Low Interest Rates, Market Power, and Productivity Growth*

Ernest Liu
Princeton University

Atif Mian
Princeton University and NBER

Amir Sufi
University of Chicago Booth School of Business and NBER

January 9, 2019

Abstract

We show theoretically that a low interest rate gives industry leaders a strategic advantage over followers, and this advantage becomes more dominant as the interest rate approaches zero. Consequently, as the interest rate declines, market structure becomes more monopolistic, and, for a sufficiently low interest rate, productivity growth slows. This prediction is tested through an analysis of excess returns for industry leaders relative to followers in response to a decline in interest rates. A decline in the ten year Treasury yield generates positive excess returns for leaders, and the magnitude of the excess returns rises as the yield approaches zero. The model provides a unified explanation for why the fall in long-term interest rates has been associated with rising market concentration, reduced dynamism, a widening productivity-gap between leaders and followers, and slower productivity growth.

*We thank Abhijit Banerjee, Ariel Burstein, Andy Haldane, Hugo Hopenhayn, Chad Jones, Pete Klenow, Christopher Phelan, Thomas Philippon, Tomasz Piskorski, Fabrizio Zilibotti, and seminar participants at the NBER Productivity, Innovation, and Entrepreneurship meeting, NBER Economic Fluctuations and Growth meeting, Peking University, Bocconi University, Hong Kong University of Science and Technology, Chinese University of Hong Kong, Johns Hopkins University, London Business School, Federal Reserve Bank of San Francisco, and UCLA for helpful comments. We thank Sebastian Hanson, Thomas Kroen, Julio Roll, and Michael Varley for excellent research assistance and the Julis Rabinowitz Center For Public Policy and Finance at Princeton for financial support. Liu: ernestliu@princeton.edu; Mian: atif@princeton.edu; Sufi: amir.sufi@chicagobooth.edu.
1 Introduction

Long term interest rates have fallen globally since the 1980s, reaching their lowest levels in recent years. A large body of recent research explores both the causes and consequences of low long-term interest rates (e.g., Summers (2014)). This study analyzes the consequences of long-term interest rates for the production side of the economy. The question addressed can be put as follows: suppose long-term interest rates fall due to demand-side issues, how does the supply side of the economy respond?

Traditionally, a lower interest rate is viewed as expansionary for the supply side of the economy. Consider a typical firm making an investment decision. A decline in the interest rate, all else equal, increases the net present value of future cash flows leading the firm to increase immediate investment. This mechanism explains why the supply-side relationship between economic growth and interest rates is typically negative in endogenous growth models. However, these models typically do not take strategic competition and market structure into account. Is it reasonable to assume that a significant reduction in the long-term interest rate would have no impact on the competitiveness of an industry?

This study examines this question through a model in which competition is introduced between firms and market structure is endogenous. The model is rooted in the dynamic competition literature (e.g., Aghion, Harris, Howitt and Vickers (2001)) where two firms compete in an industry for market share by investing in productivity-enhancing technology. Firms decide whether to invest at each point in time. An investment increases the probability that a firm improves its productivity position relative to its competitor. Such a relative improvement occurs gradually; for example, a follower can only slowly reduce the size of the productivity gap between the leader and himself. The decision to invest in the model is only a function of the current productivity gap between the leader and the follower, which is the key state variable of the model. A larger productivity gap gives the leader a larger share of industry profits.

The solution to the model reveals two regions of market structure. If the productivity gap be-

\footnote{See e.g. Aghion and Howitt (1992), Klette and Kortum (2004), Grossman and Helpman (1991) and Romer (1990). The supply-side relationship between growth and interest rate is flat in exogenous growth models such as the Solow and Ramsey models.}
tween the leader and the follower is small, then the industry is in a “competitive region” in which both firms invest in an effort to escape competition. If the productivity gap becomes large, the industry enters a “monopolistic region” in which the follower does not invest due to a “discouragement effect”: the prospect of overtaking the leader in the future is too small relative to the cost of investment. If the productivity gap becomes large enough, even the leader stops investing in productivity enhancement as the perceived threat of being overtaken becomes too small. The model includes a continuum of industries, all of which feature the dynamic game between the leader and follower. The state variable of each market is random and is governed by the stochastic process induced by investment decisions. The model shows that aggregate productivity growth, in a steady-state, declines as the fraction of markets that are in the monopolistic region increases.

The key comparative static explored by the model is the effect of a lower interest rate on aggregate productivity growth. In any given industry, a decline in the interest rate has a traditional effect of inducing both the leader and the follower to increase investment in productivity enhancement. However, the investment response to a lower interest rate is stronger for the leader relative to the follower. Intuitively, both leaders and followers invest in order to raise productivity, thereby acquiring market power and achieving higher payoffs in the future. The leader is closer to high-payoff states than the follower is; hence, not only is the leader’s incentive to invest stronger than that of the follower, but so is the leader’s marginal gain in incentive to invest following a decline in the interest rate. A lower interest rate induces firms to be more patient, and more patience leads to a stronger investment response only if the firm can ultimately achieve the high payoffs associated with market leadership. Such high payoffs are more achievable for the leader.

The stronger investment response of the leader to a lower interest rate leads to a strategic effect of a decline in the interest rate. In particular, the steady-state average productivity gap between the leader and the follower increases when the interest rate falls due to the unequal investment responses. The increase in the average productivity gap in turn discourages the follower from investing. Due to the strategic effect, the expected time that an industry spends in the monopolistic region increases when the interest rate falls.

The key theoretical result of the model is that as the interest rate declines to zero, the strategic effect dominates the traditional effect; as a result, a given industry spends almost all of the time in
the monopolistic region at a low enough interest rate. This implies that as the interest rate declines, the fraction of industries in the monopolistic region of the state space expands and aggregate productivity growth falls.

This induces an inverted-U shaped supply-side relationship between economic growth and the interest rate. Starting from a high level of the interest rate, growth increases as the interest rate declines because the traditional effect dominates the strategic effect. However, as the interest rate declines further, the endogenous investment response of the leader and follower causes the strategic effect to dominate, and economic growth begins to fall. The key theoretical result shows that this positive relationship between the interest rate and economic growth must happen before the interest rate hits zero.

An empirical test of the model focuses on the relationship between interest rates and industry concentration. Such a relationship is difficult to estimate given that industry concentration moves slowly in practice. However, the empirical analysis presented here takes advantage of the fact that stock prices are forward-looking and incorporate expectations regarding changes in industry concentration in response to interest rate shocks. Using CRSP-Compustat merged data from 1980 onward, we analyze the performance of a portfolio that goes long industry leaders and shorts industry followers in response to changes in the ten year Treasury rate. We call this the “leader” portfolio.

The model predicts that the leader portfolio earns excess returns in response to a decline in interest rates, and these excess returns become larger as the level of interest rates approaches zero. This cross-derivative is a prediction of the model that is reasonably distinct, and therefore offers a strong test of the model mechanism. The data reveal exactly the pattern predicted by the model: the leader portfolio exhibits higher returns in response to a decline in interest rates, and this response becomes stronger at a lower initial level of interest rates. The estimated effect is large in magnitude and robust to a number of tests.

The model is also useful in explaining a number of important macroeconomic trends in a single coherent framework. For example, the decline in the ten year interest rate globally has been associated with a rise in industry concentration, higher markups and corporate profit share, and
a decline in business dynamism. These facts are well-documented in the literature. The model is also consistent with the fact that market concentration increased initially as interest rates began to decline, but productivity growth slowed down later in time when long-term interest rates approached zero.

The model also explains cross-sectional patterns in the productivity slowdown found in the literature. In the model, the slowdown in productivity growth is associated with a larger average productivity gap between the industry leader and followers. Using firm-level data from the OECD, Berlingieri and Criscuolo (2017) and Andrews et al. (2016) show that the productivity gap between the 90th versus 10th percentile firms within industries has been increasing since 2000. Moreover, the productivity gap between leaders and followers has risen most in industries where productivity growth has slowed down the most.

The model provides an alternative explanation for “secular stagnation,” or the observation that growth has slowed down as long-term rates have fallen toward zero. Current explanations of secular stagnation (e.g., Summers (2014)) focus almost exclusively on the demand side; in these explanations, frictions such as the zero lower bound on nominal interest rates or nominal rigidity generate a long and persistent slowdown in growth. In the framework presented here, the initial decline in the interest rate may come from weakness on the demand side. However, the key point of departure is the insight that if the interest rate falls to a low enough level, then the rise in market competition may itself result in a constraining force on growth. In such a framework, one does not need to rely on financial frictions, a liquidity trap, nominal rigidities, or a zero lower bound to explain the persistent growth slowdown.

There has been work in the past that links interest rates to the level of productivity (e.g. Caballero, Hoshi and Kashyap (2008); and Gopinath, Kalemli-Ozcan, Karabarbounis and Villegas-2

3The productivity growth slowdown started in 2005, well before the Great Recession, which suggests that structural as opposed to cyclical factors are behind the decline. This is consistent with the model presented here.

4Relatedly Gutiérrez and Philippon (2016, 2017) and Lee, Shin and Stulz (2016) show sharp decline of investment relative to operating surplus and that the investment gap is especially pronounced in concentrated industries. Furthermore, Cette, Fernald and Mojon (2016) show in two-variable VAR that a negative shock to long-term interest rates leads to a decline in productivity growth, which is consistent with our framework.

Sanchez (2017)). This paper differs in its explicit modeling of the supply-side to investigate the relationship between interest rates and the growth rate of productivity.

This study also contributes to the endogenous growth literature. The framework on competition within an industry differs from the seminal work of Aghion et al. (2001) in that catch-up innovation by the follower happens step-by-step. The follower cannot leap-frog the leader instantly. This is a key assumption of the model, and it helps to explain many of the model’s novel predictions relative to the existing literature. While leap-frogging does happen at times, especially during episodes of large technological disruptions, the model is closer to a more typical process of innovation which is gradual.

The derivation of our central theoretical result—that as the interest rate converges to zero, aggregate innovation must decline because the average distance between the leader and follower diverges—provides a technical contribution to the literature on dynamic patent races. Models of dynamic competition as stochastic games are notoriously difficult to analyze, and even seminal contributions in the literature either rely on numerical methods or impose significant restrictions on the state space to keep the analysis tractable. By deriving first-order approximations of the recursive value functions when the discount rate is small, we are able to provide sharp, analytic characterizations of the asymptotic equilibrium in the limiting case when discounting tends to zero, even as the ergodic subset of the state space becomes infinitely large. The techniques should be applicable to other stochastic games of strategic interactions with a large state space and low discounting.

All proofs are relegated to the online appendix.
2 Supply-side model with investment and strategic competition

2.1 Setup

Consumer

The consumer side of the model is intentionally simplistic. Time is continuous. There is a representative consumer who, at each instance, chooses consumption \(Y(t) \) and supplies labor \(L(t) \) according to the within-period utility function \(U(t) = \ln Y(t) - L(t) \). The consumption good is aggregated from differentiated goods according to:

\[
\ln Y(t) \equiv \int_0^1 \ln y(t;\nu) \, d\nu,
\]

where \(\nu \) is an index for markets, and \(y(t;\nu) \) is aggregator of each duopoly market:

\[
y(t;\nu) = \left[y_1(t;\nu)^{\frac{\sigma-1}{\sigma}} + y_2(t;\nu)^{\frac{\sigma-1}{\sigma}} \right]^\frac{\sigma}{\sigma-1}.
\]

(1)

\(y_i(t;\nu) \) is the quantity produced by firm \(i \) of market \(\nu \).

Let \(P(t) \equiv \exp \left(\int_0^1 \ln p(t;\nu) \, d\nu \right) \) be the aggregate price index and \(p(t;\nu) = \left[p_1(t;\nu)^{1-\sigma} + p_2(t;\nu)^{1-\sigma} \right]^{\frac{1}{1-\sigma}} \) be the price index for market \(\nu \). We normalize the wage rate to one. This normalization, together with the preference structure, implies that the value of aggregate output as well as the total revenue in each market are always equal to one: \(P(t)Y(t) = p(t;\nu)y(t;\nu) = 1 \).

