ̂), σ̂ as the bootstrap standard deviation of h(ϑ̂), and ρ̂ as the bootstrap

correlation of h(ϑ̂) and h(ϑ̂). By plugging into the same confidence interval formulas as

above, we achieve the same (pointwise) asymptotic coverage probability as the delta method

confidence intervals, provided an appropriate bootstrap consistency condition holds.

Simulation study. Online Appendix B.10 presents a simulation study of the LP-IV

bootstrap confidence intervals for parameters and identified sets. We consider a variety of

structural VARMA DGPs, including a non-invertible one. We find that the finite-sample

coverage rates of our confidence intervals are close to the nominal level throughout, except

when parameter-on-the-boundary issues cause over-coverage. In particular, the LP-IV con-

fidence intervals have at least as accurate coverage as corresponding SVAR-IV confidence

intervals for invertible DGPs, and of course perform much better in the non-invertible case.

6 Empirical application

To illustrate our inference procedure, we study the importance of monetary policy shocks

in U.S. data. We use the empirical setting of Gertler & Karadi (2015), whose external

instrument for the monetary shock is obtained from high-frequency financial data. Using

29We do not discuss uniform asymptotics here because this seems to require bounding the magnitude of
the largest eigenvalue of the VAR polynomial away from 1 to ensure stationarity, in which case the width
of the identified set (for all our objects of interest) would also be bounded away from zero. This effectively
assumes away the uniformity issue highlighted by Imbens & Manski (2004).
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an SVAR-IV approach, Gertler & Karadi (2015) estimated impulse responses to a 20 basis

point shock in the short-term interest rate, but they did not consider the importance of the

monetary shock using variance decompositions. Caldara & Herbst (2019) compute FVDs for

a similar specification, but their analysis also assumes an SVAR model. Ramey (2016), citing

likely non-invertibility due to the increasing prevalence of forward guidance in the conduct of

U.S. monetary policy, cautions against such standard SVAR-IV analysis. Consistent with her

concerns, we reject invertibility (i.e., SVAR structure) in our specification. Despite our weak

identifying assumptions, we in fact further tighten the upper bounds on the contribution of

monetary shocks to inflation dynamics obtained by Caldara & Herbst (2019).

Model. Our specification largely follows Gertler & Karadi (2015), except of course in

that we do not impose a SVAR structure. We consider four endogenous macro variables yt:

output growth (log growth rate of industrial production), inflation (log growth rate of CPI

inflation), the Federal Funds Rate, and the Excess Bond Premium of Gilchrist & Zakraǰsek

(2012) as a measure of the non-default-related corporate bond spread. The external IV zt

is constructed from changes in 3-month-ahead futures prices written on the Federal Funds

Rate, where the changes are measured over short time windows around Federal Open Market

Committee monetary policy announcement times.30 Data are monthly from January 1990 to

June 2012. The Akaike Information Criterion selects p = 6 lags in the reduced-form VAR we

use for inference. To construct confidence sets we employ a homoskedastic recursive residual

VAR bootstrap with 10,000 draws.31

Results. The data reject invertibility. Table 1 shows point estimates and 90% confidence

intervals for the identified sets of the degree of invertibility and the degree of recoverability.

We also show partial identification robust 90% confidence intervals for these parameters

themselves, cf. Section 5. Since the confidence sets for the degree of invertibility exclude 1,

we can reject invertibility at the 10% level, though the data are consistent with moderately

30See Gertler & Karadi (2015) for details on the construction of the IV and a discussion of the exclusion
restriction. Nakamura & Steinsson (2018) argue that the monetary shock identified using this IV partially
captures revelation of the Federal Reserve’s superior information about economic fundamentals. Online
Appendix B.3 shows that our FVR bounds can generally be interpreted as bounding the importance of the
particular linear combination of shocks that tend to hit during FOMC announcements.

31All empirical results reported in this section, including unreported confidence intervals for the FVR
parameters themselves, can be produced in about 6 minutes per 1,000 bootstrap draws, using Matlab R2017b
without parallelization on a personal laptop with 1.60 GHz processor and 8 GB RAM.
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large values of the degree of invertibility R2
0.

