Costly Inspection and Money Burning in Internal Capital Markets

Rohit Patel∗ Can Urgun†

April 23, 2017‡

Abstract

Bureaucracy and influence activities consume a great deal of managers’ time and effort in an organization. These activities are surplus destroying in the sense that they produce no direct output or information. This paper suggests a positive role for these activities. We develop a model for allocation in internal capital markets that takes a mechanism design perspective and incorporates both costly inspection and money burning (e.g. bureaucracy, influence activities) as tools for the headquarters to pursue optimal allocations. We find that the optimal mechanism deploys both the instruments of costly inspection and money burning, often at the same time on an agent.

JEL Code: C72, D73, G31
Keywords: costly verification, money burning, capital budgeting, investment, bureaucracy, influence activities

∗Kellogg School of Management, Northwestern University
†Kellogg School of Management, Northwestern University
‡We are grateful to Rakesh Vohra for his continued support during the project. We would also like to thank Eddie Dekel, Niko Matouschek, James Schummer, Alvaro Sandroni and Michael Powell for helpful comments and suggestions.
1 Introduction

Consider a situation in which the headquarters of a multidivisional firm must select one investment to make from a set of proposals from its division managers who are privately informed about their proposals values. The objective of headquarters is to choose the highest value proposal, and the objective of the division managers is to get their own proposal selected. Headquarters is unable to condition monetary transfers on the proposals the managers make, but there are two instruments available to elicit information from them. First, the managers are able to engage in money-burning activities to bolster their claims, and this money burning is costly both to the managers and to the firm. Moreover, as in Townsend (1979) or Harris and Raviv (1996), headquarters can hire, at a cost to itself, an external firm to conduct an assessment of any division managers proposal and find out its true value. Prior literature has considered the optimal use of money burning and costly state verification in isolation. This paper explores whether and how they should be optimally combined.

When only costly verification is available, the structure of the optimal mechanism is governed by feasibility for higher value projects. If a project is sufficiently valuable the headquarters would not want to decrease the probability of implementing such a project. However if all proposals are given the highest feasible probabilities the incentive costs associated with inspecting claims might add up quickly. Thus, proposals of low values are clustered together and treated identically with no verification and low implementation probabilities, and higher types have increasing probabilities of verification and implementation. However, in such a mechanism we show that the types that do have costly verification have no local incentive conditions. Instead all the lower types want to mimic all the higher types and the incentive costs for deterring low types from announcing higher types might be large and might require a larger than ideal cluster of lesser types. Thus when both money burning and costly verification are available to the mechanism designer, the mechanism designer might choose to engage in both the activities simultaneously. When distribution of types favors a separating equilibrium, money burning becomes a cheap and effective way of disincentivizing the very low types to deviate and announce a higher type.

We show that when both costly inspection and money burning are available instruments, the mechanism still shares some of the characteristics of a mechanism with only costly inspection. Namely, we show that the mechanism admits monotonicity in the ultimate probability of implementation with
regards to the project value, and takes a threshold form where all the projects below a certain threshold are not subject to inspection, or money burning. Monotonicity does not follow immediately from the incentive compatibility constraints, since the presence of two instruments make non-monotonous mechanisms feasible; the optimal mechanism however is monotone. We show that the optimal mechanism admits certain features observed in corporations\footnote{Such as monotonicity of money burning in implementation without inspection, and the threshold nature of the mechanism. A more detailed discussion follows later.} and that the money burning activities in corporations may be result of optimal behavior on part of the headquarters.

Finally we show that if costly verification is sufficiently cheap to be profitably usable on any project above a threshold, then the optimal behavior of the headquarters has a clear structure. The tools of costly verification and money burning activities are both utilized in a form characterized by two thresholds. Projects with lower values are neither checked nor require money burning activities, projects with middling values have positive probability of costly verification but do not require money burning, projects with higher values have both positive probability of costly verification and require money burning.

Since there are two instruments our problem requires a novel approach. Instead of relying on envelope arguments we interpret our mechanism as a directed graph. Such an approach enables us to characterize incentive constraints regardless of whether money burning, costly verification or a combination of the two is used to tighten the incentive constraint. We explore the properties of the graph and deliver our results based on these properties. However, this graph theoretic approach also limits our ability as particular uses of the instruments are harder to identify.

The remainder of this paper is organized as follows: Section \ref{subsection:literature-review} provides a review of the related literature and discusses the contribution of the paper. Section \ref{section:model} presents the model and the analysis. All proofs can be found in the appendix.

\section{1.1 Literature review}

Research on costly verification in mechanism design is not new. Townsend\cite{Townsend1979} models optimal contracts with costly verification. Border and Sobel\cite{Border1987}, Mookherjee and Png\cite{Mookherjee1989} and Dunne and Loewenstein\cite{Dunne1995} fur-
ther study problems on costly state verification. Ben-Porath et al. (2014) studies allocation problem with multiple agents in presence of costly verification techniques and Vohra (2012) considers a discrete version of the same problem. Taking a different approach in costly verification problems Li (2016) considers mechanism design when there is limited punishments available to the designer. These papers however study the effects of costly verification in isolation to money burning, which is a key feature of internal capital markets.

There is also considerable research on money burning in mechanism design. McAfee and McMillan (1992), Hartline and Roughgarden (2008), Yoon (2011), Condorelli (2012) and Chakravarty and Kaplan (2013) all study optimal allocation problems with money burning. Again, much of the literature in money burning deals with the problem in isolation. Our model is most closely related to Ben-Porath et al. (2014) and builds upon their model by introducing money burning.

The usage of money burning in our environment is essentially costly signalling and has an established role in many strands of economic literature. At a stretch, the costly signalling model of Spence (1973) can be considered as one of the earliest works for utilizing costly actions for signalling. Ben-Porath and Dekel (1992) considers taking costly actions in the presence of forward induction, and show that once more than one player can do so the dynamics start to change. Besides the aforementioned earlier works, delegation literature in particular considers problems that share some features of our problem. Ambrus and Egorov (2015) explores a contracting problem between a single agent and a principal where money burning is used to provide incentives to an agent when transfers are limited. Even though delegation can be considered as allocation, the fundamental problem we address rests in selecting which agent to delegate and any rents are purely informational, rather than characterizing the optimal value of a delegation problem. Another paper in delegation literature is Alonso et al. (2008), where the delegation problem is between multiple agents, however coordination between multiple agents and the benefits from incentivizing the agents is the main concern in that research, whereas in our setting agents have no incentive to coordinate and there are no gains to be made from coordination.

Our main motivation for modelling the tools in our mechanism design problem rests in the literature about internal capital markets and the costly influence activities in them. Empirical evidence that diversification destroys shareholder value was provided in early studies by Lang and Stulz (1994) and Berger and Ofek (1995). They show that the market values diversified firms
less than a comparable portfolio of single segment firms. An important factor affecting the performance of a diversified firm is the efficiency of its internal capital markets; there is considerable empirical evidence to support this hypothesis. Rajan et al. (2000) show that the discount at which the diversified firms trade is positively related to the capital mis-allocation. An internal capital market is an environment without transfers and the optimal allocation must be achieved through other means at the disposal of the headquarters. There is an informational asymmetry where the divisional managers are better informed about the true value of the project. The headquarters can ask the managers for the true value, but the managers’ self-interest often does not align with that of the headquarters. For example, the managers might have an interest in securing funding for their own project regardless of the value of another project in a different division. This is likely to lead the managers to make exaggerated claims about the value of the project, and engage in activities that can influence the headquarters to approve their project at the cost of another. The headquarters often has the means to check the validity of claims of the managers; this can however be a costly exercise. Gertner et al. (1994), Harris and Raviv (1996) and Stein (1997), for instance, explore the capital allocation problem in organizations where the headquarters can inspect the value of the projects in some sense. Combining these insights in internal capital markets, we explore the properties of a mechanism for allocation, where costly verification and money burning activities are the tools and we try to see whether these money burning practices have a place at all in an optimally performing allocation market.

2 The Model

A diversified firm has \(D \) divisions. Each of the division managers have an investment proposal with value \(v_{ti} \), where \(t_i \) is the type of the division \(i \) and \(t_i \in \{1, 2, \ldots, n\} \forall i \) without loss of generality. We assume that the division types, i.e., the value of the projects are i.i.d draws from the type-space following the type distribution \(f \) such that a given proposal is of type \(t \) with probability \(f(t) \). We have \(\sum_t f(t) = 1 \), and with each type \(t \) is associated a value of the project, \(v_t \). Since \(v_t \) can be arbitrary, we can assume without

\footnote{Also see John and Ofek (1995), Servaes (1996), Berger and Ofek (1996), Daley et al. (1997), Lins and Servaes (1999), Desai and Jain (1999) and Lamont and Polk (2002) for additional evidence supporting the view that diversification destroys value.}
loss of generality that $f(t)$ follows a uniform distribution over $\{1, 2, \ldots, n\}$.\footnote{This can be done by replicating the types sufficient number of times, similar to taking the inverse of the cumulative distribution function as the type space in the case of continuous types, and can be used to approximate any distribution with a very minor loss in generality. We are thankful to an anonymous referee for pointing out the loss in generality.}

We will use V to denote both the sets, $\{1, 2, \ldots, n\}$ and $\{v_1, v_2, \ldots, v_n\}$ with a little abuse of notation. The objective of the headquarters is to maximize the expected value of the investment, minus the costs of any assessments done and the costs to the firm due to the money burning activities. The division managers and the headquarters are all assumed to be risk neutral. The division manager’s utility is monotone in the expected value generated by the investment minus the money burning cost. The cost of hiring an external firm to assess a division to discover the value of its investment is k; the firm charges a fixed cost irrespective of the division where $v_1 < k < v_n$. The headquarters must device a mechanism for optimal allocation of the resources. All agents are assumed to be risk neutral, and we will be looking at a Bayes Nash Equilibrium of the mechanism proposed by the headquarters.

The mechanism in its most general form can be complex. It can have multiple rounds of, assessments and eliminations of projects, and money burning activities, finally ending in an investment. We appeal to the revelation principle and invoke arguments in Ben-Porath et al. (2014) to demonstrate that we need only to look at the truthful mechanisms to cover all such possible scenarios. A truthful mechanism is one where the truth telling strategy on part of the managers is a bayesian nash equilibrium of the game. The basic idea is simply to design a mechanism that compensates the managers for telling the truth exactly as much as they can gain by lying about their project values in the mechanism. Further following the arguments in Ben-Porath et al. (2014) we also note that we need only look at mechanisms where a division manager’s claim is inspected only if her project is being considered for implementation. After all, there is no point in spending money on inspecting a project’s value if one has no intention of implementing it, especially since this is a setting where transfers are not permitted and no payments can be extracted from the division managers for their exaggerated claims. For maximum penalty, the project of the lying manager must be shelved. This suggests that we can restrict our attention to mechanisms where the turn of events is as follows. We assume that a single entity, called the principal, is in charge of designing and implementing the optimal mechanism.

Stage 1: The principal announces a policy that specifies a selection policy, an inspection policy and a money burning policy.
Stage 2: Agents report their types to the principal
Stage 3: Following the selection policy, a project is selected for Stage 4
Stage 4: The selected agent burns the required money
Stage 5: The selected project is inspected depending on the inspection policy
Stage 6: The selected project is implemented if there is no inspection, or if the agent is found truthful upon inspection

Note that this specific structure on how headquarters can choose to implement projects is not something selected by us for analysis; it is the result stemming from the mechanism design literature – that of all the possible ways that the firm can chose to implement its policies, none can do better than doing it in the aforementioned 6 Stage plan.

Following these arguments, a bayesian incentive compatible mechanism can be fully characterized by the three functions $p_i(t_i, t_{-i}) : V^n \mapsto \mathbb{R}_+$, $a_i(t_i, t_{-i}) : V^n \mapsto [0, 1]$, and $c_i(t_i, t_{-i}) : V^n \mapsto [0, 1]$. Here $p_i(t_i, t_{-i})$ is the amount of money burning by the division manager i in Stage 2, when the announced project values by the division managers are $v = (v_i, v_{-i}) \in V^n$ corresponding to the type announcement $t = \{t_i, t_{-i}\}$. We further abuse the notation to use t and v interchangeably, to mean the appropriate thing, in order to further ease the expositional burden. Since the amount of money burned cannot be negative, we must impose a constraint $p_i(t) \geq 0 \ \forall i \in D, \forall t \in V^n$. $a_i(t_i, t_{-i})$ is the probability of the i^{th} project being selected in Stage 3 for further review given the announced types $t = (t_i, t_{-i})$, thus, we must have $\sum_{i=1}^D a_i(t) \leq 1 \ \forall t \in V^n$ and $a_i(t) \geq 0 \ \forall t \in V^n$. We have $(1 - c_i(t_i, t_{-i}))$ as the probability that a costly inspection of the selected manager’s claims is done in Stage 4, hence $0 \leq c_i(t) \leq 1 \ \forall t \in V^n$.