Within-market competition

We now discuss the within-market dynamic game between duopolists. For expositional simplicity, we drop the market index \(\nu \) and describe the game for a generic market.

Static block

Over each time instance, the duopolists compete à la Bertrand in the product market. Let \(z_1(t), z_2(t) \in \mathbb{Z}_{>0} \) denote the (log-)productivity levels of the two market participants; the marginal cost of a firm with productivity \(z \) is \(\lambda^{-z} \) with \(\lambda > 1 \).
The CES within-market demand structure in equation (1) and Bertrand competition implies that profits in each market is homogeneous of degree zero in both firms’ marginal costs and can therefore be written as functions of their productivity gap rather than the productivity levels of both firms. Specifically, let \(s(t) = |z_1(t) - z_2(t)| \in \mathbb{Z}_{\geq 0} \) be the state variable that captures the productivity gap of the two firms. When \(s = 0 \), the two participants are said to be neck-to-neck; when \(s > 0 \), one of the firm is a temporary leader (L) while the other is a follower (F). Let \(\pi_s \) denote the profit of the leader in a market with productivity gap \(s \), and likewise let \(\pi_{-s} \) be the profit of the follower in the market.\(^6\) Conditioning on the state variable, \(\pi_s \) and \(\pi_{-s} \) no longer depend on the time index or individual productivities \((z_1(t), z_2(t)) \) and have the following properties.

Lemma 1. Follower’s flow profits \(\pi_{-s} \) are non-negative, weakly decreasing, and convex; leader’s and joint profits, \(\pi_s \) and \(\pi_s + \pi_{-s} \), are bounded, weakly increasing, and eventually concave in \(s \) (a sequence \(\{a_s\} \) is eventually concave iff there exists \(\bar{s} \) such that \(a_s \) is concave in \(s \) for all \(s \geq \bar{s} \)).

It can be easily verified that \(\lim_{s \to \infty} \pi_{-s} = 0 \) and \(\lim_{s \to \infty} \pi_s = 1 \). Nevertheless, our theoretical results apply to any sequence of profits that satisfy the technical properties in Lemma 1, including alternative market structures including Cournot competition and limit pricing (see Appendix A). Hence, we let \(\pi \equiv \lim_{s \to \infty} \pi_s \) denote the limiting total profits in each market as \(s \to \infty \), and we derive our theory using the notation \(\pi \).

A higher productivity gap \(s \) is associated with higher joint profits and more unequal profits between the leader and the follower. We interpret state \(s \) to be more competitive than state \(s' \) if \(s < s' \) and more concentrated if \(s > s' \). As an example of the market structure, the case of perfect substitutes within market \((\sigma = \infty) \) under Bertrand competition generates profit \(\pi_s = 1 - e^{-\lambda s} \) for leaders and \(\pi_{-s} = 0 \) for followers (e.g., see Peters (2016)).

Dynamic block Each firm can invest to improve its productivity, which evolves in step-increments. Investment \(\eta_s \in [0, \eta] \) in each state \(s \) is bounded above by \(\eta \) and carries a marginal cost \(c \). Specifically, the firm can choose to pay a cost \(c \eta_s \) in exchange for a Poisson rate \(\eta_s \) with which the firm’s

\[^6\]These profit functions \(\pi_s \) and \(\pi_{-s} \) can be written as \(\pi_s = \frac{\rho_s^{1-\sigma}}{\rho_1^{1-\sigma} + \rho_s^{1-\sigma}} \) and \(\pi_{-s} = \frac{1}{\rho_1^{1-\sigma} + 1} \), where \(\rho_s \) is implicitly defined by \(\rho_s = \frac{\lambda^{-s} (\sigma + \rho_1^{1-\sigma})^{\rho_s^{1-\sigma}}}{\rho_1^{1-\sigma} + 1} \). These expressions are derived in Appendix A; also see Aghion et al. (2001).
productivity improves by one step, i.e. cost of production declines proportionally by λ^{-1}. Given investment decisions $\{\eta_s, \eta_{-s}\}$ over interval Δ at time t, state s transitions according to

$$s(t + \Delta) = \begin{cases}
 s(t) + 1 & \text{with probability } \Delta \cdot \eta_s \\
 s(t) - 1 & \text{with probability } \Delta \cdot (\kappa + \eta_{-s}) \\
 s(t) & \text{otherwise}.
\end{cases}$$

The technology diffusion parameter κ is the exogenous Poisson rate that the follower catches up by one step; it can also be seen as the rate of patent expiration.

In the model, firms are forward looking: they invest not only for gains in the flow profits in higher states, but, more importantly, they invest in order to also enhance market positions, thereby enabling them to reach for even higher profits in the future. For the follower, closing the productivity gap by one step enables him to further close the gap in the future and eventually catch up with the leader. For the leader, widening the productivity gap brings higher profits, the option value to further increase the lead in the future, as well as the improved expected duration of market leadership, because it would now take the follower additional steps to catch up.

Firms discount future payoffs at interest rate r. We take r to be exogenous for now. Section 2.8 endogenizes r by closing the model in general equilibrium. Each firm’s value $v_s(t)$ in state s at time t can be expressed as the expected present-discount-value of future profits net of investment costs:

$$v_s(t) = \mathbb{E} \left[\int_0^\infty e^{-r\tau} \{ \pi(t + \tau) - c(t + \tau) \} \mid s \right].$$

We look for a stationary symmetric Markov-perfect equilibrium such that the value functions and investment decisions depend on the state but not the time index. The HJB equations for firms in state $s \geq 1$ are

$$rv_s = \pi_s + (\kappa + \eta_{-s}) (v_{s-1} - v_s) + \max_{\eta_s \in [0,\eta]} \{0, \eta_s (v_{s+1} - v_s - c)\} \quad (2)$$

The central results of the model are not dependent on the assumption that investment intensity is bounded with a constant marginal cost. We show, in a numerical example later, that our central results are similar when investment is modeled as unbounded with convex marginal costs. The bounded investment with a constant marginal cost allows for an analytical characterization of the equilibrium as the interest rate approaches zero.
rv_−s = \pi_−s + \eta_s (v_{−(s+1)} − v_−s) + \kappa (v_{−(s−1)} − v_−s) \\
+ \max_{\eta_−s \in [0,\eta]} \left\{ 0, \eta_− (v_{−(s−1)} − v_−s − c) \right\}.

(3)

In state zero, the HJB equation for either market participants is

rv_0 = \pi_0 + \eta_0 (v_{−1} − v_0) + \max_{\eta_0 \in [0,\eta]} \left\{ 0, \eta_0 (v_{1} − v_0 − c) \right\}.

Definition 1. (Equilibrium) Given interest rate r, a symmetric Markov-perfect equilibrium is a collection of value functions and investment decisions \{\eta_s, \eta_−s, v_s, v_−s\}_{s=0}^\infty that satisfy the infinite collection of equations in (2) and (3). The collection of flow profits \{\pi_s, \pi_−s\}_{s=0}^\infty are generated by duopolistic competition in the static block.

The key assumption embodied in the investment technology is that catching up is a gradual process: the productivity gap has to be closed step-by-step, and the follower cannot “leapfrog” the leader by overtaking leadership with one successful innovation. This assumption plays an important role in the results and is the key difference between the model presented here and the setup in Aghion et al. (2001). On the other hand, that technology diffusion parameter \kappa and investment cost c are both state-independent constants is not a crucial assumption for the model presented here, as we discuss in Section 2.6.

Aggregation: Steady-state and productivity growth

Steady-state In each market, firms engage in both static competition—by maximizing flow profits, taking the productivity gap as given—and dynamic competition—by strategically choosing investment in order to raise their own productivity and maximize the present discounted value of future payoffs. The state variable in each market follows an endogenous Markov process with transition rates governed by the investment decisions \{\eta_s, \eta_−s\}_{s=0}^\infty of market participants. We define a steady-state equilibrium as one in which the distribution of productivity gaps in the entire economy, \{\mu_s\}_{s=0}^\infty, is time invariant. The steady-state distribution of productivity gap must satisfy the property that, over each time instance, the density of markets leaving and entering each state
must be equal. This implies the following equations:

\[
\begin{align*}
2 \mu_0 \eta_0 &= \left(\eta_{-1} + \kappa \right) \mu_1, \\
\mu_s \eta_s &= \left(\eta_{-(s+1)} + \kappa \right) \mu_{s+1} \quad \text{for all } s > 0,
\end{align*}
\]

(4) (5)

(the number “2” on the left-hand-side of the first equation reflects the fact that a market leaves state zero if either participant makes a successful innovation).

Definition 2. (Steady-State) Given equilibrium investment \(\{\eta_s, \eta_{-s}\}_{s=0}^{\infty} \), a steady-state is the distribution \(\{\mu_s\}_{s=0}^{\infty} (\sum \mu_s = 1) \) over state space that satisfies equations (4) and (5).

Productivity growth The aggregate productivity is defined as the total cost of production relative to total value of output. Because the wage rate is normalized to one, aggregate productivity is inversely proportional to the aggregate price index \(P(t) \). The aggregate productivity growth rate at time \(t \), defined as \(g \equiv -d \ln P(t)/dt \), can be written as an average of the productivity growth rate of each market—aggregated from firm-level investment decisions—weighted by the distribution over the productivity gap:

\[
g = \ln \lambda \cdot \sum_{s=0}^{\infty} \mu_s \mathbb{E}[g_s],
\]

recalling that \(\lambda \) is the proportional productivity increment for each successful investment.

Lemma 2. In a steady state, the aggregate productivity growth rate is

\[
g = \ln \lambda \left(\sum_{s=0}^{\infty} \mu_s \eta_s + \mu_0 \eta_0 \right).
\]

The lemma shows that aggregate productivity growth can be simplified as the average productivity growth rate of market leaders, weighted by the fraction of markets in each state. Given that productivity improvements by followers also contribute to the growth of aggregate productivity, it might appear puzzling that follower investment decisions \((\eta_{-s}) \) are absent from equa-
tion (2). The apparent omission is a direct consequence of the fact that, in a steady-state, the productivity growth rate of market leaders is, on average, the same as that of market followers. In fact, as we prove Lemma 2 in Appendix A, we show that aggregate productivity growth rate can also be written as a weighted average productivity growth rate of market followers,
\[g = \ln \lambda \cdot \sum_{s=1}^{\infty} \mu_s (\eta - s + \kappa). \]

2.2 Analysis of the equilibrium and steady state

We first analyze the equilibrium structure of the two-firm dynamic game in a generic market, again dropping the market index \(\nu \). We then aggregate market equilibrium to the economy and study aggregate comparative statics with respect to the interest rate \(r \).

Equilibrium in each market

We impose the following regularity conditions.

Assumption 1. 1. The upper bound of investment, \(\eta \), is sufficiently high: \(\eta > \kappa \) and \(2c\eta > \pi \). 2. \(\pi_1 - \pi_0 > c\kappa > \pi_0 - \pi_{-1} \).

The first assumption ensures that firms can scale up investment \(\eta \) to a sufficiently large amount if they choose to. The condition \((\eta > \kappa) \) means that, if the follower does not invest and the leader invests as much as possible, then the productivity gap tends to widen on average. The condition \((2c\eta > \pi) \) means that if both firms choose to invest as much as possible, the total flow payoff \((\pi_s + \pi_{-s} - 2c\eta) \) is negative in any state.

The second parametric assumption rules out a trivial equilibrium in which firms do not invest even when they are state zero, resulting in a degenerate steady-state distribution with zero growth.