32 We remark that the rejection of invertibility is

sensitive to the choice of VAR lag length and to the choice of data series; still, the estimated

lower bound on the degree of invertibility is always close to 0. The data are consistent with

a wide range of values for the degree of recoverability R2
∞.33

Figure 5 shows partial identification robust confidence intervals for the forecast variance

ratio of the four endogenous macro variables with respect to the monetary shock. We report

point estimates and confidence intervals for the identified sets (at each horizon separately);

these intervals are similar to the confidence intervals for the parameters themselves in this

application.34 At all forecast horizons, the 90% confidence intervals rule out FVRs above

31% for output growth and 8% for inflation.35 At forecast horizons up to 6 months, we can

rule out that the monetary shock accounts for more than 18% of the forecast variance of

the Excess Bond Premium. However, we cannot rule out that the monetary shock is an

important contributor to medium- or long-run forecasts of the bond premium. On the other

hand, we cannot rule out that the monetary shock is completely unimportant either.36

Hence, we have shown that the weak assumptions of the LP-IV model suffice to obtain

tight upper bounds on the forecast variance contribution of monetary shocks for several

variables, especially inflation. This is despite the finding by Stock & Watson (2018) that

standard errors for LP-IV-estimated impulse response functions are large in this application.

Many commentators have documented a recent divorce between inflation and output dynam-

ics (Hall, 2011); our results document a similar divorce in dynamics conditional on monetary

policy shocks. Although this finding is not novel in itself (Christiano et al., 1999; Ramey,

2016), our identifying assumptions are much weaker than the existing literature. Intuitively,

we are able to tightly bound the importance of monetary shocks for inflation because the IV

zt correlates more with measures of real activity than measures of prices. We conclude that,

32As discussed in Section 5, testing invertibility amounts to testing whether the IV Granger causes the
other variables in the reduced-form VAR. Online Appendix B.7 provides p-values for such tests. Note that
Stock & Watson (2018) fail to reject invertibility in a somewhat different specification.

33As discussed in Section 5, we base inference on a slightly conservative lower bound for α, so our confidence
intervals for R2

∞ include 1 by construction.
34Because we compute Hall’s asymmetric percentile bootstrap confidence interval, which has a built-in

bias correction, some of the intervals and bias-adjusted point estimates go negative. This could be avoided
by using Efron’s percentile interval, but bias correction is desirable in VAR contexts (Kilian & Lütkepohl,
2017, Ch. 12). Our qualitative conclusions are not sensitive to the bias correction.

35If we run our analysis on the pre-crisis 1990–2006 sample only, our upper bounds rule out FVRs above
13% for inflation, at all horizons.

36For completeness, Online Appendix B.7 provides forecast variance decompositions implied by an esti-
mated SVAR-IV model, although the latter is rejected by the data.
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Empirical application: Degree of invertibility/recoverability

R2
0 Estimate of IS [0.197, 0.687]

Conf. int. for IS [0.090, 0.877]

Conf. int. for param. [0.117, 0.828]

R2
∞ Estimate of IS [0.283, 1.000]

Conf. int. for IS [0.186, 1.000]

Conf. int. for param. [0.207, 1.000]

Table 1: 90% confidence intervals for the degree of invertibility R2
0 and the degree of recoverabil-

ity R2
∞, along with point estimates and 90% confidence intervals for the identified sets of these

parameters. IS = identified set. All numbers are bootstrap bias corrected. Upper bound of IS for
R2
∞ equals 1 by construction.

Empirical application: Forecast variance ratios
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Figure 5: Point estimates and 90% confidence intervals for the identified sets of forecast variance
ratios, across different variables and forecast horizons. For visual clarity, we force bias-corrected
estimates/bounds to lie in [0, 1].
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to the extent that inflation is a monetary phenomenon, it is so because of the systematic

component of monetary policy, not because of erratic policy shocks.