At this point, it becomes necessary for us to clarify further what these money burning activities are, and in what fashion is the money burned. Attentive readers will notice that the probability of project selection and the probability of inspection are not allowed to depend on the level of money burning activities, the way we have formulated the mechanism. This is a restriction but it is without loss of generality. Money burning activities can be of many forms – the headquarters can introduce a policy of extensive documentation for these proposals, or require approval and support of multiple offices which would consume the manager’s time and burn resources. This type of workplace bureaucracy is costly and does not have any direct output. It is for the headquarters to decide how much bureaucracy each manager must go through to submit a certain project of specific value to be considered for implementation. Because the choice of how much money is being burned
by the managers in this case rests with the headquarters, we need not have
the money burned as an argument for the probability of project selection
or inspection. If the manager fails to go through the required bureaucratic
procedures then they are automatically out of the running, and we have no
need for additional notation to accommodate for that.

Another form of money burning can be influence activities as described
by Milgrom and Roberts (1988) and Meyer et al. (1992), where the managers
spend time and effort trying to affect the decisions of the headquarters. If
the managers engage in activities trying to persuade the decision makers of
the merits of their proposal, they do so at the cost of time that could have
otherwise been used to carry out their responsibilities in the firm more effi-
ciently. These influence activities are examples of money burning where the
level of money burned is determined by the managers. In such a scenario, the
headquarters should actually condition the project selection and inspection
probabilities on the level of money burning. We must thus have the prob-
ability of selection for manager \(i \) as \(a_i(t, p) \) and similarly the probability of
inspection as \(c_i(t, p) \). We will argue that the two formulations are one and
the same.

It is clear that the headquarters can do no better in a mechanism where
managers decide the money burned than in the one where the headquarters
make the call. To see that the two are equivalent, consider a scheme where the
managers pick the level of money burned \(a_i(t, p) = a_i(t) \) when \(p = \langle p_i(v) \rangle \)
and zero otherwise, and define the inspection probability similarly. This
mechanism is essentially the same as in the case when the headquarters
decide the level of money burning. Basically, if the managers pick any level
of money burning other than what the headquarters want, their project is
shelved and they gain nothing. This is to say that if a certain divisional
manager schedules more than, say ten, meetings to discuss and elaborate
on their project, the headquarters can threaten to automatically disqualify
their proposal so as to discourage an undesirable level of money burning.
Thus, the amount of money burned can be interpreted as either the choice of
money burned by the managers, or that burned through bureaucratic means
by the headquarters, or some combination of the two. It is noteworthy that
our choice of Bayesian-Nash equilibria as the solution concept plays a critical
role in establishing this equivalence.

We are now in a position to clearly outline the optimization problem with
the objective function of the headquarters and the incentive constraints of
various agents. The headquarters wish to maximize:

\[
E_t \left[\sum_{i=1}^{D} [v_i a_i(t_i, t_{-i}) - p_i(t_i, t_{-i}) - k (1 - c_i(t_i, t_{-i})) a_i(t_i, t_{-i})] \right]
\]

\[
= \sum_{i=1}^{D} \left[E_{t_i} \left[E_{t_{-i}} [v_i a_i(t_i, t_{-i}) - p_i(t_i, t_{-i}) - k (1 - c_i(t_i, t_{-i})) a_i(t_i, t_{-i})] \right] \right]
\]

\[
= \sum_{i=1}^{D} \left[E_{t_i} \left[v_i \left(E_{t_{-i}} [a_i(t_i, t_{-i})] - E_{t_{-i}} [p_i(t_i, t_{-i})] \right) + k E_{t_{-i}} [c_i(t_i, t_{-i}) a_i(t_i, t_{-i})] - k E_{t_{-i}} [a_i(t_i, t_{-i})] \right] \right]
\]

The incentive constraints of the division managers are:

\[
E_{t_{-i}} [v_i a_i(t_i, t_{-i}) - p_i(t_i, t_{-i})] \geq E_{t_{-i}} [v_i a_i(\hat{t}_i, t_{-i}) c_i(\hat{t}_i, t_{-i}) - p_i(\hat{t}_i, t_{-i})] \quad \forall t_i, \hat{t}_i \in V
\]

Now we note that for any asymmetric mechanism there must exist a symmetric mechanism (an anonymous mechanism that does not favor any agent ex-ante) that does just as well, which can be achieved by permuting the indexes on the types in all possible ways and then implementing any one of these mechanisms randomly. Thus, we will now focus our attention on symmetric mechanisms. Symmetric mechanisms are also more desirable in the real world due to legal and practical reasons. The headquarters do not want to be perceived as preferring some division over another when there is nothing to be gained by it. We can thus look at mechanisms where \(p_i(t_i, t_{-i}) = p_j(t_j, t_{-j}) \), \(a_i(t_i, t_{-i}) = a_j(t_j, t_{-j}) \), and \(c_i(t_i, t_{-i}) = c_j(t_j, t_{-j}) \) if \(t_i = t_j \) and \(t_{-i} = t_{-j} \). This gives us \(E_{t_{-i}} [a_i(t_i, t_{-i})] = E_{t_{-i}} [a_j(t_j, t_{-j})] \) if \(t_i = t_j \) and we will abuse the notation to define \(A_t = E_{t_{-i}} [a_i(t_i, t_{-i})] \) when \(t_i = t \). Similarly we define \(p_t = E_{t_{-i}} [p_i(t_i, t_{-i})] \) when \(t_i = t \). Also, define \(c_t = \frac{E_{t_{-i}} [c_i(t_i, t_{-i}) a_i(t_i, t_{-i})]}{E_{t_{-i}} [a_i(t_i, t_{-i})]} \). We can say that \(0 \leq c_t \leq 1 \) since \(0 \leq c_i(t_i, t_{-i}) \leq 1 \) \(\forall t_i \in V^n \) thus implying \(E_{t_{-i}} [c_i(t_i, t_{-i}) a_i(t_i, t_{-i})] \leq E_{t_{-i}} [a_i(t_i, t_{-i})] \). Of course, this definition imposes constraints on the interim probabilities, \(A_t \), as well. \[\text{Border (1991)} \] provides us with a characterization of the set of feasible interim allocation probabilities that can be achieved using an allocation.

\footnote{On the other hand, it is possible that the headquarters actually have a real preference for some divisions. Such favoritism can be modeled through, say, breaks in money burning activities or higher returns for their project implementation. This is a possibility we will not explore in the present work.}
rule. We use $\langle A \rangle$ to denote the collection $\langle A_t \rangle_{t \in V}$. The inequalities state that $\langle A \rangle \in \mathbb{R}^n_+$ is feasible if and only if,

$$\sum_{t \in S} f_t A_t \leq \frac{1 - \left(\sum_{t \in S} f_t\right)^D}{D} \quad \forall S \subseteq V$$

where f_t is the probability of an agent being type t. Since f follows the uniform distribution, this can be written as:

$$\frac{D}{n} \sum_{t \in S} A_t \leq 1 - \left(1 - \frac{|S|}{n}\right)^D \quad \forall S \subseteq V$$

For any S the inequality can be written as $\sum_{t \in S} A_t \leq g(S)$ where we define $g : \mathcal{P}(V) \mapsto \mathbb{R}^+$ as $g(S) = \frac{n}{D} - \frac{n}{D} \left(1 - \frac{|S|}{n}\right)$; $\mathcal{P}(X)$ is the set of all subsets of a set X. We note that since $g(S)$ is essentially a function of the cardinality of the set S, we will abuse the notation to mean $g(S) = g(|S|)$ where g will take as argument either sets or positive integers. One of the properties of the function g that will be useful to us is that it is strictly submodular, proved as Lemma 1. Furthermore, we have $p_i \geq 0 \forall t \in V$ since $p_i(t_i, t_{-i}) \geq 0 \forall i \in D, \forall t \in V^n$. With these constraints being necessary and sufficient on A_t, c_t, p_t we can rewrite the equations and the problem.

Let us denote by the set \mathcal{A} the set of all feasible intermediate allocations that satisfy Border’s inequalities. A mechanism can now be characterized as a tuple $M = \{\langle A \rangle, \langle c \rangle, \langle p \rangle\}$ where,

A_t : interim probability of selection of type t

$1 - c_t$: probability of assessment if type t is the selected type

p_t : amount of money burning required for announcing type t

The objective is to maximize

$$\sum_{i=1}^{D} \left[E_{t_i} \left[v_{i_t} E_{t_{-i}} \left[a_{i}(t_i, t_{-i}) \right] - E_{t_{-i}} \left[p_{i}(t_i, t_{-i}) \right] + k E_{t_{-i}} \left[c_{i}(t_i, t_{-i}) a_{i}(t_i, t_{-i}) \right] - k E_{t_{-i}} \left[a_{i}(t_i, t_{-i}) \right] \right] \right]$$

$$= \sum_{i=1}^{D} \left[E_{t_i} \left[v_{i_t} A_{t_i} - p_{t_i} + k A_{t_i} c_{t_i} - k A_{t_i} \right] \right]$$
However, since the mechanism is symmetric and the expectation is the same for all the agents, we can drop the sum and write the objective function for a mechanism M as:

$$\text{Obj}(M) = E_t \left[v_t \mathcal{A}_t - p_t + k \mathcal{A}_t c_l - k \mathcal{A}_l \right]$$ (1)

The incentive constraints are:

$$v_t \mathcal{A}_t - p_t \geq v_t \mathcal{A}_i c_i - p_i \quad \forall t, \hat{i} \in V$$ (2)

or

$$v_t \mathcal{A}_t - p_t \geq v_t \mathcal{A}_i c_i - p_i \quad \forall t, \hat{i} \in V$$ (3)

after dropping the unnecessary subscript denoting the player. This gives us the optimization problem as follows:

$$\max_{\langle A \rangle, \langle c \rangle, \langle p \rangle} E_t \left[v_t \mathcal{A}_t - p_t + k \mathcal{A}_t c_l - k \mathcal{A}_l \right]
\text{ s.t. }
\langle A \rangle \in \mathcal{A}; \quad 0 \leq c_t p_t \leq p_t \; \forall t \in V; \; c_t, p_t \in \mathbb{R}^+
\quad v_t \mathcal{A}_t - p_t \geq v_t \mathcal{A}_i c_i - p_i \; \forall t, \hat{i} \in V
\quad v_t \mathcal{A}_t - p_t \geq 0 \; \forall t \in V$$

where the last set of constraints are the individual rationality constraints of the managers. Having outlined the objective and the IC constraints in terms of the intermediate probability, we can now use Border’s inequalities to search for an optimal mechanism. Let us define a transform function, which defines a new mechanism from any given mechanism M. We write $M^* = T_{M,r,s} (\mathcal{A}_r^*, \mathcal{A}_s^*, c_r^*, c_s^*, p_r^*, p_s^*)$ to mean that M^* is a transform of the mechanism M where if $M^* = \{ (\mathcal{A}^*), (c^*), (p^*) \}$ then $\mathcal{A}^*_r = \mathcal{A}_r'$; $\mathcal{A}^*_s = \mathcal{A}_s'$; $c_r^* = c_r'$; $c_s^* = c_s'$; $p_r^* = p_r'$; $p_s^* = p_s'$; $\mathcal{A}_k^* = \mathcal{A}_k$ $\forall k \notin \{ r, s \}$; $c_t^* = c_t$ $\forall t \notin \{ r, s \}$; $p_t^* = p_t$ $\forall t \notin \{ r, s \}$. We say that a mechanism $M = \{ (\mathcal{A}), (c), (p) \}$ is feasible if $\mathcal{A} \in \mathcal{A}$ and $0 \leq c_t p_t \leq p_t$ $\forall t \in V$; $c_t, p_t \in \mathbb{R}^+$. A mechanism is said to be incentive compatible if it satisfies all the IC constraints.

