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1. Introduction

The study of dynamic intertemporal portfolio choice problems in continuous time has a long history

dating back to Merton (1971). In Merton’s model, the investor’s optimization problem consists of

how to optimally choose his consumption, as well as determining optimal portfolio allocation in a

riskfree and a risky asset in order to maximize his expected lifetime utility. The sources of risk in this

framework are all diffusive so that sudden large changes in the underlying risky assets are unlikely

to occur. More recently, researchers have extended Merton’s framework allowing for discontinuities

in the price process. The dynamic portfolio allocation problem has been studied when asset prices

are driven by jump processes, including Poisson, stable or more general Lévy processes. For instance

Kallsen (2000), Choulli and Hurd (2001), or Cvitanić et al. (2008) study the dynamic consumption-

portfolio selection problem when the risky asset follows a Lévy process. However, when jumps are

included, it becomes substantially more difficult to solve for the investor’s optimal portfolio holdings

in closed form. Aı̈t-Sahalia et al. (2009) are the first to provide a closed-form solution to the dynamic

consumption-portfolio selection problem, when asset prices are driven by Lévy processes. However,

the literature mentioned above treats the parameters, such as the expected return, jump intensity

and jump size distribution as if they were known. In practice, these parameters are unknown and

therefore the investor faces a considerable amount of model uncertainty. One way to account for

this model uncertainty is to argue that the investor has a specific model in mind but fears that it is

misspecified, in other words he beliefs that the true model lies in a set of alternative models which

are statically close to his reference model. Among this class of models, which are obtained by per-

turbing the reference model, the investor is unable to detect the true underlying model. Therefore,

by considering a perturbed version of his reference model, the investor can guard himself against

potential model misspecification by making consumption and portfolio choices that are robust across

the set of alternative models. In other words, robust portfolio rules are designed to work well not

only when the underlying model describing the asset dynamics is correctly specified, but they should

also perform reasonably well in the case when the model is misspecified.

The notion of (model) robustness or ambiguity aversion has been extensively studied in the literature

on continuous time consumption and asset allocation problems. One way of introducing (Knightian)
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ambiguity aversion is through the formulation of multiple priors preferences as presented by Gilbao

and Schmeidler (1989). Given such preferences, optimal decisions are taken under the premise that

state variables are governed by the worst-case probability model among a set of candidate models.

Chen and Epstein (2002) formulate an inter-temporal recursive multiple-priors utility problem that

incorporates Knightian ambiguity aversion.1 In this paper however, we build upon the penalty-

based framework of robust decision making which has been pioneered by Hansen and Sargent.2 This

notion of robustness has been extensively employed for solving consumption and portfolio alloca-

tion problems in the diffusive setting.3 For instance, Uppal and Wang (2003) derive a model of

inter-temporal portfolio choice of an investor who takes model misspecification into account. Tro-

jani and Vanini (2004) solve two versions of a robust control problem and examine its impact on

the resulting asset allocations.4 Maenhout (2004) studies an inter-temporal portfolio problem of

an investor who worries about model misspecification and shows that, if the investor seeks robust

decision rules then the demand for equities is significantly reduced. Additionally, Maenhout (2006)

extents the robust portfolio allocation analysis by a allowing for a time-varying mean-reverting risk

premium and shows that while the desire for robustness lowers the total equity share, the proportion

of the inter-temporal hedging demand is increased. More recently, the concept of robustness with

respect to model misspecification has also been applied to models of the term structure of nominal

interest rates. For instance, Ulrich (2013) employs a robust decision making framework to analyze

how model uncertainty with respect to monetary policy affects the term premium on nominal bond

yields. Kleshchelski and Vincent (2007) present an equilibrium model of the term structure in a

robust control setting where consumption growth exhibits stochastic volatility. They show that, if

the representative agent demands optimal policies that are robust to model misspecification substan-

tially amplifies the effect of conditional heteroskedasticity in consumption growth,

1An extension of this formulation of ambiguity aversion in continuous time is given in Leippold et al. (2007) where
the authors combine learning based on optimal Bayesian updating and ambiguity aversion.