7 Conclusion

We expand the toolkit of the LP-IV approach to causal inference in macroeconometrics. LP-

IV has recently become a popular method for estimating impulse response functions by ex-

ploiting interpretable exclusion restrictions, without imposing invertibility or functional form

assumptions on shock transmission. However, existing methods did not allow researchers to

quantify the importance of individual shocks. We fill this gap by providing identification

results and inference techniques for variance decompositions, historical decompositions, and

the degree of invertibility. Our partial identification robust confidence interval procedure is

computationally straight-forward and relies on familiar methods for delta method or boot-

strap inference in reduced-form VARs. The informativeness of our partial identification

bounds does not depend on the degree of invertibility of the shocks per se, but rather on the

strength of the instrument and the informativeness of the macro variables for some short-,

medium-, or long-run cycles of the shock of interest. In contrast, the validity of SVAR-IV

analysis relies on the testable assumption that the shock of interest is nearly invertible (Forni

et al., 2018). Finally, we show that if researchers are willing to assume that the shock of

interest is recoverable – a substantively weaker assumption than invertibility – most objects

of interest are point-identified.

Our work points to several potential future research directions. First, one could construct

simultaneous (rather than pointwise) confidence bands for, say, forecast variance decomposi-

tions at multiple horizons. Second, methods from the moment inequality literature could be

applied to develop confidence intervals with better power properties in applications where

the shock of interest is likely to be highly non-recoverable (Andrews & Shi, 2013, 2017;

Chernozhukov et al., 2013). Third, future research should explore inference issues caused

by parameters on the boundary, weak instruments, or near-unit roots. Fourth, our analysis

imposed stationarity, but cointegration properties could be relevant for forecast variance de-

compositions of data in levels. Finally, one could perform Bayesian inference on the identified

sets of the structural parameters.
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A Appendix

A.1 Formulas for implementing the confidence intervals

Here we provide formulas needed to construct the partial identification robust confidence

intervals in Section 5. Assume the spectrum of Wt = (y′t, zt)
′ has VAR structure as in

Section 5. We now show how to compute the interval bounds from the reduced-form VAR

parameters ϑ = (vec(A1)
′, . . . , vec(Ap)

′, vech(Σ))′.

Preparations. We first map the reduced-form VAR parameters ϑ into the various vari-

ances and covariances needed to compute our objects of interest. In principle, it is possible

to directly compute these mappings from ϑ using standard VAR formulas. However, we

prefer working with the vector moving average representation, as outlined below. Our first

objective is then to map the VAR representation into a VMA representation

Wt = B(L)et,

where

B(L) =
∑∞

`=0B`L
`, et

i.i.d.∼ N(0, InW
),

and nW ≡ ny + 1. This is achieved by setting

B0 = Σ
1
2 , Bh =

∑h
`=1A`Bh−`, h ≥ 1,

where A` = 0nW×nW
for ` > p. In practice, we truncate this recursion at some large p̂, and

set Bh = 0nW×nW
for h > p̂. For each h, denote the top ny × nW block of the nW × nW

matrix Bh by By,h, and write By(L) =
∑∞

`=0By,`L
` for the entire lag polynomial. Then

yt = By(L)et.

Let Bz̃ be the bottom row of B0, so that

z̃t = Bz̃et.

Bounds for α. To compute the bounds for α, we need the quantities

α2
UB = Var(z̃t), (18)
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α2
LB = 2π max

ω∈[0,π]
syz̃(ω)∗sy(ω)−1syz̃(ω), (19)

Var(z̃†t ) = 2

∫ π

0

syz̃(ω)∗sy(ω)−1syz̃(ω) dω. (20)

For the upper bound (18), we have

Var(z̃t) = Bz̃B
′
z̃ ≡ Σz̃.

For the lower bound (19),

sy(ω) = By(e
−iω)By(e

−iω)∗,

syz̃(ω) =
∑p̂

`=0 Σy,z̃,`e
−iω`,

where

Σy,z̃,` ≡ Cov(yt, z̃t−`) = By,`B
′
z̃.

In practice, we compute the maximum in (19) by grid search.