We will interpret a mechanism M as a directed graph. Let G_M be the directed graph that represents the mechanism M. Let $V(G_M)$ be the set of vertices of the graph and $E(G_M)$ be the set of edges where $(s,t) \in E(G_M)$ means that there is a directed edge originating at s and pointing towards t in G_M. For any mechanism M, we define $V(G_M) = V$. Since all graphs we consider will have the same vertex set, we will simply use V to denote the set of vertices instead of $V(G_M)$. We say that $(s,t) \in E(G_M)$ if the incentive
constraint for type s pretending to be type t is tight. More specifically $(s, t) \in E(G_M)$ if and only if

$$v_sA_s - p_s = v_tA_t - p_t$$

For any $t \in V$ let $deg_M^-(t)$ denote the indegree of t and let $deg_M^+(t)$ denote the outdegree of t in G_M. Let $i_M(t) = \{ r : (r, t) \in E(G_M) \}$ and $o_M(t) = \{ r : (t, r) \in E(G_M) \}$. Also let $I_M(t)$ be the set of all types t' such that there is a directed path leading from t' to t in G_M, and let $O_M(t)$ be the set of types t' such that there is a directed path leading from t to t' in G_M. We have $i_M(t) \subseteq I_M(t)$ and $o_M(t) \subseteq O_M(t)$. Similarly, for any $S \subseteq V$ define

$$i_M(S) = \{ t \in V \setminus S : (t, s) \in E(G_M) \text{ for some } s \in S \}$$

$$o_M(S) = \{ t \in V \setminus S : (s, t) \in E(G_M) \text{ for some } s \in S \}$$

$$I_M(S) = \{ t \in V \setminus S : t \in I_M(s) \text{ for some } s \in S \}$$

$$O_M(S) = \{ t \in V \setminus S : t \in O_M(s) \text{ for some } s \in S \}$$

We will call a graph G_M associated with an optimal mechanism M an optimal graph. We will study the properties of this graph. We start with the following definition

Definition 1. We say that $W \subseteq V$ is a web in G_M iff $(s, t) \in E(G_M) \forall s, t \in W$ and there do not exist r, s such that $r \in V \setminus W; s \in W$ and $\{(r, s), (s, r)\} \subseteq E(G_M)$. A web W is non-trivial if $|W| > 1$.

In essence, a web is a set of types where every node points to every other node in G_M, and no more nodes can be added to it while still having every node pointing to every other node. While this doesn’t directly follow from the definition, we will later see that in an optimal mechanism this is in-fact the case. It follows from the definition that any $t \in V$ such that $deg_M^-(t) = 0$ is a web. Moreover, every singleton set in V either belongs in a web, or is a web itself. In the appendix we show some properties of the optimal mechanism and how it relates to webs. Lemma 6 shows that a directed cycle in an optimal mechanism should be part of a web, and that in a web containing more than one type, none of the proposals may undergo assessment. Lemma 7 shows that an optimal graph G_M must be weakly connected and must contain exactly one web W^* - the proposals(nodes) in the web requiring no money burning. We will need these results along with Lemma 8 to deliver our first result regarding incentives.

Our first result says that the managers are strictly better off by announcing the true value of the project than any other lower value of the project, in
the optimal mechanism. While incentive compatibility already implies that the managers can do no better by lying, this result says that we can drop all the downward facing constraints from the problem and it remains unchanged – that we can assume no manager will ever devaluate their project to the headquarters. This is very much in line with what is observed in an organization. The proof follows previous results and uses the fact that if a manager is just as well off announcing a different type than the true type, then it must be the case that this different type project has a higher or the same probability of implementation. This means that if \((s, t)\) is tight then we must have \(A_s \leq A_t\). However, if \(v_s > v_t\) then we can implement \(s\) with a greater probability and \(t\) with a lower probability to improve the objective function overall. The detailed proof can be found in the appendix.

Proposition 1. In an optimal mechanism, if \((s, t) \in E(G_M)\) then either \(s < t\) or there exists a web \(W\) such that \(\{s, t\} \subseteq W\).

The goal of the influence activities carried out by the managers is to further the cause of their project. When spending time and effort in influencing the decision maker, the manager must believe that this will increase the probability of implementation for their project. This is often perceived to be an unnecessary distortion in allocation and popular wisdom seem to suggest that the probability of project implementation must remain unaffected, or even decrease, in the amount of money burned by the manager. However, it still remains the case that these influence activities persist, and increase the probability of the manager’s project implementation. Why do the leaders of these firms remain susceptible to these influence activities across the board? We posit that they are in fact acting in the best interests of the firm, and that in the optimal mechanism higher influence activities should correspond to higher chances of project implementation. Moreover, it stands to reason that if the project is inspected, that takes away any incentive for the manager to engage in money burning activities to influence the decision maker since they already know the true value of the project. This suggests that higher influence activities must be related to higher probability of project implementation, but without assessment. The next result reinforces exactly the intuition that the headquarters is acting optimally when we observe that influence activities in the firm work for the intended purpose.

Lemma 9. In an optimal mechanism, the amount of money burning is strictly monotonic in the probability of project implementation without an

\footnote{It is almost tautological that influence activities must improve the chances of project activities, for there would be no influence activities if they didn’t.}
assessment, i.e., in an optimal M, $A_t c_t > A_s c_s \iff p_t > p_s$ and $A_s c_s = A_t c_t \iff p_s = p_t$.

In a full information setting, the goal of the headquarters would be to undertake the highest value investment. While this is not possible when the information on project value is known only to the division manager, if a mechanism implements low value projects with higher probability as compared to the high value projects, we can be reasonably sure that the job is not done well. Indeed, we see that in an optimal mechanism the probability of selection in stage one must be higher for the high value investments. This, coupled with the fact that the mechanisms are truthful, implies that the overall probability of implementation for the high value projects remain higher than the low value projects. We have:

Proposition 2. In an optimal mechanism high value projects are implemented with a higher probability, i.e., $v_t > v_\hat{t} \implies A_t \geq A_\hat{t}$.

The proof is done in multiple steps. If $t > \hat{t}$ with $A_t < A_\hat{t}$, we first show that the higher type must have positive probability of inspection and the lower type must have positive money burning. We note that at least one of the types must be inspected, for if not, then the two IC constraints cannot hold simultaneously. It can further be shown that t must be inspected. Moreover, it must also be true that $A_t c_t > A_\hat{t} c_\hat{t}$ since otherwise we can change the mechanism to offer \hat{t} the same deal as type t and save on the cost of inspection. However, this means that the money burning for \hat{t} must be strictly higher than type t, as we have seen with Lemma 9. Thus we have that $c_t < 1$ and $p_\hat{t} > 0$.

We will now construct a mechanism M^* that is an improvement. We need to show three things to prove the result, that the mechanism is feasible, that it is incentive compatible and that it is an improvement over any existing mechanism. The mechanism is constructed by choosing A, c and p values such that the new values of $p_t, p_\hat{t}$ are linear combinations of the original values, similarly the changed values of $A_t c_t$ and $A_\hat{t} c_\hat{t}$ are linear combinations of the ones in the original mechanism, while slightly decreasing A_t and slightly increasing $A_\hat{t}$. We use Lemma 2 and the fact that $c_t < 1; p_\hat{t} > 0$ to establish feasibility of interim probabilities. Thus for a specific choice of δ, c and p we
have:

\[p^*_t = (1 - \delta)p_t + \delta p^*_t \]
\[p^*_t = (1 - \delta)p_t + \delta p_t \]
\[A^*_t c^*_t = (1 - \delta) A_t c_t - \delta A^*_t c_t \]
\[A^*_t c^*_t = (1 - \delta) A_t c_t - \delta A_t c_t \]

This ensures incentive compatibility of the mechanism \(M^* \) since for any arbitrary type \(r \):

\[
v_r A^*_t c^*_t - p^*_t = v_r ((1 - \delta) A_t c_t + \delta A^*_t c_t) - ((1 - \delta) p_t + \delta p_t)
= (1 - \delta) [v_r A_t c_t - p_t] + \delta [v_r A^*_t c_t - p_t]
\leq v_r A^* - p_r
\]

It is noteworthy that the result on monotonicity of interim allocation probability follows from incentive compatibility in much of the classical mechanism design literature. However, in our setting we can implement almost any arbitrary feasible vector of interim allocation probabilities. Thus, again, we need to use the optimality of the mechanism to achieve the result. These results now allow us to shed some light on the structure of the optimal mechanism.

Since higher valued projects have a higher chance of implementation we do not expect very low value projects typically to attract an assessment or a lot of money burning. This is supported by the following result that says that there is a threshold and projects below that have a fixed probability of implementations. No money burning is required for these low value projects, furthermore, no assessment is done on these projects.

Lemma 10. Every optimal mechanism \(M^* \) is of the form where \(\exists t \in V \) such that for all projects with \(v_t \leq v_t^* \) there is no assessment and no money burning. Furthermore, for all the types above this threshold, i.e., \(v_t > v_t^* \), there is either a positive probability of assessment, or some money burning effort, or both. Also, all the projects below this threshold have the lowest probability of implementation, i.e., \(A_t = \min_{r \in V} A_r \forall t \leq t^* \).

Seen through the lens of alternative interpretation of interim allocation probabilities as the expected amount of capital allocation, the optimal mechanism is in line with the actual practices in the industry where the divisional managers have the power to approve projects below a certain budget, and require approval for bigger projects. In the former case, there is no inspection and no money burning, however a combination of the two is likely for approval of the bigger projects, guided by the earlier results.
Lemma 11. In every optimal mechanism M where there are two types that require costly verification but no money burning, these types do not want to mimic each other. That is, in an optimal mechanism M, if t, \hat{t} have $c_t < 1$, $c_{\hat{t}} < 1$ and $p_t = p_{\hat{t}} = 0$, then $t \notin i_M(\hat{t})$ and $\hat{t} \notin i_M(t)$.

An important implication of lemma 11 is that if there is no money burning in the entire mechanism, the allocation probabilities are driven by the feasibility conditions as the incentives are rather simple. Mechanisms where there is only costly verification has already been explored by Vohra (2012) and can be fully characterized using a greedy algorithm. The mechanism gives the highest feasible probability of implementation to the highest type, second highest to the second highest type and so on until some lower types are grouped together with no verification in order to balance the verification costs and probabilities of implementation. We present that result adapted to our setting without proof.

Theorem 1 (Vohra). In the optimal mechanism without money burning there exists a cutoff type ν_λ. Any type above ν_λ has a positive probability of inspection and increasing probability of implementation as the type gets larger and any type below ν_λ have no inspection and have the same probability of implementation.

$$A_n = g(1), A_{n-1} = g(2) - g(1), \ldots, A_\lambda = g(n - \lambda + 1) - g(n - \lambda)$$
$$A_{\lambda-1} = \ldots A_1 = (g(n) - g(n - \lambda - 1))/\lambda$$
$$c_t = A_1/A_t \ \forall t$$

Also notice that in our setting when there is no money burning in the optimal mechanism this threshold level corresponds to the threshold we identify in lemma 10.

Similar to Vohra (2012) and Li (2016), Border’s inequalities characterize the set of feasible allocations as a closed polymatroid due to lemma 1 in our setting. Due to Vohra (2012) we also know that there is an incentive compatible solution in the polymatroid, so there exists an optimal solution. Optimization in polymatroids is a large literature that we do not discuss here but in both their problems and ours, a greedy algorithm delivers the optimal mechanism. Once feasible allocations are determined through the inequalities the greedy algorithm runs through potential lower thresholds in order to minimize the incentive costs. Although the algorithmic approach is helpful with just costly verification, with two instruments the algorithm itself is not very insightful and further characterization is desired. In order to
proceed further with the characterization more structure on the primitives is necessary. However, due to the uniform transformation it is difficult to find structural assumptions that are directly comparable to the ones in the literature. Vohra (2012) notes that a direct insight from a greedy algorithm is that any type that has lower value then the cost of inspection is certainly below the threshold, that is \(k \leq v_\lambda \). Based on this observation here we state a condition on the mechanism itself.

Condition 1. The cost of verification is weakly smaller than the value of the highest type that does not require either costly verification or money burning, that is \(k \leq v_\lambda \).

Proposition 3. In any optimal mechanism \(M \) that satisfies condition 1, the probability of inspection and the amount of money burning is weakly increasing in the value of the project. That is, for all \(t \) such that \(1 \leq t \leq n - 1 \), \(p_t \leq p_{t+1} \) and \(c_t \geq c_{t+1} \).