Because investment costs are linear in investment intensities, firms generically invest at either the upper or lower bound in any state. Investment effectively becomes a binary decision, and any interior investment decisions can be interpreted as firms playing mixed strategies. For exposition purposes, we focus on pure-strategy equilibria in which \(\eta_s \in \{0, \eta\} \), but all of our results hold in mixed-strategy equilibria as well. Also note that even though the dynamic duopoly game does
not always emit an unique equilibrium—because of the discreteness of the state space—we present results that hold across all equilibria.

Let \(n + 1 \) be the first state in which the market leader chooses not to invest, \(n + 1 \equiv \min \{ s | \eta_s < \eta \} \); likewise, let \(k + 1 \) be the first state in which the market follower chooses not to invest, \(k + 1 \equiv \min \{ s | \eta_{-s} < \eta \} \).

Lemma 3. The leader invests in more states than the follower, \(n \geq k \). Moreover, the follower does not invest in states \(s = k + 2, ..., n + 1 \).

The lemma establishes that in any equilibrium, the leader must maintain investments in more states than the follower does. To understand this, note that the productivity gap closes at a slow rate \(\kappa \) if the follower does not invest in the state and at a faster rate \(\eta + \kappa \) if the follower does. Firms are motivated to invest because of the high future flow payoffs after consecutive successful investments. The leader is motivated to invest in all states \(s \leq n \) in order to reach state \(n + 1 \), so that he can enjoy the flow payoff \(\pi_{n+1} \) without having to pay the investment costs in that state. The state \((n + 1) \) is especially attractive if the follower does not invest in that state, because the leader can enjoy the payoff for a longer expected duration before the state stochastically transitions down to \(n \), after which he has to incur investment cost again.

The follower, on the other hand, is also motivated by future payoffs. He incurs investment costs in exchange for the possibility of closing the gap and catching up with the leader, and for the possibility of eventually becoming the leader himself in the future so that he can enjoy the high flow payoffs. In other words, investment decisions for both forward-looking firms are motivated by high flow profits in the high states, and the incentive to reach these states is stronger for the leader because the leader is closer to those high-payoff states.

Another way to understand the intuition is to consider the contradiction brought by \(n < k \). Suppose the leader stops investing before the follower does. In this case, the high flow payoff \(\pi_{n+1} \) is transient for the leader and market leadership is fleeting because of the high rate of downward state transition; this implies that the value for being a leader in state \(n + 1 \) is low. However, because firms are forward-looking and their value functions depend on future payoffs, the low value in state \(n + 1 \) “trickles down” to affect value functions in all states, meaning the incentive for the
follower to invest—motivated by the dynamic prospect of eventually becoming the leader in state $n + 1$—is low. This generates a contradiction to the presumption that follower invests more than the leader does.

Under the lemma, the structure of an equilibrium can be represented by the following diagram. States are represented by circles, going from state 0 on the very left to state $(n + 1)$ on the very right. The coloring of a circle represents investment decisions: states in which the firm invests are represented by dark circles, while white ones represent those in which the firm does not invest. The top row represents the leader’s investment decisions while the bottom row represents the follower’s investment decisions.

In the diagram, investment decisions are monotone for both firms: starting from state zero, they invest in consecutive states before reaching the respective cutoff state, k and n, and then cease investment from there on. This is a manifestation of two effects. First, when the follower is too far behind, the firm value is low and the marginal value of catching up by one step is not worth the investment cost. This is also known as the “discouragement effect” in the dynamic contest literature (Konrad (2012)). Second, the leader’s strategy is monotone due to a “lazy monopolist” effect: when the leader is far ahead of the follower, he ceases investment because the marginal gain in value brought by advancing market position is no longer worth the investment cost.

Technically, because leader profits $\{\pi_s\}$ are not always concave, investment decisions are not necessarily monotone in the state, and firms might resume investment after state $n + 1$. That being said, we focus on monotone equilibria in the paper for two reasons. First, given that market leaders do not invest in state $n + 1$, the steady-state distribution of market structure never exceeds $n + 1$, and investment decisions beyond state $n + 1$ are irrelevant for characterizing the steady-
state equilibrium. Second and more importantly, all equilibria follow the monotone structure when interest rate r is small (because $\{\pi_s\}$ is eventually concave in s), and our main result concerns the comparative statics of the economy as we take the interest rate r close to zero.

Analysis of the steady-state

The fact that the leader invests in more states than the follower enables us to partition the set of non-neck-to-neck states $\{1, \ldots, n + 1\}$ into two regions: one in which the follower invests ($\{1, \ldots, k\}$) and the other in which the follower does not ($\{k + 1, \ldots, n + 1\}$). In the first region, the state transitions up with Poisson rate η and transitions down with rate $(\eta + \kappa)$. In expectation, the state s decreases over time in this region, and the market structure tends to move towards being more competitive. For this reason, we refer to this as the competitive region. Note that this label is not a reflection of the static profits, which can be very high for leaders in this region. Instead, the label reflects the fact that joint profits tend to decrease dynamically. In the second region, the downward transition happens at a lower rate (κ), and the market structure tends stay monopolistic and concentrated. We refer to this as the monopolistic region.

The aggregate productivity growth rate in the economy is a weighted average of the productivity growth in each market; hence, aggregate growth depends on both the investment decisions in each market structure as well as the distribution of market structure, which in turn is a function of the investment decisions. The following lemma shows that the aggregate growth rate can be characterized by the fraction of markets in each region.
Lemma 4. In a steady-state induced by investment cut-off states \((n, k)\), the aggregate productivity growth rate is

\[
g = \ln \lambda \left(\mu^C \cdot (\eta + \kappa) + \mu^M \cdot \kappa \right),
\]

where \(\mu^C \equiv \sum_{s=1}^{k} \mu_s\) is the fraction of markets in the competitive region and \(\mu^M \equiv \sum_{s=k+1}^{n+1} \mu_s\) is the fraction of markets in the monopolistic region. The fraction of markets in each region satisfies

\[
\mu_0 + \mu^C + \mu^M = 1, \quad \mu_0 \propto (\kappa/\eta)^{n-k+1}(1 + \kappa/\eta)^k, \\
\mu^C \propto (\kappa/\eta)^{n-k}(1 + \kappa/\eta)^k - 1, \quad \mu^M \propto \frac{1 - (\kappa/\eta)^{n-k+1}}{1 - \kappa/\eta}.
\]

The lemma shows that fractions of markets in the competitive and monopolistic regions are sufficient statistics for steady-state growth, and that markets in the competitive region contributes more to aggregate growth than those in the monopolistic region. This is intuitive: in the competitive region, both firms invest, and, consequently, productivity improvements are rapid, state transition rate is high, dynamic competition is fierce, leadership is contentious, and market power tends to decrease over time. On the other hand, the follower ceases to invest in the monopolistic region, and, once markets are in this region, they tend to become more monopolistic over time. This monopolistic region also includes markets in state \(n + 1\), where even the leader stops investing. On average, this region features low rate of state transition and low productivity growth.

The lemma further implies that, conditioning on the follower investing at all \((k \geq 1)\), steady-state growth is strictly increasing in the mass of markets in the competitive region and decreasing in the mass of markets in the monopolistic region. Stated in terms of the investment decisions, \(g\) is increasing in \(k\) decreasing in \((n - k)\). Higher \(k\) implies follower investing in more states, thereby raising the steady-state fraction of markets in the competitive region. By contrast, higher \((n - k)\) expands the monopolistic region and reduces the fraction of markets in the competitive region and the neck-to-neck state, with a negative net effect on aggregate productivity growth when \(k \geq 1\).

The last result of this section provides a lower bound of steady-state growth rate.

Lemma 5. If followers invest at all \((k \geq 1)\), then the steady-state aggregate productivity growth is bounded below by \(\ln \lambda \cdot \kappa\), the step-size of productivity increments times the rate of technology diffusion.
2.3 Comparative statics: declining interest rates towards zero

Our key theoretical results concern the limiting behavior of aggregate steady-state variables as the interest rate declines toward zero. Conventional intuition suggests that, ceteris paribus, when firms discount future profits at a lower rate, the incentive to invest should increase because the cost of investment is lower relative to future benefits. This intuition holds in our model, and we formalize it into the following lemma.

Lemma 6. \(\lim_{r \to 0} k = \lim_{r \to 0} (n - k) = \infty. \)

The result suggests that, as the interest rate declines toward zero, firms in all states tend to raise investment. In the limit, as firms become arbitrarily patient, they sustain investment even when arbitrarily far behind or ahead: followers are less easily discouraged, and leaders are less lazy.

However, the fact that firms raise investment in all states does not translate into high aggregate investment and growth. These aggregate economic variables are averages of the investment and growth rate in each market, weighted by the steady-state distribution of market structure. A decline in the interest rate not only affects state-dependent investment decisions but also shifts the steady-state distribution of market structures. As Lemma 4 shows, a decline in the interest rate can boost aggregate productivity growth if and only if it expands the fraction of markets in the competitive region; conversely, if more markets are in the monopolistic region—for instance if \(n \) increases at a “faster” rate than \(k \)—aggregate productivity growth rate could slow down.

Our main result establishes that, as \(r \to 0 \), a slow down in aggregate productivity growth is inevitable and is accompanied by a decline in investment and a rise in market power.

Proposition 1. As \(r \to 0 \),

1. The fraction of markets in the competitive region vanishes, and the monopoly region becomes absorbing:

 \[\lim_{r \to 0} \mu^C = 0; \quad \lim_{r \to 0} \mu^M = 1. \]

2. The productivity gap between leaders and followers diverges:

 \[\lim_{r \to 0} \sum_{s=0}^{\infty} \mu_s s = \infty. \]
3. Aggregate investment to GDP ratio declines:

\[\lim_{r \to 0} c \cdot \sum_{s=0}^{\infty} \mu_s (\eta_s + \eta_{-s}) = c \kappa. \]

4. Aggregate productivity growth slows down:

\[\lim_{r \to 0} g = \kappa \cdot \ln \lambda. \]

5. Industry leaders take over the whole market, with high profit shares and markups:

\[\lim_{r \to 0} \sum_{s=0}^{\infty} \mu_s \frac{\pi_s}{p_s y_s} = 1, \]

where \(p_s y_s \) is the total revenue of market \(s \).

6. Market dynamism declines, and leadership becomes permanently persistent:

\[\lim_{r \to 0} \sum_{s=0}^{\infty} M_s \mu_s = \infty, \]

where \(M_s \) is the expected duration before a leader in state \(s \) reaches state zero.

7. Relative market valuation of leaders and followers diverges:

\[\lim_{r \to 0} \frac{\sum_{s=0}^\infty \mu_s v_s}{\sum_{s=0}^\infty \mu_s v_{-s}} = \infty. \]

The proposition states that, as \(r \to 0 \), all markets are in the monopolistic region in a steady-state, and leaders almost surely stay permanently as leaders. Followers cease to invest, and leaders invest only to counteract the exogenous technology diffusion. As a result, aggregate investment and productivity growth decline and converge to their respective lower bounds governed by the parameter \(\kappa \).

The proposition highlights two competing forces of low interest rates on steady-state growth. As standard intuition goes, lower rates are expansionary as firms in all states tend to invest more. On the other hand, low rates are also anti-competitive, as leader’s investment response to low \(r \)
is stronger than follower’s. Proposition 1 shows that this second, anti-competitive force always dominates when the level of interest rate r is sufficiently low.

The result therefore implies an inverted-U relationship between steady-state growth and the interest rate, as depicted in the figure below. In a high-r steady-state, few firms invest in any markets; consequently, a significant mass of markets are in the neck-to-neck state, and aggregate productivity growth is low. A marginally lower r raises all firms’ investments, and the expansionary effect dominates by drawing mass of markets out of the neck-to-neck state into the competitive region. When r is sufficiently low, however, most markets are in the monopolistic region, in which followers cease to invest, and aggregate productivity growth is again low. The anti-competitive effect of low interest rates also generates other implications: a rising leader-follower productivity gap, diverging relative market valuation of leaders, a rising profit share of the leader, rising average markups, and declining business dynamism.