Rather than explicitly computing the integral (20), we note that we can approximate

Var(z̃†t ) = Var(E(z̃t | {yτ}t−∞<τ<t+∞)) arbitrarily well as M →∞ by

Var(E(z̃t | {yτ}t−M≤τ≤t+M)) = Σz̃,y,(M,M)Σ
−1
y,(M,M)Σ

′
z̃,y,(M,M),

where Σz̃,y,(M,M) is the covariance vector of z̃t and (y′t+M , . . . , y
′
t, . . . , y

′
t−M)′, and Σy,(M,M) is

the full variance-covariance matrix of (y′t+M , . . . , y
′
t, . . . , y

′
t−M)′. For any given M , we can

construct these matrices from

Cov(z̃t, yt+h) =

Bz̃B
′
y,h if h ≥ 0,

0 otherwise,

and

Cov(yt, yt−h) =
∑p̂

`=0By,`B
′
y,`+h.

Bounds for R2
0. The only missing ingredient to computing the identified set for the degree

of invertibility is Var(z̃t | {yτ}−∞<τ≤t). We can approximate this quantity arbitrarily well as

M →∞ by

Var(z̃t | {yτ}t−M≤τ≤t) = Σz̃ − (Σ′y,z̃,0, 01×nyM)Σ−1y,(M)(Σ
′
y,z̃,0, 01×nyM)′,
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where Σy,(M) is the full variance-covariance matrix of (y′t, y
′
t−1, . . . , y

′
t−M)′.

Bounds for R2
∞. The only missing ingredient to computing the identified set for the de-

gree of recoverability is Var(z̃t | {yτ}−∞<τ<∞). We can approximate this quantity arbitrarily

well as M →∞ by

Var(z̃t | {yτ}t−M≤τ≤t+M) = Σz̃ − Σz̃,y,(M,M)Σ
−1
y,(M,M)Σ

′
z̃,y,(M,M),

where all objects were already defined above.

Bounds for FVR. To compute the identified set for FVRi,`, we need Cov(yt, z̃t−h) as

well as Var(yi,t+` | {yτ}−∞<τ≤t). The first object was discussed above, and the second object

is well approximated for large M by37

Var(yi,t+` | {yτ}t−M≤τ≤t) = Var(yi,t)−(Cov(yi,t+`, yt), . . . ,Cov(yi,t+`, yt−M))Σ−1y,(M)

× (Cov(yi,t+`, yt), . . . ,Cov(yi,t+`, yt−M))′,

where Σy,(M) was defined above.

Bounds for FVD. To compute the overall lower bound for the FVD, we need Var(ỹ
(αUB)
i,t+` |

{ỹ(αUB)
τ }−∞<τ≤t). As before, we approximate this by Var(ỹ

(αUB)
i,t+` | {ỹ

(αUB)
τ }t−M≤τ≤t) for large

M . The same formula used above for Var(yi,t+` | {yτ}t−M≤τ≤t) applies, where covariances

are obtained from

Cov(ỹ
(αUB)
t+` , ỹ

(αUB)
t ) = Cov(yt+`, yt)−

1

α2
UB

∑∞
m=0 Cov(yt, z̃t−m−`) Cov(yt, z̃t−m)′.

The sum can be truncated when the contribution of additional terms is small.

Remarks. Our computations require two truncation choices: the maximal VMA horizon

p̂, and the maximal prediction horizons M . In all codes, we set these truncation parameters

large enough to leave results unaffected by further increases.38 Derivatives of all parameters

with respect to ϑ can be computed by finite differences or automatic differentiation.

37In our computations for this paper we use the Kalman filter to compute the conditional variance, but
there is little difference in numerical accuracy or speed relative to the formula stated here.

38Our choices of truncation parameters therefore differs according to the application, depending on the
persistence of the studied processes.
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A.2 Proofs of main results

A.2.1 Auxiliary lemma

Lemma 1. Let B be an n × n Hermitian positive definite complex-valued matrix and b

an n-dimensional complex-valued column vector. Let x be a nonnegative real scalar. Then

B − x−1bb∗ is positive (semi)definite if and only if x >(≥) b∗B−1b.

Please find the proof in Online Appendix B.11.1.

A.2.2 Proof of Proposition 1

Let α and the spectrum sw(ω) be given. Define the ny-dimensional vectors

Θ•,1,` = α−1 Cov(yt, z̃t−`), ` ≥ 0,

and the corresponding vector lag polynomial

Θ•,1(L) =
∞∑
`=0

Θ•,1,`L
`.