Proposition 3 implies that higher valued projects are more likely to require some form of signalling either through costly verification, money burning or both. From lemma 10 we also know that very low value projects do not require either, so it is important to determine when either tool is used and when both are used. The next result shows the structure governing the use of these tools in tandem.

Lemma 16. In any optimal mechanism \(M \) that satisfies condition 1, money burning is never utilized without costly verification. That is for any \(t \), if \(p_t > 0 \) then \(c_t < 1 \).

Lemma 16 shows that when the cost of verification is low enough money burning is never utilized by itself. More importantly lemmas 10 and 16 in combination with proposition 3 deliver the following corollary which characterizes the form of the optimal mechanism.

Corollary 1. Any optimal mechanism \(M \) that satisfies condition 1 is of the form where \(\exists t, \bar{t} \in V \) with \(t \leq \bar{t} \leq n \) such that for all projects with \(v_t \leq v_\bar{t} \), there is no assessment and no money burning. Furthermore, if \(t < \bar{t} \), for all the types between the two thresholds, i.e. \(v_t \geq v_t > v_\bar{t} \), there is a positive probability of assessment but no money burning. Finally, for all the types above the second threshold \(v_\bar{t} \), there is both positive probability of assessment and money burning.
Corollary 1 characterizes the optimal mechanism in a rather broad sense. Projects which have lower values are not subject to an assessment or require money burning. Projects that are more valuable but still not very valuable may potentially require an assessment but do not require money burning. Projects that are very valuable attract both positive probability of assessment and money burning. It is also important to note here that if the upper threshold is the highest type, money burning might not be part of the optimal mechanism in which case theorem 1 characterizes the mechanism.

Lemma 20. In any optimal mechanism M that satisfies condition 4, the gains realized by the division managers are non-decreasing in the value of the project, i.e. $v_t A_t - p_t \geq v_{t'} A_{t'} - p_{t'}$ if $t \geq t'$.

This result gives us one of the properties that is strongly desirable in an optimal mechanism from a corporate standpoint – it must be fair. What we mean by this is that a division manager proposing a high value project must not achieve a lower surplus than another manager proposing a lower value project. If the headquarters adopt a mechanism that punishes managers for proposing better projects, it might be a cause for resentment. Lemma 20 shows that this is not the case in the optimal mechanism. Note that it is not entirely obvious from the way the problem is set. One might be tempted to think that since a manager can always announce a lower value, she must always be able to ensure herself the gains associated with the lower value project. However, it can be shown fairly easily that if the higher value project has higher money burning than another lower value project, and if the lower value project has a high chance of inspection, then the surplus of the latter might be higher than the former in an incentive compatible mechanism. In the appendix we show that such an arrangement, although feasible, contradicts the monotonicity properties of an optimal mechanism.

Since the mechanism without money burning is characterized in theorem 1, here we will proceed with a more in depth characterization when money burning is part of the optimal mechanism. In that regard for a given optimal mechanism M we denote the types that require both money burning and costly verification as $V_M = \{v_t \in V : v_t > v_t\}$, and the types that only require costly verification and the highest type of that requires neither costly verification nor money burning as $V_M = \{v_t \in V : v_t \geq v_t \geq v_t\}$. The following proposition characterizes the incentive conditions and the relation between elements of the two sets.

Proposition 4. If an optimal mechanism M satisfies condition 1 and has money burning, then for every type that requires both money burning and
costly verification, there is a unique, distinct type that requires no money burning that wants to mimic it, i.e. \(\forall v_t \in \bar{V}_M, \exists! v_t' \in V_M, \) such that \(\{v_t\} = i_M(v_t) \). Furthermore if there are multiple types that require both costly verification and money burning, then their associated types are ordered according to the value of the projects. That is if \(v_t, v_t' \in \bar{V}_M \) with \(v_t < v_t' \) and \(\{v_t\} = i_M(v_t), \{v_t'\} = i_M(v_t') \) then, \(v_t < v_t' \).

Proposition 4 tells us how the mechanism looks like if money burning is part of the optimal mechanism. First, the number of types that require money burning and costly verification is weakly larger than the number of types that only require costly verification plus one. Second, these sets have a particular incentive structure between them. Every single type that requires both costly verification and money burning is mimicked by a single type that requires no money burning. Furthermore the types that are strictly below the lower threshold does not want to mimic the types that require money burning. In a sense every type has money burning but with is paired with a unique type that requires no money burning. These pairings are assortative in the sense that the highest types in both sets are paired, the second highest types are paired and so on. Going back to the interpretation of the mechanism as a graph \(G_M \) has a clear structure if there is money burning. There are distinct flows from types that require only costly verification (with the potential exception of the highest type that requires no costly verification or money burning) to types that require costly verification and money burning. Moreover the flows are ordered according to values in the sense that lower types with no money burning point to lower types with money burning and higher types with no money burning point to higher types with money burning.

The decoupling of incentives also highlights the intuition regarding the use of money burning. Without money burning every single type that is below the threshold wants to mimic every single type that is above the threshold. In that case the threshold needs to be high enough such that the costs of inspection associated with all these incentives are minimized, which may result in lower probabilities of implementation. A small amount of money burning deters lower types from mimicking higher types, thus enables both higher probabilities of implementation and potentially a lower threshold.
3 Conclusions and Future Work

3.1 Conclusions

We develop a model with minimal assumptions - multiple projects are proposed with different values and the managers act in self-interest while the headquarters try to device a mechanism to implement the best project. We allow the headquarters to use costly inspection and observable money burning activities to allocate optimally. From a mechanism design perspective, we see that when money burning activities are not available there are tight incentive conditions between the lowest value projects and the highest value projects. Minimizing the cost of inspection regarding these conditions might cause some projects to be implemented with less than ideal probabilities. Money burning activities enable headquarters to disincentivize the lowest types from mimicking very high types thus might help the headquarters to avoid unnecessarily low probabilities of implementation for valuable projects. Going back to our motivation the perception that these money burning activities are just that - money burning - and somehow have managed to persist due to the possible ineptitude of the executive officers appears to be unjustified even though money burning is destroying surplus, it might be a useful instrument in lowering incentive rents.

We also show that if costly inspection is sufficiently cheap to be profitably usable on projects that should have incentive rents associated with them, then the optimal behavior of the headquarters has a clear structure. The tools of costly inspection and money burning activities are both utilized with a clear order. Projects with lower values are neither checked nor require money burning activities, projects with middling values have positive probability of being checked but do not require money burning, projects with higher values have both positive probability of being checked and require money burning.

With cheap inspection costs the incentives of the agents are also clear. In particular, agents with middling value projects only want to mimic agents with higher value projects but do so while respecting their relative order among their class. In other words, if there are multiple projects in the higher value group, the highest type will only be mimicked by the highest type in the middling group, the second highest type will only be mimicked by the second highest in the middling group and so on.
3.2 Future Work

Our analysis is flawed in many ways. Money burning activities can be of many more types than the ones outlined by us. Even within the space of influence activities, it is possible that some of those activities are not observable. While we have modeled the observable activities, it is likely that these unobservable money burning activities are the cause of many efficiencies and it will take greater analysis to understand the impact of these activities on organizations.

On the technical front we tackle a multi-dimensional mechanism design problem via a graph theoretic approach. The applicability of a similar approach to other mechanism design problems is of particular interest. The uniform transformation, although without much loss in this context, limits comparisons to the existing literature and to some extent our analysis itself. In particular with such a transformation sufficient conditions for characterization are usually not intuitive and finding distributional assumptions that are both commonly accepted and necessary is a daunting task. Moreover, how the usual distributional assumptions such as monotone hazard ratio will translate into our setting and what they will imply is a venue of research we hope to explore in future work.

References

Appendices

Appendix

Lemma 1. \(g(S) \) is strictly submodular, i.e. for any two sets \(S, S' \) where \(S \not\subseteq S' \) and \(S' \not\subseteq S \) we have \(g(S \cup S') + g(S \cap S') < g(S) + g(S') \).

Proof. Let \(h(S) = 1 - g(S) \), and we abuse the notation similarly with \(h \) to write \(h(|S|) = h(S) \). We will first show that if \(x > y \) then

\[
 h(x - 1) - h(x) < h(y - 1) - h(y) \quad (4)
\]

From the definition we have \(h(i) = (1 - \frac{i}{n})^n \) and using binomial theorem we can write

\[
h(i - 1) - h(i) = \sum_{j=1}^{n} \left(1 - \frac{i}{n} \right)^{n-j} \left(\frac{1}{n} \right)^{j}
\]

And since this is a decreasing function of \(i \), we have (4). Let \(|S \cap S'| = y \) and let \(|S| = x \) then \(x > y \). Also let \(|S \cup S'| - |S| = |S| - |S \cap S'| = z \). We need to show,

\[
g(S \cup S') + g(S \cap S') < g(S) + g(S')
\]

or

\[
g(S \cup S') - g(S) < g(S') - g(S \cap S')
\]

or

\[
g(x + z) - g(x) < g(y + z) - g(y)
\]

or

\[
h(x) - h(x + z) < h(y) - h(y + z)
\]

or

\[
\sum_{i=1}^{z} h(x + i - 1) - h(x + i) < \sum_{i=1}^{z} h(y + i - 1) - h(y + i)
\]

And since for each \(i \) the term in the summation on the left side is smaller than the corresponding term one on the right, we have strict submodularity of \(g \).

□

Lemma 2. Let \(\langle A \rangle \in \mathcal{A} \) and \(A_t \geq A_s \) for some \(s, t \), then \(\exists \, \delta > 0 \) such that \(\langle A' \rangle \in \mathcal{A} \), where \(A'_t = A_t - \delta \), \(A'_s = A_s + \delta \) and \(A'_r = A_r \forall r \notin \{s, t\} \).

Proof. Consider an arbitrary set \(S \subseteq V \setminus \{s, t\} \). Let \(S_t \equiv S \cup \{t\} \), \(S_s \equiv S \cup \{s\} \).

Since \(A_s \leq A_t \) we can write

\[
\sum_{r \in S_s} A_r \leq \frac{1}{2} \left[\sum_{r \in S} A_r + \sum_{r \in S_t \cup S_s} A_r \right]
\]

25
We need to show,
\[\sum_{r \in S'} A'_r \leq g(S') \quad \forall S' \subseteq V \]

For the sets that do not contain \(s \), or contain both \(s, t \) the inequality holds since the left hand side has not increased. Since \(S \) is arbitrary and \(\delta \) can be arbitrarily small, we need only to show:
\[\sum_{r \in S_s} A_r < g(S_s) \]

However, from Lemma 1 we have
\[g(S_s \cup S_t) + g(S) < g(S_s) + g(S_t) \]
\[\Rightarrow \sum_{r \in S} A_r + \sum_{r \in S_s \cup S_t} A_r < g(S_s) + g(S_t) \]
\[\Rightarrow 2 \sum_{r \in S_s} A_r < g(S_s) \]
\[\Rightarrow \sum_{r \in S_s} A_r < g(S_s) \quad \therefore g(S_s) = g(S_t) \]

Thus concluding the proof. \(\square \)

Lemma 3. In an optimal \(M \) if \(\text{deg}_M(t) = 0 \), then \(p_t = 0; \ c_t = 1 \) and \(A_t = \min_{r \in V} A_r \)

Proof. If \(p_t > 0 \) then define \(M' = T_{M,s,t}(A_s, A_t, c_s, c_t, p_s, p_t - \delta) \) for small \(\delta > 0 \) then \(M' \) is feasible and is an improvement over \(M \) of \(\delta \) in the objective function. If \(c_t < 1 \) then define \(M' = T_{M,s,t}(A_s, A_t, c_s, c_t + \delta, p_s, p_t) \) for small \(\delta > 0 \) then \(M' \) is feasible, incentive compatible and an improvement in the objective function of \(kA_t \delta \). Also, if \(A_t > A_s \) for some \(s \) we have \(v_s A_s - p_s < v_s A_t \) since \(p_s \geq 0 \), thus violating the IC constraint. \(\square \)

Lemma 4. In an optimal \(M \), \(\min_s A_s c_s \geq \min_s A_s \)