Steady-state growth rate: inverted-U

To gain intuitions for why leaders’ investments are more responsive to low r than followers’, it is useful to first demonstrate the firm value functions, as shown in the figure below. The solid black curve represents the value function of the leader, whereas the dotted black curve represents the value function of the follower. The two dashed and gray vertical lines respectively represent k and n, the last states in which the follower and the leader invest, and together they separate the state space into the competitive and monopolistic regions.

Lemma 6 shows that, as $r \to 0$, the number of states in both competitive and monopolistic
regions diverge to infinity. Proposition 1 shows that the fraction of markets in the monopolistic region converges to one, which can happen if and only if the number of states in the monopolistic region asymptotically dominates that in the competitive region, i.e., the leader raises investment at a “faster rate” in response to lower interest rates than the follower does.

Intuitively, as the figure demonstrates, the firm value of leaders in the competitive region is small relative to the value towards the end of the monopolistic region, close to state $n+1$. Therefore, a leader would experience a sharp decline in firm value once he falls back from the monopolistic region into the competitive region. A patient leader sustains investment even far into the monopolistic region to avoid the future prospect of falling back; he stops investing if and only the expected duration of staying in the monopolistic region is sufficient long. As a leader becomes infinitely patient, even the distant threat of losing market power is perceived to be imminent; consequently, leaders scale back investment only if they expect to never leave the monopolistic region, causing market leadership to become endogenously permanent.

Why does a symmetric argument not apply to the follower, i.e., why does a patient follower stop investing once he falls more than k steps behind (even though k could be large)? The reason is that patience motivates follower to invest if and only if future leadership is attainable. Consider
the follower’s decision in state k. As $r \to 0$, k expands, meaning the follower in this marginal state is falling further behind, and—because the leader invests consistently in all states 0 through k to retain leadership—the follower’s prospect of catching up—from being k steps behind—and becoming a future leader diminishes. In other words, once sufficiently behind, the prospect of becoming a future leader is perceived to be too low even for a patient follower, who then gives up endogenously.

Proposition 1 is an aggregate result that builds on sharp analytic characterizations of the dynamic game between duopolists in each market. The duopolist game is rooted in models of dynamic patent races and is notoriously difficulty to analyze: the state variable follows an endogenous stochastic process, and firms’ value functions are recursively defined hence depend on flow payoffs and investment decisions in every state of the ergodic steady-state distribution $\{\mu_s\}_{s=0}^n$. Even seminal papers in the literature rely on numerical methods (e.g. Budd, Harris and Vickers (1993), Acemoglu and Akcigit (2012)) or restrictive simplifications\(^8\) to make the analysis tractable. Relative to the literature, our analysis of an economy in a low-rate environment is further complicated by the fact that, as r declines, the ergodic state space $\{0, 1, \ldots, n + 1\}$ expands indefinitely.

In order to obtain Proposition 1, we derive a set of results that sharply characterize the asymptotic equilibrium as $r \to 0$, effectively enabling us to analytically solve for the value functions as a first-order approximation around $r = 0$ and analytically characterize the rate at which equilibrium investments (k and n) diverge to infinity as $r \to 0$. We relegate the formal proof to the appendix.

In what follows, we provide a sketch of the proof, in four steps. Each step aims to explain a specific feature in the shape of value functions. We use $x \to y$ to denote $\lim_{r \to 0} x = y$. Note that flow profits are bounded above by 1 (recall 1 the flow profit earned by a monopolist who charges infinite markup), hence $rv_s \leq 1$ for all s.

Step 1: the value of leader in state $n + 1$ is asymptotically large. Formally, $\lim_{r \to 0} rv_{n+1} > 0$. To see this, note the leader stops investing in state $n + 1$ if and only if the marginal investment cost is

\(^8\)For instance, Aghion et al. (2001) and Aghion, Bloom, Blundell, Griffith and Howitt (2005) assume leaders do not invest in all $s \geq 1$, effectively restricting the ergodic state space as $\{0, 1\}$.

higher than the change in value function, implying

\[c \geq v_{n+2} - v_{n+1} \geq \frac{\pi_{n+2} - rv_{n+1}}{r + \kappa}, \]

where the last inequality follows from rearranging the HJB equation (2) for state \(n + 2 \). This in turn generates a lower bound for \(rv_{n+1} \):

\[rv_{n+1} \geq \pi_{n+2} - c(r + \kappa) \rightarrow \pi - c\kappa. \]

Step 2: the value of follower in state \(k + 1 \) is asymptotically small. Formally, \(rv_{-(k+1)} = 0 \). This is because even a patient follower finds the marginal change in value function \(v_{-k} - v_{-(k+1)} \) not worth the investment cost, despite knowing that, if he gives up, the market structure tends to move in the leader’s favor indefinitely, as the leader will continue to invest in many states beyond \(k + 1 \). As \((n - k) \) grows large, \(v_{-k} - v_{-(k+1)} \) is small if and only if \(v_{-k} \) is low.

Step 3: the value of being in the neck-to-neck state is asymptotically small. Formally, \(rv_0 \rightarrow 0 \). This is because as \(k \rightarrow \infty \), the market in state zero could expect to spend a significant fraction of time in the competitive region (states \(s = 1, \ldots, k \)), in which both firms invest at the upperbound and the joint flow payoff is negative (\(\pi_s + \pi_{-s} < 2c\eta \) under Assumption 1). In an equilibrium, \(k \) must diverge at a rate exactly consistent with an asymptotically small \(v_0 \) (\(rv_0 \rightarrow 0 \)). Because firms are forward-looking, an asymptotically large \(v_0 \) can only be consistent with a slowly rising \(k \) as \(r \rightarrow 0 \), but this in turn implies that \(v_{-k} \) must be large which contradicts the earlier statement \(rv_{-k} \rightarrow 0 \). Conversely, the fact that \(v_0 \) must be non-negative (as firms can always guarantee at least zero payoff over every instance) imposes an upper bound on the rate at which \(k \) diverges.

Step 4: a leader experiences an asymptotically large decline in value as he falls from the monopolistic region into the competitive region. Formally, \(\lim_{r \rightarrow 0} r(v_{k+1} - v_k) > 0 \). This follows from the fact that \(v_{n+1} \) is asymptotically large (step 3) and \(v_0 \) is asymptotically small (step 1).

Step 4 implies that falling back into the competitive region is costly for the leader. Hence, starting from state \(k + 1 \), the leader keeps investing in additional states to consolidate market power.
and to diminish the prospect of falling back. The firm value increases as the productivity gap widens, and the leader stops only when the value function is sufficiently high, as characterized by (6). As a leader becomes infinitely patient, he must invest in sufficiently many states beyond \(k \) until the prospect of falling back into the competitive region vanishes, thereby perpetuating market leadership and causing the monopolistic region to become endogenously absorbing.

2.4 Transitional dynamics: productivity and market power

Proposition 1 implies that, starting from a high level of the interest rate, a declining interest rate is at first expansionary—measured by steady-state growth—and only becomes contractionary when \(r \) falls sufficiently low; yet, steady-state market power tends to rise when \(r \) declines, starting from any level.

Something parallel is also true for transitional dynamics after an unanticipated, permanent change in interest rates, though for different reasons. Starting from a steady-state, a permanent decline in the interest rate immediately moves market participants to a new equilibrium, featuring higher investments and productivity growth given any productivity gap. The equilibrium distribution of productivity gaps starts to rise, although it moves slowly, as depicted in the top panel of Figure 1.

Over time, as the distribution of state variable converges to the new steady-state and as average productivity gap increases, the equilibrium growth rate and investment eventually decline to the new steady-state level. Whether productivity growth is higher or lower in the new steady-state, relative to the initial one, depends on the level of the starting interest rate before the interest rate falls. If the starting interest rate is sufficiently low, then the growth rate would be lower in the new steady-state. Productivity growth along the transitional path in such a case is depicted in the bottom panel of Figure 1.

2.5 Asymmetric on-impact valuation responses to interest rate shocks

Another unique implication of our model is that, starting from a steady-state with low interest rate, a decline in \(r \) raises the expected duration of market leadership, thereby immediately raising
the firm value of market leaders relative to followers. Moreover, the asymmetric effect is especially pronounced when the initial, pre-shock interest rate is low. We now formalize this result and explain its intuition; in section 3 we further conduct empirical tests based on this result.

Start from a steady-state economy with interest rate r and consider an unexpected and permanent decline in interest rate dr. Lower discounting for future cash flows raises market values of all firms, and we study the immediate, on-impact effect of this shock on the relative firm value between market leaders and followers. To this end, let v_s and \hat{v}_s respectively denote the pre- and post-shock value function in state s. Define $\hat{V}_L \equiv \sum_{s=0}^{\infty} \mu_s \hat{v}_s \sum_{s=0}^{\infty} \mu_s v_s$. Note that the denominator evaluates leaders’ market value in the new equilibrium using the productivity gap distribution from the pre-shock steady-state; therefore, \hat{V}_L captures the on-impact effect of the interest rate shock dr on total value of market leaders, before the economy starts transitioning to the new, post-shock steady-state. We define \hat{V}_F analogously for followers.

Proposition 2. Starting from a steady-state with interest rate r, a permanent decline in interest rate to $(r - dr)$ has the following on-impact, proportional effect on the valuation of leaders and followers:

$$\frac{\hat{V}_L}{V_L} = \frac{r}{r - dr} + O(r) \quad \text{and} \quad \frac{\hat{V}_F}{V_F} = \frac{\ln(r - dr)}{\ln r} + O(r) \quad \text{as } r \to 0.$$

The proposition states that, starting from steady-state with low r—so that terms represented by $O(r)$ become negligible—a decline dr in the interest rate immediately raises leaders’ market value by a proportion of $r / (r - dr)$ and raises followers’ value by a proportion of $\ln(r - dr) / \ln r$.

Because $\frac{\hat{V}_L}{V_L} \approx \frac{r / (r - dr)}{\ln(r - dr) / \ln r}$ increases and diverges to infinity as $r \to 0$, Proposition 2 implies a strong and empirically-testable prediction about the on-impact asymmetric response in market value to declines in interest rate. Starting from a low-r steady-state and following an unexpected further decline in interest rate, market leaders at the time of the shock should experience immediate valuation gains relative to market followers. Furthermore, the asymmetric valuation effects should be more pronounced when the pre-shock interest rate is lower. This last prediction is a strong test of the model’s dynamics. In section 3, we implement a triple difference-in-differences specification to test this key prediction.

We now explain the intuition behind Proposition 2. As interest rate declines, all firms respond
by raising investments. Followers’ investment response is especially damaging to the firm value of leaders with small productivity leads—those within or close to the competitive region—as these leaders tend to lose future rents in the new equilibrium. On the other hand, higher k poses little threat for leaders that are far ahead, i.e., those close to the end of the monopolistic region. These leaders tend to enjoy near-permanent market power, and, consequently, their market value tend to be inversely related to the interest rate.

Proposition 2 aggregates these state-by-state valuation effects to the entire economy. If the initial interest rate is high, the steady-state features significant mass of markets in the competitive region and small mass of markets toward the right-end of the monopolistic region. Consequently, the average leader in the economy experiences a valuation loss relative to the average follower. On the other hand, starting from a low-r steady-state, a large fractions of markets are deep into the monopolistic region, and, therefore, the average leader experiences a valuation gain relative to the average follower in the economy. The lower is the initial interest rate, the stronger is the asymmetry.

The figure below visualizes the immediate impact of a decline in r on the valuation of the leader in each state relative to the average follower value across markets. Specifically, it plots $\frac{\hat{v}_s}{\hat{v}_F}$, as a function of s, for $s \geq 0$. Relative to the average follower, leaders that are within or close to the competitive region experience relative valuation losses, whereas leaders far into the monopolistic region experience relative valuation gains.