Since α2 ≤ α2
UB, we may define σv =

√
Var(z̃t)− α2. Since α2 > α2

LB, Lemma 1 implies that

sy(ω)− 2π

α2
syz̃(ω)syz̃(ω)∗ = sy(ω)− 1

2π
Θ•,1(e

−iω)Θ•,1(e
−iω)∗

is positive definite for every ω ∈ [0, 2π]. Hence, the Wold decomposition theorem (Hannan,

1970, Thm. 2′′, p. 158) implies that there exists an ny × ny matrix lag polynomial Θ̃(L) =∑∞
`=0 Θ̃`L

` such that39

sy(ω)− 1

2π
Θ•,1(e

−iω)Θ•,1(e
−iω)∗ =

1

2π
Θ̃(e−iω)Θ̃(e−iω)∗, ω ∈ [0, 2π].

Thus, the following model for wt = (y′t, z̃t)
′ generates the desired spectrum sw(ω):

yt = Θ•,1(L)ε1,t + Θ̃(L)ε̃t,

z̃t = αε1,t + σvvt,

39We can rule out a deterministic term in the Wold decomposition because a continuous and positive
definite spectral density satisfies the full-rank condition of Hannan (1970, p. 162).
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(ε1,t, ε̃
′
t, vt)

′ i.i.d.∼ N(0, Iny+2).

Note that the construction requires only nε = ny + 1 shocks, ε1,t ∈ R and ε̃t ∈ Rny .

A.2.3 Proof of Proposition 2

Identified set for R2
0. If the identified set contains 1, then there must exist an α ∈

[αLB, αUB] and i.i.d., independent standard Gaussian processes ε1,t and vt such that (i)

z̃t = α× ε1,t + vt, (ii) vt is uncorrelated with yt at all leads and lags, and (iii) ε1,t lies in the

closed linear span of {yτ}−∞<τ≤t. This immediately implies the “only if” statement.

For the “if” part, assume z̃t does not Granger cause yt. By the equivalence of Sims and

Granger causality, z̃†t = E(z̃t | {yτ}−∞<τ<∞) = E(z̃t | {yτ}−∞<τ≤t). Note that the latter

best linear predictor is white noise since, for any ` ≥ 1,

Cov
(
E(z̃t | {yτ}−∞<τ≤t), yt−`

)
= Cov(z̃t, yt−`)− Cov

(
z̃t − E(z̃t | {yτ}−∞<τ≤t), yt−`

)
= 0− 0,

using the fact that z̃t is a projection residual. In conclusion, the best linear predictor z̃†t of

z̃t given {yτ}−∞<τ<∞ depends only on {yτ}−∞<τ≤t and it has a constant spectrum. From

the expression for α2
LB, we get that α2

LB = Var(E(z̃t | {yτ}−∞<τ≤t)), which further yields

α2
LB = Var(z̃t)R̃

2
0. Hence, expression (14) implies that the upper bound of the identified set

for R2
0 equals 1.

Identified set for R2
∞. The upper bound of the identified set for R2

∞ equals 1 if and only

if 2π supω∈[0,π] sz̃†(ω) = R̃2
∞Var(z̃t), and the right-hand side equals Var(z̃†t ) =

∫ 2π

0
sz̃†(ω) dω.

But we have supω∈[0,π] sz̃†(ω) = 1
2π

∫ 2π

0
sz̃†(ω) dω if and only if sz̃†(ω) is constant in ω almost

everywhere, i.e., z̃†t is white noise.
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Angrist, J. D., Jordà, Ò., & Kuersteiner, G. M. (2018). Semiparametric Estimates of Mone-

tary Policy Effects: String Theory Revisited. Journal of Business & Economic Statistics,

36 (3), 371–387.

Barnichon, R. & Brownlees, C. (2018). Impulse Response Estimation by Smooth Local

Projections. Review of Economics and Statistics. Forthcoming.

Barnichon, R. & Matthes, C. (2018). Functional Approximation of Impulse Responses.

Journal of Monetary Economics, 99, 41–55.

Blanchard, O. J., L’Huillier, J. P., & Lorenzoni, G. (2013). News, Noise, and Fluctuations:

An Empirical Exploration. American Economic Review, 103 (7), 3045–3070.