Proof. Suppose not. Consider \(r, t \) be such that \(A_r c_r = \min_s A_s c_s \) and \(A_t = \min_s A_s \) then \(A_r c_r < A_t \), and we must have \(c_r < 1 \), otherwise \(A_r < A_t \) which is not possible. Now, we must have \(\text{deg}_M(r) = 0 \) otherwise there must be an \(r' \) such that \((r', r) \in E(G_M) \) but then \(v_r A_t > v_r A_r c_r - p_r = v_r A_r' - p_r \) violates the IC constraint. However, if \(\text{deg}_M(r) = 0 \) then \(c_r = 1 \) due to Lemma 3 giving us a contradiction. \(\square \)
Lemma 5. In an optimal mechanism M if $(t, \hat{t}) \in E(G_M)$ then $A_t c_i \geq A_{\hat{t}}$

Proof. Suppose not, and let $A_t c_i < A_{\hat{t}}$, then it must be the case that $p_t > p_{\hat{t}} \geq 0$. Now, consider the mechanism

$$M' = T_{M,t,\hat{t}}(A_t c_i, A_{\hat{t}}, c_i, p_t, p_{\hat{t}})$$

M' is clearly feasible. We now show that this new mechanism still satisfies all the incentive constraints. All incentive constraints not involving the type t remain unaffected. For the incentive constraints involving type t pretending to be any other type t, we have

$$v_t A_t - p_t = v_t A_{\hat{t}} - p_{\hat{t}} \geq v_t A_t c_i - p_t \geq A_t c_i - A_{\hat{t}} c_i \geq 0$$

And for all the constraints where any other type r can pretend to be type t we have

$$v_r A_r - p_r' = v_r A_r - p_r \geq v_r A_t c_i - p_t \geq v_r A_t c_i c_t - p_t = v_r A_t c_i - p_t$$

And so all the incentive constraints are satisfied. Now, looking at the increase in the objective function due to this change,

$$Obj(M') - Obj(M) = k(1 - c_t)(A_t - A_{\hat{t}} c_i)$$

Which is positive if $c_t < 1$ giving a contradiction. If $c_t = 1$ then we must have $deg_M(t) > 0$ otherwise Lemma 3 and Lemma 4 jointly give us a contradiction since $A_t > A_{\hat{t}} c_i$. Since $deg_M(t) > 0$ let $r' \in i_M(t)$ and $r' < t$ then

$$v_t A_t - p_t = v_r A_t c_i - p_i \Rightarrow v_r (A_t - A_t c_i) < p_t - p_i \Rightarrow A_t > A_t c_i; \ t > r'$$

Again, giving us a contradiction. So we must have $r' \geq t$ for all r' such that $(r', t) \in E(G_M)$.

Again, define $M' = T_{M,t,\hat{t}}(A_t - \delta, A_t, c_t, c_{\hat{t}}, p_t - v_t \delta, p_{\hat{t}})$ then this mechanism is feasible for small enough δ since $p_t > 0$. We see that for any r' such that
(r', t) \in E(G_M) we have
\begin{align*}
v_{r'}A_{r'} - p_{r'} &= v_rA_i - p_i \\
\implies v_{r'}A_r - p_{r'} &\geq v_rA_i - v_r\delta - p_i + v_\delta \\
\implies v_{r'}A_r - p_{r'} &\geq v_r(A_i - \delta) - (p_i - v_\delta) \\
\implies v_{r'}A_r - p_{r'} &\geq v_rA'_i - p'_i
\end{align*}

And hence M' is incentive compatible. Moreover, we see that $deg_M'(t) = 0$ and hence we must have $A'_i \leq A_ic_i$ due to lemma \[3\] and lemma \[4\] since M' is an optimal mechanism as well, but for δ small enough we still must have $A'_i \leq A_i < A'_i = A_i - \delta$ which is a contradiction. \hfill \Box

Lemma 6. In an optimal M, if W' is a directed cycle then all the projects in W' must have same probability of selection, and the same amount of money burning with no chance of assessment. Equivalently, $W' \subseteq W$ for some web W.

Proof. Let $W' = \{t_1, t_2, \ldots, t_n\}$ be the directed cycle then from Lemma \[5\] we have $A_{t_1} \leq A_{t_2}c_{t_2} \leq A_{t_2} \leq A_{t_3}c_{t_3} \leq \cdots \leq A_{t_1}c_{t_1}$ thus giving us an equality throughout. However, from IC constraints we have $v_{t_1}A_{t_1} - p_{t_1} = v_{t_1}A_{t_2}c_{t_2} - p_{t_2} \implies p_{t_1} = p_{t_2} = 0$, hence all the agents in the cycle must have the same persuasion requirements. Since $A_{t_i} = A_{t_j}; p_{t_i} = p_{t_j}; c_{t_i} = c_{t_j} = 1 \forall t_i, t_j \in W'$ we have $t_i \in i_M(t_j) \forall t_i, t_j \in W'$ and W' must be part of a web. \hfill \Box

Lemma 7. Every optimal G_M is weakly connected and contains exactly one web W^* with $i_M(W^*) = \emptyset$.

Proof. Let G_M be optimal, we will first show that there must exist a web W in G_M with $i_M(W) = \emptyset$. If $\exists t \in V$ such that $i_M(t) = \emptyset$ then $\{t\}$ is the desired web. So, $deg_M(t) > 0 \forall t \in V$, and G_M must contain directed cycles. Due to Lemma \[6\] these cycles must belong in a web and thus G_M must contain webs. Let \mathcal{W} be the set of webs in G_M.

Let $W^* = \arg\min_{W \in \mathcal{W}} \{A_t : t \in W\}$, so that for any $t^* \in W^*$ and any $t \in W \in \mathcal{W}$, $A_{t^*} < A_t$. They cannot be equal $(A_{t^*} \neq A_t)$ since that would mean that both the webs have the same money burning as well (since there are no assessments in webs, IC constraints would require same money burning) thus contradicting the fact that they are webs.

It must be the case that $i_M(W^*) = \emptyset$, for otherwise let $(t_1, t^*) \in E(G_M); t^* \in W^*; t_1 \in V \setminus W^*$ then $A_{t^*} \geq A_{t_1}$ due to Lemma \[5\] Now, since $deg_M(t_1) > 0$
we can find a t_2 such that $A_{t_1} \geq A_{t_2}$ and so on until we end up in another cycle with $A_{t_k} \leq A_t$, which is a contradiction to $W^* = \arg \min_{W \in \mathcal{W}} \{A_t : t \in W\}$.

We need to show now that W^* is the only web with $i_M(W^*) = \emptyset$. Let W be another such web. $\deg_M(W) = 0 \implies p_t = 0 \forall t \in W$, for if not then we can decrease money burning for all the types in the web by small $\delta > 0$ and improve the objective function without violating any IC constraints. Similarly, $\deg_M(W^*)$ mean that there is no money burning for projects in W^*. However, let $t \in W, t^* \in W^*$, since $p_t = p_{t^*} = 0$ and $A_t > A_{t^*}$, $v_{t^*}A_{t^*} < v_tA_t$ thus violating the IC constraint and giving a contradiction.

Now suppose the graph is not connected, then one of the components must contain W^*. Consider any other component, repeating the argument above, it follows that this component must contain a web W with $\deg_M(W^*) = 0$. However, this gives us a contradiction since there can only be one such web.

Lemma 8. If M is optimal, $(s, t) \in E(G_M)$ and $A_s = A_tc_t$ then $c_s = 1$.

Proof. If s has indegree zero then we have the result using Lemma 8 and so let us assume there is an r such that (r, s) bind, and let $c_s < 1$. Since $A_s = A_tc_t$ and $v_sA_s - p_s = v_sA_tc_t - p_t$ we have $p_s = p_t$. Now, since (r, s) bind,

$$v_rA_r - p_r = v_rA_sc_s - p_s$$

$$= v_rA_tc_tc_s - p_s$$

$$< v_rA_tc_t - p_t$$

Contrary to the IC constraint, and hence we must have $c_s = 1$.

Proposition 1. In an optimal mechanism, if $(s, t) \in E(G_M)$ then either $s < t$ or there exists a web W such that $\{s, t\} \subseteq W$.

Proof. Suppose not and let $s > t$. Note that Lemma 5 gives us $A_t \geq A_s$. We consider four cases,

Case I: $c_t < 1$; $o_M(t) \neq \emptyset$
Let $r \in o_M(t)$. We have,

\[v_tA_t - p_t = v_tA_rc_r - p_r \]

\[\implies p_r - p_t \leq v_s (A_rc_r - A_t) \qquad \because v_s > v_t; \quad A_rc_r \geq A_t \text{ due to Lemma } 5 \]

\[\implies p_r - p_t < v_s (A_rc_r - A_tc_t) \qquad \because c_t < 1 \]

\[\implies v_tA_s - p_s < v_sA_rc_r - p_r \qquad \because (s,t) \in E(G_M) \]

Violating the IC constraint.

Case II: $c_t < 1$; $o_M(t) = \emptyset$

Due to Lemma 5 we have $A_t \geq A_s$. Now, consider the mechanism

\[M' = T_{M,s,t} \left(A_s + \delta, A_t - \delta, \frac{A_s c_s}{A_s + \delta}, \frac{A_t c_t}{A_t - \delta}, p_s, p_t \right) \]

then M' is feasible due to Lemma 2 and the fact that $c_t < 1$. All incentive constraints not involving s, t remain unchanged. $A'_tc'_t = A_tc_t$ and $A'_sc'_s = A_sc_s$ and so no other type has an incentive to pretend to be s or t. Surplus of s has increased so it has no incentive to deviate in M' and since t has outdegree zero, for small enough δ, t will not deviate. M', however, is an improvement of $\delta(v_s - v_t)$ in the objective function.

Case III: $c_t = 1$; $A_t = A_s$

From Lemma 8 we have that $c_s = 1$. Since $v_sA_s - p_s = v_sA_t - p_t$ we get $p_s = p_t$ and so $s \in i_M(t); \quad t \in i_M(s)$ and they must belong in a web.

Case IV: $c_t = 1$; $A_t > A_s$

We have,

\[p_t - p_s = v_s(A_t - A_s) \]

\[\implies p_t - p_s > v_t(A_t - A_s) \qquad \because v_t < v_s \text{ and } A_s < A_t \]

\[\implies v_tA_s - p_s > v_tA_t - p_t \]

Now, consider the mechanism $M' = T_{M,s,t} (A_t, A_s, c_t, c_s, p_t, p_s)$ then it is clearly feasible and we can see that all the IC constraints not involving t, s remain unchanged. s, t have no incentive to deviate in M' since their surplus is not decreasing. No other type has any incentive to pretend to be s or t either since they would otherwise have done that in M. M' is however an improvement in the objective function of $(v_tA_s - p_s) - (v_tA_t - p_t)$ which is strictly positive as seen above. \[\square \]
Lemma 9. In an optimal mechanism, the amount of money burning is strictly monotonic in the probability of project implementation without an assessment, i.e., in an optimal M, $A_t c_t > A_s c_s$ $\iff p_t > p_s$ and $A_s c_s = A_t c_t$ $\iff p_s = p_t$.

Proof. If $\deg_M(s) \cdot \deg_M(t) = 0$ then the result follows from Lemma 3 and Lemma 8. Let s', t' be such that $(s', s) \in E(G_M)$ and $(t', t) \in E(G_M)$ then we have

$v_{s'} A_s c_s - p_s \geq v_{s'} A_t c_t - p_t$
$v_{t'} A_t c_t - p_t \geq v_{t'} A_s c_s - p_s$

Combining the two we get

$v_{t'} (A_t c_t - A_s c_s) \geq p_t - p_s \geq v_{s'} (A_t c_t - A_s c_s)$

Thus concluding the proof.

Proposition 2. In an optimal mechanism high value projects are implemented with a higher probability, i.e., $v_t > v_{\hat{t}} \implies A_t \geq A_{\hat{t}}$.

Proof. Let \hat{t}, t be such that $t > \hat{t}$ and $A_{\hat{t}} < A_t$ in an optimal mechanism M. If $\deg_M(\hat{t}) = 0$ then the proposition is trivially true due to Lemma 8 so $i_M(\hat{t}) \neq \emptyset$. The proof consists of two parts. First, we show that for this mechanism M we must have:

$0 < c_{\hat{t}} p_{\hat{t}} < p_{\hat{t}}$ (5)

Once we have proved (5) we will construct a feasible and incentive compatible mechanism that is a strict improvement over M; the mechanism that violates the proposition statement.