The next figure demonstrates the time path of the aggregate valuation effects. Consider a decline in r that hits a steady-state economy at time t_0, and define

$$
\chi(t) = \frac{\sum_{s=0}^{\infty} \mu_s(t) v_s(t) / \sum_{s=0}^{\infty} \mu_s(0) v_s(0)}{\sum_{s=0}^{\infty} \mu_s(t) v_{-s}(t) / \sum_{s=0}^{\infty} \mu_s(0) v_{-s}(0)}.
$$

$\chi(t)$ tracks the over-time proportional changes in the total market value of all leaders relative to all followers, as compared to the relative valuation in the pre-shock steady-state. $\chi(t)$ is equal to one before t_0. Following a decline in interest rate at t_0, market valuation changes immediately, resulting in a discrete jump in $\chi(t_0)$, the magnitude of which is an average of the on-impact valuation response in each individual state, weighted by the distribution over productivity gaps.
in the initial steady-state. As Proposition 2 suggests, a low interest rate shock benefits market leaders on-impact, especially when the initial interest rate is low.

2.6 Robustness: no-leapfrogging, state-dependent innovation technology, and convex investment costs

In this section, we discuss several assumptions the model.

The no-leapfrogging assumption—that the follower has to catch up one step at a time no matter how far behind—is important for our results and is a key distinction between our model and the
seminal work of Aghion et al. (2001). Intuitively, the leader invests in the monopolistic region for two reasons: 1) to capture rising flow profits and 2) to escape dynamic competition. By getting one step further ahead of the follower, the leader is able to secure his dynamic rents for a longer duration. When the discount rate is low, it is the “escaping competition” motive that dominates; indeed, Propositions 1 and 2 survive even if flow profits stay constant as a function of the state \(\pi_s = \bar{\pi} \) for all \(s > 0, \pi_s = 0 \) otherwise). Conversely, if the follower can close an arbitrarily large number of gaps with one successful innovation, such a prospect of leapfrogging kills the leader’s dynamic incentive to get further ahead, leaving higher flow profits as the only reason for the leader to invest. If flow profits do not increase with the state, the leader does not invest at all.

Our baseline model presented thus far makes the additional assumption that the technologies for productivity improvements—the exogenous catch-up rate \(\kappa \) and the marginal cost of investment \(c \)—are independent of the productivity gap between the two firms. This assumption can be relaxed: consider an alternative environment in which the both \(\kappa_s \) and \(c_s \) are increasing and bounded in the productivity gap \(s \) for the leader, with \(\lim_{s \to \infty} c_s = \bar{c} \) and \(\lim_{s \to \infty} \kappa_s = \bar{\kappa} \). It is easy to show that Propositions 1 and 2 remain to hold as long as the upper bounds \(\bar{\kappa} \) and \(\bar{c} \) satisfy assumption 1. Intuitively, our results characterize the asymptotic equilibrium as \(r \to 0 \), and, consequently, the finite state-to-state variations in \(\kappa_s \) and \(c_s \) do not affect firms behavior when they are sufficiently patient.

Lastly, our model assumes that the marginal cost of investment \(c \) is independent of the investment intensity \(\eta_s \), and we assume \(\eta_s \) is bounded above by \(\eta \). These assumptions are made for analytic tractability; we now turn to a numerical illustration, through which we relax these assumptions and demonstrate that our main propositions survive.

2.7 A numerical illustration

In this numerical exercise, we relax the assumption that investments are bounded with a constant marginal cost; instead, we parametrize the investment cost as a quadratic function of the investment intensity: \(c(\eta) = \delta \eta^2 / 2 \) for \(\eta \in [0, \infty) \), where \(\delta \) is a cost parameter we calibrate. This is done for three reasons. First, we demonstrate numerically that Proposition 1 survive beyond
the bounded and constant-marginal-cost specification. Second, a convex cost function implies that first-order conditions with respect to investments are sufficient for the model solution, reducing computational burdens. Third, the specification implies that changes in investment intensities are smoothed out across states, thereby getting around the discrete changes in investments in the "bang-bang" solution of the baseline model. All other ingredients remain unchanged from the baseline model.

The HJB equations of the numerical model follow

\[
rv_s = \max_{\eta \geq 0} \pi_s - \eta^2 / 2 + (\kappa + \eta_s) (v_{s-1} - v_s) + \eta (v_{s+1} - v_s)
\]

\[
rv_{-s} = \max_{\eta \geq 0} \pi_{-s} - \eta^2 / 2 + (\kappa + \eta) (v_{-(s-1)} - v_{-s}) + \eta_s (v_{-(s+1)} - v_{-s})
\]

\[
rv_0 = \max_{\eta \geq 0} \pi_0 - \eta^2 / 2 + \eta_0 (v_{-1} - v_0) + \eta (v_{1} - v_0).
\]

We now provide demonstrations of the investment function \{\eta_s\}, the steady-state distribution \{\mu_s\}, and value functions as well as how these functions change in response to lower interest rates. We also provide numerical illustrations of how steady-state levels of productivity growth vary with interest rates. In generating these numerical plots, we parametrize the within-market demand aggregator using \(\sigma = \infty\), the case in which two firms produce perfect substitutes.

Figures 2 through 4 illustrate the main outcomes of the model. The top panel in Figure 2 shows the investment functions of the leader and follower across states for a high interest rate. The figure illustrates the leader dominance of Lemma 3; the leader invests more in all states beyond the neck-to-neck state. The dotted lines show the investment functions of the leader and follower for a lower interest rate. Both the leader and follower invest more in all states when the interest rate is lower, which represents the traditional effect of lower interest rates on investment.

However, as the bottom panel demonstrates, the leader’s investment response to a lower interest rate is stronger than the follower’s response for all states. The stronger response of the leader’s investment to lower interest rates is the driving force behind the strategic effect through which lower interest rates boost market concentration.

The top panel of Figure 3 shows that, following a decline in \(r\), the steady-state distribution of
market structure shifts to the right, and aggregate market power increases.

Why does the leader’s investment respond more to a lower interest rate? The bottom panel of Figure 3 shows the leader’s and follower’s value functions before and after a decline in the interest rate. The change in the leader’s value is larger than the change in the follower’s value; this is the key driver behind the leader’s stronger investment response following a drop in \(r \). Finally, Figure 4 numerically verifies the central result of the Proposition above. For a low enough interest rate, a further decline in the interest rate leads to lower growth. Figure 4 also verifies that \(g \to \kappa \cdot \ln \lambda \) in the numerical exercise with variable investment intensity.

Figure 5 demonstrates Proposition 2, that declines in interest rate has asymmetric on-impact effects on the market value of leaders and followers. Starting from a high-level of interest rate, declines in \(r \) hurts leaders on average; yet, starting from a low-level of \(r \), further declines in \(r \) unambiguously causes leaders’ market value to appreciate relative to followers’, and the asymmetry becomes stronger when the initial, pre-shock level of interest rate is lower.

2.8 Closing the model in general equilibrium

The focus of this paper is on how competition and productivity growth is impacted by changes in the interest rate. As such we have so far treated the interest rate as exogenous, and traced out the implied supply-side relationship between competition and interest rate, or growth and interest rate as shown in Figure 4.

It is relatively straightforward to close our model in general equilibrium by adding an Euler equation from the demand-side, following Aghion et al. (2001) and Benigno and Fornaro (n.d.). Doing so explicitly identifies where movement in interest rate might come from, i.e. shifts in the demand curve, and solves for equilibrium interest rate and growth rate as well. Specifically, the inter-temporal preferences

\[
\int_0^{\infty} U(t) \frac{v_1}{\theta} e^{-\rho t} dt
\]

generate an Euler equation \(g(t) = \dot{Y}(t) = \frac{1}{\delta} (r(t) - \rho) \), which is an upward-sloping relationship between aggregate growth rate \(g \) and interest rate \(r \). Coupled with our supply-side, inverted-U
relationship between g and r, the two curves pin down the level of growth rate and interest rate on a balanced growth path, along with a stationary distribution of productivity gaps across markets.

Interest rate shocks that we refer to in the main text can be simply seen as shocks to the consumer discount rate ρ (as in Krugman (1998)). An issue with this interpretation is that the interest rate is bounded below by the discount rate ρ, and any positive growth rate is incompatible with the interest rate being close to zero even as $\rho \to 0$. This issue is an artifact of the demand-side being frictionless; any incomplete markets and idiosyncratic risk would generate additional terms in the Euler equation that push down the real interest rate for any level of the growth rate. For instance, Benigno and Fornaro (n.d.) use idiosyncratic, uninsurable unemployment risk to microfound the following Euler equation

$$g(t) = \frac{1}{\theta} (r(t) - \rho + b).$$

The term $b \geq 0$ measures the severity of the unemployment risk under their specific microfoundation model, but it can be more broadly seen as a catch-all term for any shock on the demand side that pushes consumers towards saving more and consuming less, including changes in preferences, tightened borrowing constraints (e.g. Eggertsson and Krugman (2012)), or structural shifts such as an aging population and rising inequality (e.g. Summers (2014)).

The figure below shows the demand-side Euler equation as an upward sloping line. An inward shift in the demand curve lowers the interest rate and increases concentration. If the prevailing interest rates are low, i.e. economy is in the upward sloping region of the supply curve, then a fall in interest rate is also contractionary as productivity growth slows.

Hence, the model presents an alternative interpretation of “secular stagnation.” As in traditional secular stagnation explanations, an initial inward shift in the demand curve can lower equilibrium interest rates to very low levels. However, “stagnation” is not due to monetary constraints such as the zero lower bound or nominal rigidities. Instead, a large fall in interest rates can make the economy more monopolistic for reasons laid out in the model, thereby lowering innovation and productivity growth.
3 Empirical evidence

This section presents evidence that our proposed mechanism is empirically relevant. Section 3.1 empirically tests Proposition 2—that declines in interest rates asymmetrically benefits leaders relative to followers, especially if the level of interest rate is low—using data from publicly listed firms in the United States. Section 3.2 presents aggregate, time-series evidence supporting Proposition 1, that low interest rates are associated with increased market concentration and markups, low market dynamism, high leader-follower productivity gaps, and, as interest rate tends to zero, low aggregate investment and productivity growth.

3.1 Testing the asymmetric effects of interest rate shocks on firm value

Proposition 2 implies that, starting from low levels of interest rates, declines in the interest rate immediately raise market value of leaders relative to followers, and the asymmetric effect is especially pronounced when the initial level of interest rate is low. The asymmetry arises because low interest rates raise the expected duration of market leadership. We implement a triple difference-in-difference specification to empirically test this prediction.

The data set for the analysis is the CRSP-Compustat merged data set from 1980 onward, which is used to compute excess returns for industry leaders versus followers in response to an interest
rate shock. The 10-year treasury yield is used as the default measure of the long-run interest rate, and robustness tests using alternative duration of interest rate yields are also shown.9 The 10-year yield has the advantage that it has the longest available historical data at the long-end of the yield curve. The Fama-French classification of industries is used as the default, but we also show robustness to industry definitions based on SIC codes.

"Industry leaders" are defined using different approaches. The default leader definition is based on size. Firms are classified as industry leaders if they are in the top 5 percent of firms in the industry based on market value at the beginning of when excess returns are computed. The results are robust to other classifications as well. Because the number of firms in an industry can vary significantly, the top 5 firms in an industry are also defined as leaders instead of the top 5 percent. In some specifications, EBITDA and sales are used to sort firms instead of market value. The results are robust to these alternative definitions.