Brockwell, P. J. & Davis, R. A. (1991). Time Series: Theory and Methods (2nd ed.). Springer

Series in Statistics. Springer.

Caldara, D. & Herbst, E. (2019). Monetary policy, real activity, and credit spreads: Evidence

from bayesian proxy svars. American Economic Journal: Macroeconomics, 11 (1), 157–92.

Chahrour, R. & Jurado, K. (2018). Recoverability. Manuscript, Duke University.

Chernozhukov, V., Lee, S., & Rosen, A. M. (2013). Intersection Bounds: Estimation and

Inference. Econometrica, 81 (2), 667–737.

Christiano, L., Eichenbaum, M., & Evans, C. (1999). Monetary Policy Shocks: What Have

We Learned and to What End? In J. B. Taylor & M. Woodford (Eds.), Handbook of

Macroeconomics, Volume 1A chapter 2, (pp. 65–148). Elsevier.

41



Christiano, L. J., Motto, R., & Rostagno, M. (2014). Risk Shocks. American Economic

Review, 104 (1), 27–65.

Cochrane, J. H. (1994). Shocks. In Carnegie-Rochester Conference Series on Public Policy,

volume 41 (pp. 295–364). Elsevier.

Del Negro, M., Giannoni, M. P., & Patterson, C. (2012). The Forward Guidance Puzzle.

Federal Reserve Bank of New York Staff Report No. 574.

Forni, M. & Gambetti, L. (2014). Sufficient information in structural VARs. Journal of

Monetary Economics, 66 (Supplement C), 124–136.

Forni, M., Gambetti, L., Lippi, M., & Sala, L. (2017a). Noise Bubbles. Economic Journal,

127 (604), 1940–1976.

Forni, M., Gambetti, L., Lippi, M., & Sala, L. (2017b). Noisy News in Business Cycles.

American Economic Journal: Macroeconomics, 9 (4), 122–152.

Forni, M., Gambetti, L., & Sala, L. (2018). Structural VARs and Non-invertible Macroeco-

nomic Models. Journal of Applied Econometrics. Forthcoming.

Gafarov, B., Meier, M., & Montiel Olea, J. L. (2018). Delta-Method Inference for a Class of

Set-Identified SVARs. Journal of Econometrics, 203 (2), 316–327.

Gertler, M. & Karadi, P. (2015). Monetary Policy Surprises, Credit Costs, and Economic

Activity. American Economic Journal: Macroeconomics, 7 (1), 44–76.

Giacomini, R. & Kitagawa, T. (2018). Robust Bayesian Inference for Set-Identified Models.

Manuscript, University College London.

Giannone, D. & Reichlin, L. (2006). Does Information Help Recovering Structural Shocks

from Past Observations? Journal of the European Economic Association, 4 (2/3), 455–465.

Gilchrist, S. & Zakraǰsek, E. (2012). Credit Spreads and Business Cycle Fluctuations. Amer-

ican Economic Review, 102 (4), 1692–1720.

Gorodnichenko, Y. & Lee, B. (2017). A Note on Variance Decomposition with Local Pro-

jections. Manuscript, University of California Berkeley.

Granziera, E., Moon, H. R., & Schorfheide, F. (2018). Inference for VARs identified with

sign restrictions. Quantitative Economics, 9 (3), 1087–1121.

42



Hall, R. E. (2011). The Long Slump. American Economic Review, 101 (2), 431–469.

Hannan, E. (1970). Multiple Time Series. Wiley Series in Probability and Statistics. John

Wiley & Sons.

Hansen, L. P. & Sargent, T. J. (1991). Two Difficulties in Interpreting Vector Autore-

gressions. In L. P. Hansen & T. J. Sargent (Eds.), Rational Expectations Econometrics,

Underground Classics in Economics chapter 4, (pp. 77–119). Westview Press.

Imbens, G. W. & Manski, C. F. (2004). Confidence Intervals for Partially Identified Param-

eters. Econometrica, 72 (6), 1845–1857.

Jermann, U. & Quadrini, V. (2012). Macroeconomic Effects of Financial Shocks. American

Economic Review, 102 (1), 238–271.
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