Suppose (5) does not hold. If $c_{\hat{t}} = c_t = 1$ then from the IC constraints of t, \hat{t} we have

$v_t (A_t - A_{\hat{t}}) \geq p_t - p_{\hat{t}} \geq v_t (A_t - A_{\hat{t}})$

which is not possible since $A_t > A_{\hat{t}}$ and $v_t > v_{\hat{t}}$, so:

$c_{\hat{t}} c_t < 1$ (6)

If $\deg_M^+(\hat{t}) = 0$ and $c_{\hat{t}} < 1$ then consider the mechanism M'' with

$M' = T_{M, t, \hat{t}} \left(A_{\hat{t}} - \delta, A_t + \delta, A_t c_t, \frac{A_t c_t}{A_{\hat{t}} - \delta}, \frac{A_t c_t}{A_{\hat{t}} + \delta}, p_{\hat{t}}, p_t \right)$
This is a feasible allocation as dictated by Lemma 2, for a sufficiently small δ. All IC constraints can be verified to be satisfied for small δ and the objective function improvement is $\delta(v_t - v_\hat{t})$. And so if $deg_M^+(\hat{t}) = 0 \implies c_\hat{t} = 1$. However, this implies that $p_\hat{t} > 0$, since otherwise \hat{t} must have lowest allocation probability and $A_t \leq A_\hat{t}$ contradicting the supposition. It also implies $c_\hat{t} < 1$ by (6). Thus, we have $\neg (5) \implies deg_M^+(\hat{t}) > 0$.

Now, since $deg_M^+(\hat{t}) > 0$ (i.e. $o_M(\hat{t}) \neq \emptyset$), let $\hat{t} \in o_M(\hat{t})$. We have:

\[
\begin{align*}
v_tA_t - p_t &\geq v_tA_\hat{t}c_\hat{t} - p_\hat{t} \\
\implies p_\hat{t} - p_t &\geq v_t(A_\hat{t}c_\hat{t} - A_t) \\
\implies p_\hat{t} - p_t &> v_t(A_\hat{t}c_\hat{t} - A_t) \quad \text{: Lemma 5: } A_\hat{t}c_\hat{t} \geq A_t > A_t \\
\implies v_tA_t - p_t &> v_tA_\hat{t} - p_\hat{t}
\end{align*}
\]

(7)

Consider the mechanism $M^* = T_{M,\hat{t}}(A_t, A_t, c_t, c_t, p_t, p_t)$ then there is no incentive for any type to deviate as shown by (7). The change in objective function however is

\[
v_tA_t - p_t + kA_tc_t - kA_t - [v_tA_t - p_t + kA_tc_t - kA_t] = (v_tA_t - p_t - v_tA_t + p_t) + k(A_t - A_t) + k(A_tc_t - A_tc_t)
\]

Which would be strictly positive if $c_t = 1$, or $A_t c_t \geq A_t c_t$. Thus $c_t < 1$ and $A_t c_t > A_t c_t$ implying $p_t > p_t \geq 0$ due to Lemma 5. This means (5) holds, contradicting the supposition.

Now that we have established that (5) must hold, consider the following mechanism $M^* = T_{M,\hat{t}}(A^*_t, A^*_t, c^*_t, c^*_t, p^*_t, p^*_t)$ where,

\[
\begin{align*}
A_t^* &= A_t - \varepsilon; \quad c_t^* = c_t - \varepsilon \left(\frac{v_t(A_t c_t - A_t c_t) - c_t(p_t - p_t)}{(p_t - p_t)(A_t - \varepsilon)} \right); \quad p_t^* = p_t - v_t \varepsilon \\
A_t^* &= A_t + \varepsilon; \quad c_t^* = c_t + \varepsilon \left(\frac{v_t(A_t c_t - A_t c_t) - c_t(p_t - p_t)}{(p_t - p_t)(A_t + \varepsilon)} \right); \quad p_t^* = p_t + v_t \varepsilon
\end{align*}
\]

This part of the proof proceeds in 3 steps. First, we will show that M^* is a feasible mechanism and the values lie within their bounds. Then we will show that M^* is an incentive compatible mechanism; finally showing that M^* is an improvement over M.

Step 1 - M^* is feasible: Lemma 5 shows that A_t^* and A_t^* are feasible for a small enough ε. We also know from (5) that $p_t > 0$ and so p_t, p_t are feasible
as well. That c^*_t is feasible can also be seen from (5), for small enough ε, since $c_t < 1$. It remains to be shown that c^*_t is feasible. To this end it will be shown that $0 < c^*_t \leq c_t$. The first part of the inequality will hold if ε is sufficiently small. For the second part, it must be that

$$\left(\frac{v_t(\mathcal{A}_tc_i - A_t c_t) - c_t(p_t - p_i)}{(p_t - p_i)(\mathcal{A}_i - \varepsilon)} \right) \geq 0$$

(8)

However consider $\hat{\hat{t}} = \inf \ i_{M^*}(\hat{t})$ then $t > \hat{\hat{t}} > \hat{t}$ due to Proposition 1. We have

$$v_{\hat{\hat{t}}}(A_{\hat{\hat{t}}}, c_{\hat{\hat{t}}}) - p_{\hat{\hat{t}}} \geq v_{\hat{\hat{t}}}(A_{\hat{\hat{t}}}, c_{\hat{\hat{t}}}) - p_{\hat{\hat{t}}}$$

$$v_t(\mathcal{A}_tc_i - A_t c_t) \geq p_t - p_i$$

$$v_t(\mathcal{A}_tc_i - A_t c_t) \geq p_t - p_i$$

$$v_t(\mathcal{A}_tc_i - A_t c_t) \geq p_t - p_i$$

$$\therefore A_{\hat{\hat{t}}} c_{\hat{\hat{t}}} > A_t c_t$$

Thus proving (8) and concluding Step 1.

Step 2 - M^* is incentive compatible: We must show that M^* satisfies all the IC constraints. The only changes are in the constraints relating to type $\hat{\hat{t}}$ and t. We have $v_{\hat{\hat{t}}}A_{\hat{\hat{t}}}^* - p_{\hat{\hat{t}}}^* \geq v_{\hat{\hat{t}}}A_{\hat{\hat{t}}} - p_{\hat{\hat{t}}}$ and $v_tA_t^* - p_t^* \geq v_tA_t - p_t$ and so $\hat{\hat{t}}, t$ have no incentive to deviate and pretend to be another type. Let us now define

$$\delta = \frac{v_t \varepsilon}{p_t - p_t}$$

Then we can see that

$$p_t^* = (1 - \delta)p_t + \delta p_i$$

$$p_t^* = (1 - \delta)p_t + \delta p_i$$

$$\mathcal{A}_t^* c_t^* = (1 - \delta)\mathcal{A}_t c_t - \delta A_t c_t$$

$$\mathcal{A}_t^* c_t^* = (1 - \delta)\mathcal{A}_t c_t - \delta A_t c_t$$

Now, consider any arbitrary type r:

$$v_r\mathcal{A}_r^* c_r^* - p_r^* = v_r ((1 - \delta)\mathcal{A}_t c_t + \delta A_t c_t) - ((1 - \delta)p_t + \delta p_i)$$

$$= (1 - \delta) [v_r \mathcal{A}_t c_t - p_t] + \delta [v_r \mathcal{A}_t c_t - p_t]$$

$$\leq v_r \mathcal{A}_r - p_r$$

And so r has no incentive to deviate to type t. Similarly, we can show that no type has any incentive to deviate to type $\hat{\hat{t}}$ either.
Step 3 - M^* is an improvement:

$$\text{Obj}(M^*) - \text{Obj}(M) = v_tA_t^* - p_t^* + kA_t^*c_t^* - kA_t - (v_tA_t - p_t + kA_t c_t - kA_t)$$

$$+ v_tA_t^* - p_t^* + kA_t^*c_t^* - kA_t - (v_tA_t - p_t + kA_t c_t - kA_t)$$

$$= (v_t - v_l)\varepsilon - k\delta(A_t c_t - A_t c_t) + k\varepsilon$$

$$+ k\delta(A_t c_t - A_t c_t) - k\varepsilon$$

$$= (v_t - v_l)\varepsilon$$

$$> 0$$

Lemma 10. Every optimal mechanism M is of the form where $\exists \ t \in V$ such that for all projects with $v_t \leq v_l$ there is no assessment and no money burning. Furthermore, for all the types above this threshold, i.e. $v_t > v_l$, there is either a positive probability of assessment, or some money burning effort, or both. Also, all the projects below this threshold have the lowest probability of implementation, i.e., $A_t = \min_{r \in V} A_r$ $\forall t \leq l$.

Proof. Let M^* be an optimal mechanism and consider the web W^* with $i_{M^*}(W^*) = \emptyset$. Let $t^* = \sup W^*$. Since $i_{M^*}(W^*) = \emptyset$ we must have $p_t = 0$ $\forall t \in W^*$, otherwise the mechanism M' defined by decreasing money burning for all the projects in W^* by small ε is an improvement over M^* and is feasible and incentive compatible. Since $p_t = 0$; $c_t = 1$ $\forall t \in W^*$ we must have $A_t = \min_{r \in V} A_r$ $\forall t \in V$ for if not and let $A_t > A_t$ then $v_tA_t - p_t < v_tA_t$, thus violating the IC constraint. Due to Proposition 2 we must have $t \in W^*$ $\forall t < t^*$, since for all such t, $A_t = A_{t^*}$ thus implying $c_t = 1$; $p_t = 0$ and \{(t, t^*), (t^*, t)\} $\in E(G_M)$. Moreover, for any $t > t^*$ we must have $A_t > A_{t^*}$ due to the definition of t^*. Thus the IC constraints dictate that every $t > t^*$ must either undergo assessment with a positive probability, or have positive money burning, or both.

Lemma 11. In every optimal mechanism M where there are two types that require costly verification but no money burning, these types do not want to mimic each other. That is, in an optimal mechanism M, if t, \hat{t} have $c_t < 1$, $c_{\hat{t}} < 1$ and $p_t = p_{\hat{t}} = 0$, then $t \notin i_M(\hat{t})$ and $\hat{t} \notin i_M(t)$.

Proof. Without loss of generality assume $\hat{t} > t$, then by proposition 1 we must have $\hat{t} \notin i_M(t)$. For a contradiction suppose that $t \in i_M(\hat{t})$. Since $p_t = 0$, by lemma 9 it must be the case that for any $l \in W^*$, $A_t c_t = A_{\hat{t}} c_{\hat{t}}$. Thus it must also be the case that $t \in i_M(l)$. Since $t \notin W^*$, we must have
Lemma 12. Let M be an optimal mechanism and let W^* be the web in the optimal mechanism. Furthermore let i be such that $p_i > 0$ and let $t \in W^*$. If $t \in i_M(i^*)$ then $\exists t' \in W^*$ with $t' > t$.

Proof. Let i be such that p_i and let $t \in W^*$. Let $t \in i_M(i^*)$ and for a contradiction suppose that $\exists t' \in W^*$ with $t' > t$. Since $t \in i_M(t)$ and $p_i > 0$ and $t' \in W^*$. It must be the case that

$$A_t v_t = A_c c_t v_t - p_i$$

$$A_t' v_t = A_c c_t v_t - p_i$$

$$p_i = (A_t c_t - A_t') v_t$$

But since $t' > t$. It must be the case that

$$p_i < (A_t c_t - A_t') v_t$$

$$A_t' v_t < A_c c_t v_t - p_i$$

Contradicting the incentive constraint of type t'.

Lemma 13. In any optimal mechanism M that satisfies condition 4 the probability of an assessment is weakly increasing in the value of the project, i.e., for all t, $1 \leq t \leq n - 1$, $c_t \geq c_t + 1$.

Proof. Let M be an optimal mechanism. $\forall k \in W^*$, $c_k = 1$ thus the statement holds trivially for $k \in W^*$. For a contradiction suppose that in the optimal mechanism M, $\exists j \notin W^*$, $j \leq n - 1$, with $c_j < c_j + 1$. By proposition 1 there are only two cases to consider:

Case I: $\exists l < j$ with $(l, j) \in E(G_M)$

Then $\exists \eta > 0$ small enough such that $c_j + \eta$ still satisfies all the incentive constraints since none of them hold with equality. Consider the alternative mechanism M^* defined as follows: $\forall k \neq j A_k = A^*_k$, $c_k = c^*_k$, $p_k = p^*_k$, and $A_j = A^*_j$, $p_j = p^*_j$ and $c^*_j = c_j + \eta$. For η small enough we still have $c_j + \eta < c_{j+1} \leq 1$, thus the mechanism M^* is feasible.

$$Obj(M^*) - Obj(M) = nkA_j/n > 0$$

Thus M^* is a feasible improvement over M leading to a contradiction.