The key empirical test implied by the model at the firm level can be written as,

\[
R_{i,j,t} = \alpha_{j,t} + \beta_0 D_{i,j,t-1} + \beta_1 D_{i,j,t-1} * \Delta i_t + \beta_2 D_{i,j,t-1} * i_{t-1} + \beta_3 D_{i,j,t-1} * \Delta i_t * i_{t-1} + X_{i,j,t} \gamma + \epsilon_{i,j,t}
\]

(7)

where \(R_{i,j,t} \) is the dividend and split-adjusted stock return of firm \(i \) in industry \(j \) from date \(t - 91 \) days to \(t \) (i.e. one quarter growth), and \(D_{i,j,t-1} \) is an indicator variable equal to 1 if firm \(i \) is in the top 5% of market capitalization in its industry \(j \) at date \(t - 91 \). Firms with \(D_{i,j,t-1}=1 \) are called leaders while the rest are called followers. \(i_t \) is the nominal 10-year Treasury yield, with \(i_{t-1} \) being the interest rate 91 days prior and \(\Delta i_t \) being the change in the interest rate from date \(t - 91 \) to \(t \). The matrix \(X \) includes potential control variables such as firm leverage interacted with both the level of the interest rate and the change in the interest rate. All regressions are value-weighted and standard errors are dually clustered by industry and date. \(\alpha_{j,t} \) are industry-date fixed effects.

The key coefficients of interest are \(\beta_1 \) and \(\beta_3 \). A negative estimate of \(\beta_1 \) implies that a decline in the interest rate leads to a larger increase in the stock return of industry leaders. A positive

9The nominal rate is used given the difficulty in measuring the real interest rate. Inflation expectations have been well-anchored during the time period analyzed, and so the nominal yield is the appropriate measure to use given the measurement error trade-off. Anchored inflation expectations since 1980 is the reason we focus on this time period.
estimate of β_3 implies that this effect is stronger when the level of interest rates is lower. In other words, a negative estimate of β_1 and a positive estimate of β_3 signify that industry leaders experience higher excess returns when interest rates fall, and this effect is amplified when interest rates start from a low level. This is the key prediction of the model.

Table 1 shows the results of estimating (7) on our merged CRSP-Compustat data set from 1980 onwards. Only the relevant coefficients are displayed in the tables, but the actual regression includes all variables specified in the equation 7. Column (1) estimates equation (7) without interactions with the level of interest rate. The coefficient β_1 is negative and significant; leaders earn positive excess return when the interest rate falls.

Column (2) presents estimates from the full specification (7). The coefficient β_3 is positive and significant as predicted by the model. Excess returns for leaders are higher in response to a fall in the interest rate when the level of the interest rate is lower. This is succinctly captured by β_1 which reflects the increase in excess returns when interest rates fall near the zero lower bound (i.e., when $i_{t-1} \approx 0$). The excess return near the zero lower bound in column (2) (3.88) is three times the average excess return of 1.19 in column (1).

One concern with these results is that the measure of industry leaders is spuriously correlated with balance sheet factors that are more sensitive to interest rate movements. For example, perhaps leaders are more levered and a fall in the interest rate helps lower the interest burden. To test for this, and other related concerns, we include a number of firm level characteristics as controls by including all the interaction of the firm level characteristic with the change in interest rate as well as the level of the interest rate. We include the following firm-level characteristics, a firm’s asset-liability ratio, debt-equity ratio, book-to-market ratio, and the percent of pre-tax income that goes to taxes. The number of observations decreases because we have to limit the sample to Compustat firms with the available data on firm financials. Column (3) shows that the inclusion of this extensive list of firm-level controls does not change the coefficients of interest materially.

Column (4) controls for another potentially spurious firm-level attribute. What if industry leaders are spuriously more cyclical? If a fall in the interest rate represents changing economic expectations, industry leaders might generally be more responsive to changing market conditions
irrespective of the level of interest rate. To test for this possibility, the market beta of each firm is estimated using the historical data as of \(t - 1 \) and then it is interacted with both the change in the interest rate and the level of the interest rate in column (4). As before, the main coefficients of interest are not materially affected. Table A1 in the appendix also shows robustness of the main findings to alternative definitions of industry leadership: top 5 instead of top 5 percent, SIC instead of Fama French industries, and sorting on EBITDA and sales instead of market value.

Table 2 performs a time-series version of the excess return test implemented in Table 1. In particular, the results are based on the following specification,

\[
R_t = \alpha + \beta_0 i_{t-1} + \beta_1 \Delta i_t + \beta_2 \Delta i_t \star i_{t-1} + \epsilon_t
\]

where \(R_t \) is the market-capitalization weighted average of returns for a stock portfolio that goes long industry-leader stocks and goes short industry-follower stocks from date \(t - 91 \) to \(t \). We refer to this portfolio as the “leader portfolio.” Given that observations have overlapping differences, we compute standard errors using a Newey-West procedure with a maximum lag length of 60 days to account for built-in correlation. A negative estimate of coefficient \(\beta_1 \) would signify that a decline in interest rates boosts the return on the leader portfolio, while a positive estimate of \(\beta_2 \) would signify that the positive response of the return on the leader portfolio to a decline in interest rates is larger when the level of the interest rate is lower.

The estimates reported in columns (1) and (2) confirm earlier results. A decline in the interest rate is associated with positive returns for the leader portfolio, and this positive return response to a decline in the interest rate is larger in magnitude when the interest rate is lower. Column (3) shows that the results are not driven by the excess market return of the HML factor.\(^{10}\) Column (4) shows that the results are driven by both positive and negative changes in interest rates. In particular, the excess return results are materially unchanged whether only positive changes in interest rates or only negative changes in interest rate are used.

There may be a concern that industry leaders tend to have a high price-to-earnings ratio and that such growth firms benefit disproportionately from a decline in long-term interest rates be-

\(^{10}\)We cannot control for the small minus big size factor because it is very highly correlated with the leader portfolio.
cause more of their earnings are in the future. We test for this concern by constructing a “PE portfolio” that is long the top 5% of firms by PE in an industry and short the rest. However, including the PE portfolio return does not change the coefficients of interest, and the leader-minus-follower portfolio is itself negatively corrected with the PE portfolio.

The default specification constructs returns and interest rate changes at a quarterly frequency. This reflects our view that this is the appropriate frequency because it captures interest rate movements that are deemed more permanent. Figure 6 plots the histograms of interest rate changes in the sample, from daily to annual frequency. On average interest rates went down during this time period. However, there is substantial variation with the change in the interest rate being positive on a high fraction of days. As already shown, the key findings are symmetric to whether the change in the interest rate is positive or negative.

As one moves from daily to annual frequency, the range of interest rate changes increases. This is another reason to focus on longer term differences; the market needs sufficient time to incorporate a large change in interest rates when forming expectations. Table A2 in the appendix repeats the core specification for interest rate changes at frequencies ranging from daily to annual. For reasons discussed above, the effect tends to be stronger when the interest rate change is computed over longer horizons.

Another robustness test concerns the exact interest rate used in the specification. For example, do the excess return results depend on whether the change in the interest rate is at the short versus the long end of the yield curve? Statistically this is a somewhat hard test to perform because interest rate movements along the yield curve tend to be highly correlated. Table A3 in the appendix shows the correlation matrix of quarterly changes in forward rates of varying non-overlapping durations. The correlations are generally quite high, leading to problems of collinearity in joint testing. The lowest correlation is in the range of 0.7 to 0.75 between change in 0-2 forward rate and longer term forward rates (e.g. 10-30).

Table 3 presents estimates of equation (8) using the forward rate of varying duration. The main takeaway is that the results shown above are similar for interest rate changes throughout the yield curve (columns (1) through (6)). When both the 0-2 and 10-30 forward rates are put in the spec-
ification together (columns (7) and (8)), both ends of the yield curve appear to be independently important, with some evidence that the longer end of the yield curve is more important.

Figure 7 shows the key result in a more non-parametric fashion. The top panel plots the following two variables against each other: (i) the rolling 2-year correlation of the interest rate change ($t - 91$ days to t) and the industry leader minus follower excess returns over the same period, and (ii) the 10-year treasury yield at $t - 91$. There is a strong positive correlation between the two variables. As the level of the interest rate declines, the correlation measured on the y-axis becomes more negative. In other words, the excess return on the leader portfolio is higher in response to an interest rate decline when the interest rate level is lower.

The bottom panel plots the coefficients $\{\beta_{2j}\}$ of the specification:

$$R_t = \sum_{j=1}^{4} \beta_{1j} D_t \{4(j-1) \leq i_{t-1} \leq 4j\} + \sum_{j=1}^{4} \beta_{2j} D_t \{4(j-1) \leq i_{t-1} \leq 4j\} \Delta i_t + \varepsilon_t \quad (9)$$

R_t is defined as the market-capitalization weighted average of returns for a stock portfolio that goes long in leader stocks and goes short in follower stocks from date $t - 91$ to t. $D_t \{4(j-1) \leq i_{t-1} \leq 4j\}$ is defined as an indicator variable equal to 1 when the interest rate 91 days prior is between $4(j-1)$ and $4j$ for $j = 1, 2, 3, 4$. Consistent with the top panel, the bottom panel shows that response of excess returns to a decline in the interest rate monotonically increases as the level of the interest rate declines.

Figure 8 plots the coefficients $\{\beta_{0j}\}$ of the following specification:

$$R_{t+j} = \alpha_j + \beta_{0j} \Delta i_t + \beta_{1j} \Delta i_{t-1} + \beta_{2j} \Delta i_{i_{t-1}} + \varepsilon_t \quad (10)$$

R_{t+j} is defined as the market-capitalization weighted average of returns for a stock portfolio that goes long in leader stocks and goes short in follower stocks from date t to $t + j$. Δi_t is defined here as the change in the interest rate from date t to $t + 91$. The coefficients β_{0j} can be interpreted as the effect of a change in interest rates from $t - 91$ to t on the returns of the leader portfolio from time t to time $t + j$ when the level of interest rates at $t - 1$ is equal to zero. In other words, the figure represents the impulse response function at a daily frequency of the leader portfolio return.
to a change in interest rates.

As the figure shows, the effect of a change in interest rates starts quickly but the full effect is not realized until about 90 days. Further, there is no evidence of reversal over the following quarter. The increase in the value of the leader portfolio is persistent.

3.2 Aggregate evidence

The previous section focused on firm-level predictions of the model in response to a decline in interest rates. This section discusses how the model unifies a number of important aggregate trends in a single coherent framework.

A central prediction of the model is that lower interest rates increase the share of industries that are in the monopolistic region of the state space. As a result, lower interest rates should be associated with a higher profit share, higher markups, and higher concentration. The left panel of Figure 9 plots the profit share of GDP against the 10-year nominal U.S. Treasury rate and shows that there is indeed a sharp rise in profit share as long-term interest rate moved towards zero. The right panel plots the share of market value that goes to the top-5 firms within an industry against the 10-year treasury rate. There is a clear trend toward an increase in market concentration as the long-term rate declines.

The model also shows that as interest rates decline, “business dynamism,” defined as the likelihood of a follower overtaking the leader, declines. One proxy for firm dynamism uses establishment entry and exit information for the United States from 1985 to 2014. Figure 10 shows that lower interest rates are associated with both a decline in the entry and exit rates of establishments in the United States. From the model’s perspective, this decline in business dynamism reflects higher market power of industry leaders and the reduced incentives to enter new markets by followers.

To the best of our knowledge, the model presented here is the first to predict that as interest rates decline and move toward zero, the steady state average gap in productivity growth be-

11The establishment entry and exit rates time series for the United States comes from the US Census’ Business Dynamics Statistics database.
tween leaders and followers widens. Using firm level productivity data from OECD countries, Berlingieri and Criscuolo (2017) provide evidence in support of this prediction. The two panels of Figure A1 summarize their findings. The left panel uses data from the OECD multi-prod data set and shows that the gap between the labor productivity of market leaders and followers increases as interest rates decline over the 2000s. Leaders are defined to be firms in the 90th percentile of the labor productivity distribution for a given 2-digit industry, and followers are defined to be firms in the 10th percentile. The gap between leaders and followers has been increasing steadily from 2000 to 2014 as long term interest rates have fallen.