Case II: $\exists j < j$ with $(l, j) \in E(G_M)$

By proposition 2, $A_{j+1} \geq A_j$, and by assumption $0 \leq c_j < c_{j+1} \leq 1$ then,
by lemma 9, it must be the case that \(p_{j+1} > p_j \geq 0 \). Consider \(i_M(j+1) \). By the definition of \(i_M(j+1) \), \(\exists \delta > 0 \) such that decreasing \(p_{j+1} \) by \(\delta \) still satisfies the incentive constraints of the types not in \(i_M(j+1) \). Now, let \(j+1 \) denote the smallest element in \(i_M(j+1) \), that is \(j+1 = \min i_M(j+1) \). Since \(p_{j+1} > 0 \) and \(M \) satisfies condition 1 by lemma 12, \(v_{j+1} > k \). For \(\eta > 0 \) consider the alternative mechanism \(M^*(\eta) \) defined as follows: \(\forall k \neq j+1, A_k = A_k^*, c_k = c_k^*, p_k = p_k^* \), and \(A_{j+1} = A_{j+1}^*, p_{j+1}^* = p_{j+1} - \eta A_{j+1}v_{j+1} \) and \(c_{j+1}^* = c_{j+1} - \eta \). For \(\eta \) small enough, \(p_{j+1}^* \geq 0 \) and \(1 \geq c_{j+1}^* \geq 0 \), thus \(M^*(\eta) \) is feasible. For \(\eta > 0 \) such that \(\eta A_{j+1}v_{j+1} \leq \delta \) all of the incentive constraints of the types not in \(i_M(j+1) \) are satisfied. For the incentive constraints of types in \(i_M(j+1) \), observe that for the type \(j+1 \) we have the incentive condition holding with equality since

\[
A_{j+1}v_{j+1} - p_{j+1} = A_{j+1}c_{j+1}v_{j+1} - p_{j+1} \\
A_{j+1}v_{j+1} - p_{j+1} = A_{j+1}c_{j+1}v_{j+1} - p_{j+1} + \eta A_{j+1}v_{j+1} - \eta A_{j+1}v_{j+1} \\
A_{j+1}v_{j+1} - p_{j+1} = A_{j+1}c_{j+1}v_{j+1} - p_{j+1}
\]

For any other type \(l \in i_M(j+1) \), by definition we have \(l > j+1 \), hence we have

\[
A_lv_l - p_l = A_{j+1}c_{j+1}v_l - p_{j+1} \\
A_lv_l - p_l > A_{j+1}c_{j+1}v_l - p_{j+1} + \eta A_{j+1}v_{j+1} - \eta A_{j+1}v_l \\
A_lv_l - p_l > A_{j+1}c_{j+1}v_l - p_{j+1}
\]

Thus the incentive conditions are satisfied. Finally the change in objective is given by

\[
Obj(M^*(\eta)) - Obj(M) = 1/n \left(\eta A_{j+1}v_{j+1} - \eta k A_{j+1} \right) > 0
\]

since \(v_{j+1} > k \). Thus \(M^*(\eta) \) is a feasible improvement over \(M \) leading to a contradiction.

Lemma 14. In any optimal mechanism \(M \) that satisfies condition 2 for all \(t, 1 \leq t \leq n-1, A_{t+1}c_{t+1} \geq A_tc_t \).

Proof. Let \(M \) be an optimal mechanism. Observe that the statement holds trivially for types in the web \(W^* \). For a contradiction suppose in the optimal
mechanism M, $\exists k \not\in W^*$ with $A_k c_k > A_{k+1} c_{k+1}$. By lemma 9 it must be the case that $p_k > p_{k+1}$. By proposition 2 we have $A_{k+1} \geq A_k$ so it also must be the case that $c_k > c_{k+1}$. Due to proposition 1 there are only two cases to consider

Case I: $l < k$ with $(l, k) \in E(G_M)$

There exists $\epsilon > 0$ small enough such that decreasing the payment of type k to $p_k - \epsilon$ still satisfies all the incentive conditions. Consider the alternative mechanism, M^* defined as follows: $\forall j \neq k \ A_j = A_j^*$, $c_j = c_j^*$, $p_j = p_j^*$, and $A_k = A_k^*$, $p_k^* = p_k - \epsilon$ and $c_j^* = c_j$. The mechanism is feasible for small enough ϵ since $p_k > p_{k+1} \geq 0$. The change in the objective is given by

$$Obj(M^*) - Obj(M) = \epsilon/n > 0$$

Thus, M^* is a feasible improvement over M leading to a contradiction.

Case II: $\exists l < k$ with $(l, k) \in E(G_M)$

Consider $i_M(k)$. By the definition of $i_M(k)$, $\exists \delta > 0$ such that decreasing p_k by δ still satisfies the incentive constraints of the types not in $i_M(k)$. Now, let k denote the smallest element in $i_M(k)$, that is $k = \min i_M(k)$. Since $p_k > 0$ and M satisfies condition 1 by lemma 12, $v_k > k$. For $\eta > 0$ consider the alternative mechanism $M^*(\eta)$ defined as follows: $\forall j \neq k \ A_j = A_j^*$, $c_j = c_j^*$, $p_j = p_j^*$, and $A_k = A_k^*$, $p_k^* = p_k - \eta A_k v_k$ and $c_k^* = c_k - \eta$. For η small enough, $p_k^* \geq 0$ and $1 \geq c_k^* \geq 0$, thus $M^*(\eta)$ feasible. For $\eta > 0$ such that $\eta A_k v_k \leq \delta$ all of the incentive constraints of the types not in $i_M(k)$ are satisfied. For the incentive constraints of types in $i_M(k)$, observe that for the type k the incentive constraint is satisfied with equality since

$$A_k v_k - p_k = A_k c_k v_k - p_k$$

For any other type $l \in i_M(k)$, by definition we have $l > k$, thus

$$A_l v_l - p_l = A_k c_k v_l - p_k$$

Thus the incentive conditions are satisfied. Finally the change in objective is given by

$$Obj(M^*(\eta)) - Obj(M) = 1/n (\eta A_k v_k - \eta k A_{j+1}) > 0$$

37
since $k < v_k$. Thus $M^*(\eta)$ is a feasible improvement over M leading to a contradiction.

Proposition 3. In any optimal mechanism M that satisfies condition \(I \), the probability of inspection and the amount of money burning is weakly increasing in the value of the project. That is, for all t such that $1 \leq t \leq n - 1$, $p_t \leq p_{t+1}$ and $c_t \geq c_{t+1}$.

Proof. The monotonicity of money burning follows directly from lemma 9 and lemma 14. Monotonicity in probability of inspection is directly proposition 13.

Lemma 15. Let M be an optimal mechanism that satisfies condition \(I \) and let t be such that $p_t > 0$, then $|i_M(t)| = 1$.

Proof. For a contradiction, suppose not. There are two cases to consider

Case I: $|i_M(t)| = 0$

In this case since $|i_M(t)| = 0$, there exists $\epsilon > 0$ such that, $p_t - \epsilon > 0$ and $p_t - \epsilon$ still satisfies all the incentive constraints. Then consider the alternative mechanism M^* defined as follows: $\forall j \neq t A_j = A_j^*$, $c_j = c_j^*$, $p_j = p_j^*$, and $A_t = A_t^*$, $p_t^* = p_t - \epsilon$ and $c_t^* = c_t - \epsilon$. M^* is feasible since $p_t^* \geq 0$ for ϵ small enough and satisfies all incentive constraints. The change in objective is given by

\[
Obj(M^*) - Obj(M) = \epsilon/n > 0
\]

Thus M^* is a feasible improvement over M leading to a contradiction.

Case II: $|i_M(t)| > 1$

By the definition of $i_M(t)$, there exists $\delta > 0$ such that decreasing p_t by δ still satisfies the incentive constraints of the types not in $i_M(t)$. Now, let t denote the smallest element in $i_M(t)$, that is $t = \min i_M(t)$. Since $p_t > 0$ and M satisfies condition \(I \) by lemma 12, $v_t > k$. For $\eta > 0$ consider the alternative mechanism $M^*(\eta)$ defined as follows: $\forall j \neq t A_j = A_j^*$, $c_j = c_j^*$, $p_j = p_j^*$, and $A_t = A_t^*$, $p_t^* = p_t - \eta A_t v_t$ and $c_t^* = c_t - \eta$. For η small enough, $p_t^* \geq 0$. Since $p_t > 0$ and $i_M(t) \neq \emptyset$ it must be the case that $1 \geq c_t > 0$, which in turn implies for small enough η, $c_t^* > 0$, thus $M^*(\eta)$ feasible. For $\eta > 0$ such that $\eta A_t v_t \leq \delta$ all of the incentive constraints of the types not in $i_M(t)$ are satisfied. Regarding
the incentive constraints of types in $i_M(t)$, observe that for the type t

\[
\begin{align*}
A_t v - p_t &= A_t c_t v + p_t \\
A_t v - p_t &= A_t c_t v + p_t + \eta A_t v - \eta A_t v \\
A_t v - p_t &= A_t^* c_t v - p_t
\end{align*}
\]

For any other type $l \in i_M(t)$, by definition we have $l > t$, thus

\[
\begin{align*}
A_l v - p_l &= A_l c_l v - p_l \\
A_l v - p_l &= A_l c_l v - p_l + \eta A_l v - \eta A_l v \\
A_l v - p_l &= A_l^* c_l v - p_l
\end{align*}
\]

So all the incentive conditions are satisfied. Finally the change in objective is given by

\[
\text{Obj}(M^*(\eta)) - \text{Obj}(M) = 1/n (\eta A_t v - \eta A_t) > 0
\]

since $k < v$. Thus $M^*(\eta)$ is a feasible improvement over M leading to a contradiction.

Lemma 16. In any optimal mechanism M that satisfies condition money burning is never utilized without costly verification. That is for any t, if $p_t > 0$ then $c_t < 1$.

Proof. For a contradiction suppose M is optimal and $\exists t$ with $p_t > 0$ and $c_t = 1$. By lemma $i_M(t)$ has exactly one element, let \underline{t} denote the single element. Since $p_t > 0$ and M satisfies condition by lemma $v_\underline{t} > k$. By the definition of $i_M(t)$, $\exists \delta > 0$ such that decreasing p_t by δ still satisfies the incentive constraints of the types not in $i_M(t)$. For $\eta > 0$ consider the alternative mechanism $M^*(\eta)$ defined by $\forall j \neq t A_j = A_j^*$, $c_j = c_j^*$, $p_j = p_j^*$; and $A_t = A_t^*$, $p_k = p_t - \eta A_t v$ and $c_t^* = c_t - \eta$. For η small enough, $p_t^* \geq 0$. Since $c_t = 1$ by assumption, for small enough η, $c_t^* > 0$, thus $M^*(\eta)$ feasible. For $\eta > 0$ such that $\eta A_t v \leq \delta$ all of the incentive constraints of the types not in $i_M(t)$ are satisfied. For the incentive constraint of type t, observe that

\[
\begin{align*}
A_t v - p_t &= A_t c_t v - p_t \\
A_t v - p_t &= A_t c_t v - p_t + \eta A_t v - \eta A_t v \\
A_t v - p_t &= A_t^* c_t v - p_t
\end{align*}
\]
Thus the incentive condition is satisfied with equality. Finally the change in objective is given by

$$Obj(M^*(\eta)) - Obj(M) = 1/n (\eta A tv - \eta k A) > 0$$

since $k < v_t$. Thus $M^*(\eta)$ is a feasible improvement over M leading to a contradiction.

\[\square\]

Lemma 17. Let M be an optimal mechanism that satisfies condition $\boxed{1}$ and let t be such that $p_t > 0$, if $\hat{t} \in i_M(t)$, then $p_\hat{t} = 0$.