The right panel extracts the year fixed effects from a country by industry level panel containing this same gap. As it shows, there is a steady increase in the productivity gap between market leaders and followers across countries and industries. A similar result is in Andrews et al. (2016), who show a widening gap in labor productivity of frontier versus laggard firms in both manufacturing and services for OECD firms. Andrews et al. (2016) also show cross-sectional evidence supporting the predictions of the model. They show that industries in which the gap between leader and follower multi-factor productivity is rising the most are the same industries where sector-aggregate multi-factor productivity is falling the most. As in the model, low interest rates lead to a large gap between the leader and follower in productivity investment; as a result, total investment in productivity of the industry falls.

Finally, the model shows that as interest rates approach zero, productivity growth also slows down due to the accumulated rise in market concentration. This is also consistent with the growth slowdown globally. The left panel of Figure 11 plots log total factor productivity for OECD countries and the 10-year nominal U.S. Treasury rate against time. As is well-known in the literature, and apparent from the figure, there is a marked slowdown in productivity growth around 2005 - well before the Great Recession. This suggests that there is a common global factor, not related to the Great Recession, that may be responsible for the growth slowdown. The model suggests the very low level of long-term rates is a possible factor. The right panel plots the OECD average productivity growth rate against the 10-year rate and shows the slowdown in productivity growth as the interest rate approaches zero.12

12As in the model, investment as a share of GDP has also declined with lower interest rates. In related papers,
In summary, lower interest rates are associated with higher market concentration, a decline in business dynamism, a widening of the gap between the productivity of leaders and followers, and a slowdown in productivity growth. This is true both in the model and in the data.

3.3 Prevailing interest rates are too low

Our model shows an inverted-U relationship between steady-state productivity growth and interest rates. We now argue that prevailing interest rates since the 1990s are likely to the left of the peak in Figure 4, and that low rates have likely generated low productivity growth.

There are two critical levels of interest rates associated with our main propositions. Proposition 1 shows that declines in r lower steady-state growth for all initial $r < r^*_g$. Proposition 2 shows that declines in r asymmetrically benefit market leaders relative to followers, on impact, for all initial $r < r^*_val$.

Our empirical analysis shows that $r^*_val \approx 14\%$. While we cannot theoretically establish an unambiguous relationship between the two critical interest rates, our numerical solution suggests $r^*_g > r^*_val$ for every combination of parameters; hence, it is likely that $r^*_g > 14\%$, and that low rates have generated low productivity growth under the prevailing interest rates since the 1990s.

The intuition for $r^*_g > r^*_val$ is as follows. Recall from Lemma 4 that, conditioning on followers investing at all, higher mass of markets in the monopolistic region (μ^M) implies lower aggregate growth. The critical interest rate r^*_g is precisely the level below which the average market starts to leave the competitive region and enter the monopolistic region as r declines. On the other hand, section 2.5 shows that only leaders who are close to the end of the monopolistic region—those close to state $n + 1$—benefit from lower r relative to the average followers. For the average leader in the market to experience relative valuation gains from negative interest rate shocks, the initial, pre-shock interest rate $r(< r^*_val)$ must be sufficiently low so that the average market is deep into

13Jones and Philippon (2016) show that increase in industry concentration is associated with lower firm investment and Gutiérrez and Philippon (2016) show that investment is not correlated with market valuation and profitability after 2000s.

For instance, column 4 of Table 1 shows that, starting from around $r = 0$, one percentage point decline in r benefits market value of leaders by 4.2%. The asymmetric valuation effect is 0.3% smaller for every percentage point higher in the initial interest rate; hence, the asymmetric effect vanishes at around $r = 14\%$, above which declines in interest rates benefit followers relative to leaders.
the monopolistic region and far away from the competitive region. This can be true only if \(r^{val} \) is significantly lower than \(r^*_g \), consistent with our numerical finding.

4 Conclusion

The focus of this paper is on understanding how the supply-side of the economy responds to a reduction in long-term interest rates driven by demand-side forces. The existing literature in growth either assumes no supply-side response to declining interest rates, or a positive response driven by an increased incentive to invest in the face of a higher discounted present value of future profits. The point of departure from this literature lies in explicitly modeling competition within an industry and analyzing how lower interest rates effect the nature of competition. The model builds on the dynamic contests literature to show that in a fairly general set up and without relying on any financial or other forms of frictions, the effect of lower interest rates on growth in a low interest rate regime can be negative.

A reduction in long-term interest rates tends to make market structure less competitive within an industry. The reason is that while both the leader and follower within an industry increase their investment in response to a reduction in interest rates, the increase in investment is always stronger for the leader. As a result, the gap between the leader and follower increases as interest rates decline, making an industry less competitive and more concentrated. When interest rates are already low, this negative effect of lower interest rates on industry competition tends to lower growth and overwhelms the traditional positive effect of lower interest rates on growth. This produces a hump-shaped inverted-U supply-side relationship between growth and interest rates.

The model delivers a distinctive upward sloping supply-curve in a low interest rate regime. We believe that this insight is useful in understanding the slowdown in productivity growth in recent decades and the broader discussion regarding “secular stagnation.” The slowdown in productivity growth is global as it shows up in almost all advanced economies. The slowdown started well before the Great Recession, suggesting that cyclical forces related to the crisis are unlikely to be the trigger. And the slowdown in productivity is highly persistent, lasting well over a decade. The long-run pattern suggests that explanations relying on price stickiness or the zero lower bound on
nominal interest rates are unlikely to be the complete explanation.

This paper introduces the possibility of low interest rates as the common global “factor” that drives the slowdown in productivity growth. The mechanism that the theory postulates delivers a number of important predictions that are supported by empirical evidence. A reduction in long term interest rates increases market concentration and market power in the model. A fall in the interest rate also makes industry leadership and monopoly power more persistent. There is empirical support for these predictions in the data, both in aggregate time series as well as in firm-level panel data sets.
References

Budd, Christopher, Christopher Harris, and John Vickers, “A Model of the Evolution of Duopoly: Does the Asymmetry between Firms Tend to Increase or Decrease?,” *The Quarterly Journal of Economics*, 1993.

Figure 1: Time-path of markup and growth rate following a shock to r

Productivity growth after a one-time, permanent decline in interest rate

Average markup after a one-time, permanent decline in interest rate
Figure 2: Investment response to a decline in r

Investment by productivity gap: leader (η_s) and follower (η_{-s})

- leader (low r)
- follower (low r)
- leader (high r)
- follower (high r)

Investment response to a drop in interest rate

- leader
- follower
Figure 3: Response of steady-state distribution and value functions to a decline in r

Steady-state distribution of productivity gap: μ_s

- low r
- high r

Value functions

- leader (v_s) under high r
- follower (v_{-s}) under high r
- leader (v_s) under low r
- follower (v_{-s}) under low r
Figure 4: Steady-state growth

Steady-state growth rate as a function of the interest rate r

Figure 5: Asymmetric valuation effects

Relative on-impact valuation effect $\left(\frac{\hat{V}^L/\hat{V}^L}{\hat{V}^F/\hat{V}^F}\right)$ as a function of the interest rate r
Figure 6

Distribution of Interest Rate Changes at Varying Frequencies

The panels plots the histograms of interest rate changes in our sample, from daily to annually.
The top panel plots the rolling 2-year correlation of interest rate changes and top-5 portfolio returns against the 10-year Treasury yield 91 days prior. The bottom panel plot the coefficients \(\{\beta_{2,j}\} \) of the specification \(R_t = \sum_{j=1}^{4} \beta_{1,j} D_t\{4(j - 1) \leq i_{t-1} \leq 4j\} + \sum_{j=1}^{4} \beta_{2,j} D_t\{4(j - 1) \leq i_{t-1} \leq 4j\} \Delta i_t + \varepsilon_t \) at date \(t \). \(R_t \) is defined as the market-capitalization weighted average of returns for a stock portfolio that goes long in leader stocks and goes short in follower stocks from date \(t - 91 \) to \(t \). \(D_t\{4(j - 1) \leq i_{t-1} \leq 4j\} \) is defined here as an indicator variable equal to 1 when the interest rate 91 days prior is between \(4(j - 1) \) and \(4j \) for \(j = 1, 2, 3, 4 \). Leaders are defined as the firms in the top 5% of market capitalization in its FF industry on date \(t - 91 \). \(i_t \) is defined as the nominal 10-year Treasury yield, with \(i_{t-1} \) being the interest rate 91 days prior and \(\Delta i_t \) being the change in the interest rate from date \(t - 91 \) to \(t \). Standard errors are Newey-West with a maximum lag length of 60 days prior.
The figure plots the coefficients \(\{ \beta_{0,j} \} \) of the specification \(R_{t+j} = \alpha_j + \beta_{0,j} \Delta i_t + \beta_{1,j} \Delta i_{t-1} + \beta_{2,j} \Delta i_{t-2} + \epsilon_t \) at date \(t \). \(R_{t+j} \) is defined as the market-capitalization weighted average of returns for a stock portfolio that goes long in leader stocks and goes short in follower stocks from date \(t \) to \(t + j \). \(\Delta i_t \) is defined here as the change in the interest rate from date \(t \) to \(t + 91 \). Leaders are defined as the firms in the top 5% of market capitalization in its FF industry on date \(t \). Standard errors are Newey-West with a maximum lag length of 60 days prior.
Figure 9: Aggregate profit share, market concentration and interest rate
Figure 10: Business Dynamism
Figure 11: Productivity growth and interest rates
Table 1: Differential Interest Rate Responses of Leaders vs. Followers: Top 5 Percent

<table>
<thead>
<tr>
<th></th>
<th>Stock Return</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Top 5 Percent=1 x Δi</td>
<td>-1.187***</td>
<td>-3.881**</td>
<td>-4.415***</td>
<td>-4.182***</td>
</tr>
<tr>
<td></td>
<td>(0.260)</td>
<td>(1.113)</td>
<td>(0.893)</td>
<td>(0.529)</td>
</tr>
<tr>
<td>Top 5 Percent=1 x Δi x Lagged i</td>
<td>0.293**</td>
<td>0.346***</td>
<td>0.301***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.095)</td>
<td>(0.079)</td>
<td>(0.045)</td>
<td></td>
</tr>
<tr>
<td>Firm β x Δi</td>
<td>14.10***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.795)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm β x Δi x Lagged i</td>
<td>-1.260***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.082)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>All</td>
<td>All</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Controls</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Industry-Date FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>61,313,604</td>
<td>61,313,604</td>
<td>44,104,181</td>
<td>61,299,546</td>
</tr>
<tr>
<td>R-sq</td>
<td>0.403</td>
<td>0.403</td>
<td>0.415</td>
<td>0.409</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* p < 0.05, ** p < 0.01, *** p < 0.001

Regression results for the specification $\Delta \ln \left(P_{i,j,t} \right) = \alpha_{i,j,t} + \beta_0 D_{i,j,t} + \beta_1 D_{i,j,t} \Delta i_t + \beta_2 D_{i,j,t} \Delta i_{t-1} + \beta_3 D_{i,j,t} \Delta i_{t-1} + X_{i,j,t} \gamma + \epsilon_{i,j,t}$ for firm i in industry j at date t. $\Delta \ln \left(P_{i,j,t} \right)$ is defined here as the log change in the stock price for firm i in industry j from date $t-91$ to t (one quarter growth). $D_{i,j,t}$ is defined here as an indicator equal to 1 at date t when a firm i is in the top 5% of market capitalization in its industry j on date $t-91$. Firms with $D_{i,j,t}=1$ are called leaders while the rest are called followers. i_t is defined as the nominal 10-year Treasury yield, with i_{t-1} being the interest rate 91 days prior and Δi_t being the change in the interest rate from date $t-91$ to t. Controls X include a firm’s asset-liability ratio, debt-equity ratio, book-to-market ratio, and percent of pre-tax income that goes to taxes. Industry classifications are the Fama-French industry classifications (FF). Standard errors are dually clustered by industry and date.
Table 2: Portfolio Returns Response to Interest Rate Changes: Top 5 Percent

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta i_t)</td>
<td>-1.150***</td>
<td>-3.819***</td>
<td>-2.268***</td>
<td>-3.657***</td>
<td>-3.001***</td>
</tr>
<tr>
<td></td>
<td>(0.309)</td>
<td>(0.641)</td>
<td>(0.602)</td>
<td>(0.949)</td>
<td>(0.720)</td>
</tr>
<tr>
<td>(i_{t-1})</td>
<td>0.0842</td>
<td>0.0336</td>
<td>0.160*</td>
<td>0.167*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.050)</td>
<td>(0.044)</td>
<td>(0.071)</td>
<td>(0.069)</td>
<td></td>
</tr>
<tr>
<td>(\Delta i_t \times i_{t-1})</td>
<td>0.294***</td>
<td>0.117*</td>
<td>0.328***</td>
<td>0.239*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.056)</td>
<td>(0.081)</td>
<td>(0.096)</td>
<td></td>
</tr>
<tr>
<td>Excess Market Return</td>
<td>-0.168***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Minus Low</td>
<td>0.0371</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((\Delta i_t > 0) = 1 \times \Delta i_t)</td>
<td></td>
<td>0.341</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.717)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((\Delta i_t > 0) = 1 \times \Delta i_t \times i_{t-1})</td>
<td></td>
<td>-0.102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.170)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE Portfolio Return</td>
<td></td>
<td>-0.207***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.059)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>9,016</td>
<td>9,016</td>
<td>9,016</td>
<td>9,016</td>
<td>7,402</td>
</tr>
<tr>
<td>R-sq</td>
<td>0.044</td>
<td>0.089</td>
<td>0.228</td>
<td>0.092</td>
<td>0.196</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Regression results for the specification \(R_t = \alpha + \beta_0 i_{t-1} + \beta_1 \Delta i_t + \beta_2 \Delta i_t i_{t-1} + \epsilon_t \) at date \(t \). \(R_t \) is defined as the market-capitalization weighted average of returns for a stock portfolio that goes long in leader stocks and goes short in follower stocks from date \(t - 91 \) to \(t \). Leaders are defined as the firms in the top 5% of market capitalization in its FF industry on date \(t - 91 \). \(i_t \) is defined as the nominal 10-year Treasury yield, with \(i_{t-1} \) being the interest rate 91 days prior and \(\Delta i_t \) being the change in the interest rate from date \(t - 91 \) to \(t \). Standard errors are Newey-West with a maximum lag length of 60 days prior. In column 4, the terms \((\Delta i_t > 0) = 1 \) and \((\Delta i_t > 0) = 1 \times i_{t-1} \) were suppressed from the table. Their coefficients are 0.0222 (0.602) and -0.0616 (0.086), respectively.
Table 3: Portfolio Returns Response to Interest Rate Changes: Along the Yield Curve

<table>
<thead>
<tr>
<th></th>
<th>30-Year</th>
<th>2-Year</th>
<th>10-30 Forward</th>
<th>2-Year & 10-30 Fwd.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Δi_t</td>
<td>-1.129**</td>
<td>-4.537***</td>
<td>(0.348)</td>
<td>(0.826)</td>
</tr>
<tr>
<td>$\Delta i_t \times i_{t-1}$</td>
<td>0.362***</td>
<td>(0.077)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta i_{t,0,2}$</td>
<td>-0.584*</td>
<td>-3.535***</td>
<td>(0.244)</td>
<td>(0.833)</td>
</tr>
<tr>
<td>$\Delta i_{t,0,2} \times i_{t-1}$</td>
<td>0.280***</td>
<td>(0.069)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta i_{t,10,30}$</td>
<td>-1.084**</td>
<td>-4.165***</td>
<td>(0.354)</td>
<td>(0.835)</td>
</tr>
<tr>
<td>$\Delta i_{t,10,30} \times i_{t-1}$</td>
<td>0.334***</td>
<td>(0.080)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| N | 8,006 | 8,006 | 8,065 | 8,065 | 8,006 | 8,006 | 8,006 | 8,006 |
| R-sq | 0.036 | 0.078 | 0.021 | 0.063 | 0.030 | 0.066 | 0.031 | 0.084 |

Standard errors in parentheses
* p < 0.05, ** p < 0.01, *** p < 0.001

Regression results for the specification $R_t = \alpha + \beta_0 i_{t-1} + \beta_1 \Delta i_t + \beta_2 \Delta i_{t-1} + \epsilon_t$ at date t in columns 1-2 and $R_t = \alpha + \beta_0 i_{t-1} + \beta_{1,1} \Delta i_{t,0,2} + \beta_{1,2} \Delta i_{t,10,30} + \beta_{1,3} \Delta i_{t,0,10} + \beta_{2,1} \Delta i_{t,0,2} i_{t-1} + \beta_{2,2} \Delta i_{t,10,30} i_{t-1} + \beta_{2,3} \Delta i_{t,0,10} i_{t-1} + \epsilon_t$ at date t in columns 3-8. R_t is defined as the market-capitalization weighted average of returns for a stock portfolio that goes long in leader stocks and goes short in follower stocks from date $t-91$ to t. Leaders are defined as the firms in the top 5% of market capitalization in its FF industry on date $t-J$. i_t is defined as the nominal 30-year Treasury yield, with i_{t-1} being the interest rate J days prior and Δi_t being the change in the interest rate from date $t-91$ to t. $i_{t,0,2}$, $i_{t,0,10}$ and $i_{t,10,30}$ are the 2-year and 10-year Treasury yield and 10 to 30 forward Treasury yield, respectively. Standard errors are Newey-West with a maximum lag length of 60 days prior. We cannot reject that the main and interaction coefficients in columns 7 and 8 are not equal.
A Appendix: Additional Tables and Figures

Figure A1: Widening productivity gap between leaders and followers
Figure A2: Top 5% average wage-employment ratio and interest rates

Figure A3: Fraction of Leaders who were Leaders a Quarter Prior

The panels plots the time series of the proportion of firms who are leaders today, given they were leaders 91 days prior.
Table A1: Differential Interest Rate Responses of Leaders vs. Followers: Robustness Checks

<table>
<thead>
<tr>
<th></th>
<th>Top 5</th>
<th>SIC</th>
<th>EBITDA</th>
<th>SALES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Top 5 Percent=1 x Δi</td>
<td>-1.106***</td>
<td>-3.847**</td>
<td>-1.204***</td>
<td>-3.903***</td>
</tr>
<tr>
<td></td>
<td>(0.273)</td>
<td>(1.220)</td>
<td>(0.222)</td>
<td>(0.936)</td>
</tr>
<tr>
<td>Top 5 Percent=1 x Δi x Lagged i</td>
<td>0.303**</td>
<td>0.293***</td>
<td>0.372***</td>
<td>0.277*</td>
</tr>
<tr>
<td></td>
<td>(0.105)</td>
<td>(0.081)</td>
<td>(0.092)</td>
<td>(0.112)</td>
</tr>
<tr>
<td>Sample</td>
<td>All</td>
<td>All</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Industry-Date FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>61,313,604</td>
<td>61,313,604</td>
<td>61,277,070</td>
<td>61,277,070</td>
</tr>
<tr>
<td>R-sq</td>
<td>0.403</td>
<td>0.403</td>
<td>0.403</td>
<td>0.404</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

Regression results for the specification $\Delta \ln (\pi_{i,j,t}) = \alpha_{i,t} + \beta_0 D_{i,j,t} + \beta_1 D_{i,j,t} \Delta i_t + \beta_2 D_{i,j,t} \Delta i_{t-1} + \beta_3 D_{i,j,t} \Delta i_{t-1} + X_{i,j,t} \gamma + \epsilon_{i,j,t}$ for firm i in industry j at date t. The definitions are the same as in Table 2 except for $D_{i,j,t}$. In columns 1 and 2, leaders are chosen by the top 5 number of firms by market capitalization within an industry and date. In columns 3 and 4, leaders are chosen by the top 5% of firms by market capitalization within an industry and date, where we change the definition of industry to be the 2-digit Standard Industry Classification (SIC) codes. In columns 5 and 6, leaders are chosen by the top 5% of firms by earnings before interest, taxes, depreciation, and amortization (EBITDA) within an industry and date. In columns 7 and 8, leaders are chosen by the top 5% of firms by sales within an industry and date. Standard errors are dually clustered by industry and date.
Table A2: Portfolio Returns Response to Interest Rate Changes: Top 5 Percent, Different Frequencies

<table>
<thead>
<tr>
<th></th>
<th>Yearly</th>
<th>Semi-Yearly</th>
<th>Monthly</th>
<th>Weekly</th>
<th>Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Δi_t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.061**</td>
<td>-5.570***</td>
<td>-1.188***</td>
<td>-1.000***</td>
<td>-0.964***</td>
</tr>
<tr>
<td></td>
<td>(0.403)</td>
<td>(1.134)</td>
<td>(0.345)</td>
<td>(0.764)</td>
<td>(0.196)</td>
</tr>
<tr>
<td>i_{t-1}</td>
<td>0.381**</td>
<td>0.149</td>
<td>0.0273</td>
<td>0.00928</td>
<td>0.00327**</td>
</tr>
<tr>
<td></td>
<td>(0.134)</td>
<td>(0.080)</td>
<td>(0.019)</td>
<td>(0.005)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>$\Delta i_t \times i_{t-1}$</td>
<td>0.493***</td>
<td>0.385***</td>
<td>0.150***</td>
<td>0.0984**</td>
<td>0.0470</td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
<td>(0.073)</td>
<td>(0.040)</td>
<td>(0.035)</td>
<td>(0.027)</td>
</tr>
</tbody>
</table>

Sample | All |
R-sq | 0.024 | 0.095 | 0.040 | 0.101 | 0.036 | 0.050 | 0.032 | 0.039 | 0.019 | 0.020 |

Sample sizes: All = 9,037; All = 9,037; All = 8,962; All = 8,962; All = 9,081; All = 9,081; All = 9,099; All = 9,099; All = 9,080; All = 9,080

Standard errors in parentheses

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

Regression results for the specification $R_t = \alpha + \beta_0 i_{t-1} + \beta_1 \Delta i_t + \beta_2 \Delta i_t i_{t-1} + \epsilon_t$ at date t. R_t is defined as the market-capitalization weighted average of returns for a stock portfolio that goes long in leader stocks and goes short in follower stocks from date $t - 91$ to t. Leaders are defined as the firms in the top 5% of market capitalization in its FF industry on date $t - J$. i_t is defined as the nominal 10-year Treasury yield, with i_{t-1} being the interest rate J days prior and Δi_t being the change in the interest rate from date $t - 91$ to t. For columns 1 and 2, $J = 364$; columns 3 and 4, $J = 28$; columns 5 and 6, $J = 7$; columns 7 and 8, $J = 1$, where 1 is one trading day. Standard errors are Newey-West with a maximum lag length of 60 days prior.
Table A3: Correlation Table of Forward Rates

<table>
<thead>
<tr>
<th>Variables</th>
<th>0-2</th>
<th>2-3</th>
<th>3-5</th>
<th>5-7</th>
<th>7-10</th>
<th>10-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>0.88</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-5</td>
<td>0.82</td>
<td>0.93</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-7</td>
<td>0.71</td>
<td>0.84</td>
<td>0.88</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-10</td>
<td>0.70</td>
<td>0.82</td>
<td>0.83</td>
<td>0.86</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>10-30</td>
<td>0.75</td>
<td>0.84</td>
<td>0.89</td>
<td>0.92</td>
<td>0.93</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Correlation table of forward rates. P-values in parentheses.