Proof. For a contradiction, suppose not. Let M be optimal and let t be such that $p_t > 0$ and $\hat{t} \in i_M(t)$ and $p_{\hat{t}} > 0$. Then, by proposition $\boxed{1}$ it must be the case $\hat{t} < t$. Since $p_t > 0$ and $\hat{t} \in i_M(t)$ it must be the case that $c_t > 0$. By lemma $\boxed{13}$ it must be the case that $c_j \geq c_t > 0$. By lemma $\boxed{15}$ $\{\hat{t}\} = i_M(t)$. Now consider $i_M(\hat{t})$. Again by lemma $\boxed{15}$ there exists a unique type \hat{t} such that $\{\hat{t}\} = i_M(\hat{t})$. Since $p_t > 0$ and M satisfies condition $\boxed{1}$ by lemma $\boxed{12}$ $v_\hat{t} > k$. By the definition of $i_M(\hat{t})$, there exists $\delta > 0$ such that decreasing $p_\hat{t}$ by δ will still satisfy the incentive conditions for all $j \notin i_M(\hat{t})$.

For $\eta > 0$ consider the alternative mechanism $M^*(\eta)$ defined as follows: $\forall j \neq \hat{t}$ $A_j = A^*_j$, $c_j = c^*_j$, $p_j = p^*_j$, and $A_{\hat{t}} = A^*_{\hat{t}}$, $p^*_{\hat{t}} = p_{\hat{t}} - \eta A_{\hat{t}} v_\hat{t}$ and $c^*_{\hat{t}} = c_{\hat{t}} - \eta$. For η small enough, $p^*_{\hat{t}} \geq 0$. Since $c_{\hat{t}} > 0$, for small enough η, $c^*_{\hat{t}} > 0$, thus $M^*(\eta)$ feasible. For $\eta > 0$ such that $\eta A_{\hat{t}} v_\hat{t} \leq \delta$ all of the incentive constraints of the types not in $i_M(\hat{t})$ are satisfied. For the incentive constraint of type \hat{t}, observe that

$$A_{\hat{t}} v_\hat{t} - p_\hat{t} = A_{\hat{t}} c_{\hat{t}} v_\hat{t} - p_{\hat{t}}$$

$$A_{\hat{t}} v_\hat{t} - p_\hat{t} = A_{\hat{t}} c_{\hat{t}} v_\hat{t} - p_{\hat{t}} + \eta A_{\hat{t}} v_\hat{t} - \eta A_{\hat{t}} v_\hat{t}$$

$$A_{\hat{t}} v_\hat{t} - p_\hat{t} = A^*_{\hat{t}} c^*_{\hat{t}} v_\hat{t} - p^*_{\hat{t}}$$

Thus the incentive condition is satisfied with equality. Finally the change in objective is given by

$$Obj(M^*(\eta)) - Obj(M) = 1/n (\eta A tv - \eta k A) > 0$$

since $k < v_t$. Thus $M^*(\eta)$ is a feasible improvement over M leading to a contradiction.

\[\square\]
Lemma 18. Let M be an optimal mechanism that satisfies condition \(\square \) and let \(t \) be such that \(p_t > 0 \). Then for any \(\hat{t} > t \), \(i_M(t) \cap i_M(\hat{t}) = \emptyset \).

Proof. Now, for a contradiction suppose that \(i_M(t) \cap i_M(\hat{t}) \neq \emptyset \). By lemma 15 \(|i_M(t)| = |i_M(\hat{t})| = 1 \), then it must also be the case that \(|i_M(t) \cap i_M(\hat{t})| = 1 \). Let \(\{ \hat{t} \} = i_M(t) \cap i_M(\hat{t}) \). Since \(p_t > 0 \) and \(M \) satisfies condition \(\square \) by lemma 12 \(v_{\hat{t}} > k \). By proposition 3 it must be the case that \(p_t \geq p_{\hat{t}} > 0 \).

By the definition of \(i_M(\hat{t}) \), there exists \(\delta > 0 \) such that decreasing \(p_i \) by \(\delta \) will still satisfy the incentive conditions for all \(j \not\in i_M(\hat{t}) \). For \(\eta > 0 \) consider the alternative mechanism \(M^*(\eta) \) defined as follows: \(\forall j \neq \hat{t} \ A_j = A_j^* \), \(c_j = c_j^* \), \(p_j = p_j^* \), and \(A_{\hat{t}} = A_{\hat{t}}^* \), \(p_{\hat{t}} = p_{\hat{t}} - \eta A_{\hat{t}} v_{\hat{t}} \) and \(c_{\hat{t}} = c_{\hat{t}} - \eta \). For \(\eta \) small enough, \(p_{\hat{t}}^* \geq 0 \). Since \(p_t > 0 \) and \(t \in i_M(\hat{t}) \) it must be the case that \(c_t > 0 \), hence for small enough \(\eta \), \(c_t^* > 0 \), thus \(M^*(\eta) \) is feasible. For \(\eta > 0 \) such that \(\eta A_{\hat{t}} v_{\hat{t}} \leq \delta \) all of the incentive constraints of the types not in \(i_M(\hat{t}) \) are satisfied. For the incentive constraints \(\hat{t} \), observe that

\[
\begin{align*}
A_{\hat{t}} v_{\hat{t}} - p_{\hat{t}} &= A_{\hat{t}} c_{\hat{t}} v_{\hat{t}} - p_{\hat{t}} \\
A_{\hat{t}}^* v_{\hat{t}} - p_{\hat{t}} &= A_{\hat{t}}^* c_{\hat{t}}^* v_{\hat{t}} - p_{\hat{t}} + \eta A_{\hat{t}} v_{\hat{t}} - \eta A_{\hat{t}} v_{\hat{t}}
\end{align*}
\]

Thus the incentive condition is satisfied with equality. Finally the change in objective is given by

\[
Obj(M^*(\eta)) - Obj(M) = 1/n (\eta A_{\hat{t}} v_{\hat{t}} - \eta k A_{\hat{t}}) > 0
\]

since \(k < v_{\hat{t}} \). Thus \(M^*(\eta) \) is a feasible improvement over \(M \) leading to a contradiction.

\(\square \)

Lemma 19. Let M be an optimal mechanism that satisfies condition \(\square \) and let \(t \) be such that \(p_t > 0 \). Then for any \(\hat{t} > t \), \(i_M(\hat{t}) \succ_{SSO} i_M(t) \) where \(\succ_{SSO} \) denotes the strong set order.

Proof. By lemma 15 \(|i_M(t)| = |i_M(\hat{t})| = 1 \) and by lemma 18 \(i_M(t) \neq i_M(\hat{t}) \). Let \(\hat{t} \) denote the unique element in \(i_M(t) \) and let \(\hat{t} \) denote the unique element in \(i_M(\hat{t}) \). For a contradiction suppose \(\hat{t} > \hat{t} \). Since \(p_t > 0 \) and \(M \) satisfies condition \(\square \) by lemma 12 \(v_{\hat{t}} > k \). By lemma 17 it must be the case that \(p_{\hat{t}} = p_{\hat{t}} = 0 \). Furthermore by proposition 3 \(A_{\hat{t}} \geq A_{\hat{t}} \). Since \(\hat{t} > t \) by lemma
it must be the case that $\mathcal{A}_c c_i \geq \mathcal{A}_t c_i$. In addition since $t \notin i_M(\hat{t})$, by lemma 9 it must be the case that $\mathcal{A}_c c_i \neq \mathcal{A}_t c_i$. But then it must be the case that $\mathcal{A}_c c_i > \mathcal{A}_t c_i$ and $p_t > p_i$. Moreover, since $p_t > 0$ and $i_M(\hat{t}) \neq \emptyset$ we must have $c_i > 0$. By the definition of $i_M(\hat{t})$, there exists $\delta > 0$ such that decreasing p_t by δ will still satisfy the incentive conditions for all $j \notin i_M(\hat{t})$.

For $\eta > 0$ consider the alternative mechanism $M^*(\eta)$ defined by $\forall j \neq \hat{t}$ $\mathcal{A}_j = \mathcal{A}_j^\ast$, $c_j = c_j^\ast$, $p_j = p_j^\ast$, and $\mathcal{A}_t = \mathcal{A}_t^\ast$, $p_t^\ast = p_t - \eta \mathcal{A}_t v_{\hat{t}}$ and $c_t^\ast = c_t - \eta$. For η small enough, $p_t^\ast \geq 0$. Since $c_t > 0$, hence for small enough η, $c_t^\ast > 0$, thus $M^*(\eta)$ feasible. For $\eta > 0$ such that $\eta \mathcal{A}_t v_{\hat{t}} \leq \delta$ all of the incentive constraints of the types not in $i_M(\hat{t})$ are satisfied. For the incentive constraint of type \hat{t}, observe that

$$
\mathcal{A}_t v_{\hat{t}} - p_{\hat{t}} = \mathcal{A}_t c_t v_{\hat{t}} - p_t
$$

Thus the incentive condition is satisfied with equality. Finally the change in objective is given by

$$
Obj(M^*(\eta)) - Obj(M) = 1/n \left(\eta \mathcal{A}_t v_{\hat{t}} - \eta k \mathcal{A}_t \right) > 0
$$

since $k < v_{\hat{t}}$. Thus $M^*(\eta)$ is a feasible improvement over M leading to a contradiction.

\square

Lemma 20. In any optimal mechanism M that satisfies condition 7 the gains realized by the division managers are non-decreasing in the value of the project, i.e. $v_t \mathcal{A}_t - p_t \geq v_{t'} \mathcal{A}_{t'} - p_{t'}$ if $t \geq t'$.

Proof. Consider any pair of types t, t' with $t' > t$. By proposition 2 we have $\mathcal{A}_{t'} \geq \mathcal{A}_t$, thus if $p_t, p_{t'} = 0$ we must have $\mathcal{A}_{t'} v_{t'} > \mathcal{A}_t v_t$ so the statement is true. Now, for a contradiction suppose at least one type requires money burning and $\mathcal{A}_t v_t - p_t > \mathcal{A}_{t'} v_{t'} - p_{t'}$. If at least one type requires money burning by proposition 3 we must have $p_{t'} > 0$. By lemma 15 there exists a unique type t' that belongs to $i_M(t')$ and by lemmas 18 and proposition 11 type t' does not have any other tight constraints. In particular it must be the case that

$$
\mathcal{A}_{t'} c_{t'} v_{t'} - p_{t'} > \mathcal{A}_t c_t v_{t'} - p_t
$$

$$
\mathcal{A}_{t'} c_{t'} v_{t'} - \mathcal{A}_t c_t v_{t'} > p_t - p_{t'}
$$

42
On the other hand by assumption we have

\[A_t v_t - p_t > A_t v_t' - p_t' \]
\[A_t v_t' - p_t > A_t v_t' - p_t' \]
\[p_t - p_t' > A_t v_t - A_t v_t' \]

since \(v_t' > v_t \). But by feasibility and lemma 13 we also have \(c_t' < c_t \leq 1 \), thus we have

\[A_t v_t' - p_t > A_t v_t' - p_t' \]
\[A_t v_t' - p_t > A_t v_t - A_t v_t' \]

leading to the desired contradiction.

Proposition 4. If an optimal mechanism \(M \) satisfies condition 1 and has money burning, then for every type that requires both money burning and costly verification, there is a unique, distinct type that requires no money burning that wants to mimic it, i.e. \(\forall v_t \in \tilde{V}_M, \exists! v_t' \in \tilde{V}_M \), such that \(\{v_t\} = i_M(v_t) \). Furthermore if there are multiple types that require both costly verification and money burning, then their associated types are ordered according to the value of the projects. That is if \(v_t, v_t' \in \tilde{V}_M \) with \(v_t < v_t' \) and \(\{v_t\} = i_M(v_t), \{v_t'\} = i_M(v_t') \) then, \(v_t < v_t' \).

Proof. Let \(M \) be an optimal mechanism with money burning that satisfies condition 1. From lemma 13 we know that for every type \(t \) with \(p_t > 0 \), \(|i_M(t)| = 1 \). From lemma 17 we know if \(\{t\} = i_M(t) \) then \(p_t = 0 \), thus types that have positive money burning have slack incentive constraints between them. Lemma 12 shows that only the largest type in the web can mimic a type that requires money burning. Lemma 18 shows that no type with no money burning wants to mimic more than one type with money burning. Lemma 19 shows that for any two types \(t, t' \) with \(t < t' \) and \(p_t, p_t' > 0 \) then \(i_M(t) \leq_{SSO} i_M(t') \), where \(v_{SSO} \) denotes the strong set order. Lemma 11 shows that the incentive constraints between types that only have costly verification are also slack. Thus the incentive constraints regarding types that require money burning only involve types that do not require money burning, in an ordered pairing.