2For a general treatment of Robust Control Theory see the book by Hansen and Sargent (2008) or for applications of
robustness see Anderson et al. (2003), Hansen et al. (2006), Cogley et al. (2008), Hansen and Sargent (2010) and
Hansen and Sargent (2011).

3However, even though this RMPU formulation and the constraint penalty-based approaches to model uncertainty
aversion as in Anderson et al. (2003) are derived from the same axiomatic preference description, they differ in the
representation of agents’ perception of ambiguity in a fundamental way. RMPU is a locally constrained problem,
so that the equivalence between multiplier and constraint robust-control problem as in Hansen et al. (2006) cannot
be invoked.

4Furthermore, Trojani and Vanini (2000) derive explicit and easily understandable robust consumption and investment
rules that can be compared to those of a non-robust decision-maker in Merton’s model (see Merton (1969)).
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As of this writing, the literature on robust asset allocation and consumption problems with risky

assets that follow jump-diffusive or Lévy processes is still sparse. Most recently, Wachter (2013) in-

troduces a framework with time-varying probability of rare event risk in which consumption follows

a mixed jump diffusion process and solves an optimal consumption and portfolio choice problem in

closed form. However, in her model she does not address model misspecification. The paper by Lui

et al. (2005) employs a pure-exchange economy framework with a representative agent who faces

model uncertainty with respect to jumps in the underlying aggregate endowment (rare events) in

order to study the equilibrium equity price. They show that the corresponding equity premium con-

sists of diffusion and jump-risk premia, which are driven by risk aversion, and the model uncertainty

premium. The paper by Drechsler (2013) uses a similar robust decision making framework in an

equilibrium model in order to capture salient features of equity and options markets when the risky

assets follow a jump-diffusion process but has to rely on numerical methods to obtain a solution.5

The novelty of our approach is to introduce robustness concerns of the investor when making his

consumption and portfolio choice decisions, when the underlying risky asset follows a Lévy process.

We introduce model misspecification, with respect to the drift and jump intensity parameters and

are still able to solve for the investors’ optimal consumption and portfolio allocation in closed-form.

Additionally, we derive a semi-closed form formula for detection-error probabilities, i. e. the likeli-

hood that the investor selects the wrong model, which gives a quantitative upper bound on the set

of alternative models which seem reasonably close to his reference model.

The remainder of this paper is organized as follows. Section 2 introduces the general robust portfolio

allocation problem. Section 3 derives optimal robust portfolio weights under both drift and jump

intensity perturbation. Section 4 derives a semi-explicit expression for error-detection probability.

Section 5 concludes. The Appendix contains further derivations and technical details.

5An interesting extension of the jump-diffusive model studied by Drechsler (2013) is introduced in Branger et al.
(2014) where they allow the jump intensity to follow a more general self-exciting jump-processes, also called Hawkes
processes (see Hawkes (1971), Hawkes (1971) or Hawkes and Oakes (1974)).
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2. A Robust Portfolio Allocation Problem

We consider an infinite horizon expected utility maximization problem where the investor chooses

his consumption level and allocates his funds between a risky asset and a riskless asset. The investor

has a particular model in mind which represents his best estimate of the risky asset dynamics under

a benchmark or reference probability measure. However, the investor mistrusts his reference model

and fears that it is misspecified in the sense that he believes that the true model lies in a set of

alternative models that are statistically difficult to distinguish from it. In order to mitigate the effect

of potential model misspecification on his utility, the investor wants to choose optimal consumption

and portfolio holdings that are robust with respect to small perturbations of his reference model.

This is equivalent to considering the dynamics of the risky asset under a worst - case or robust

measure.

2.1. Asset Price Dynamics under the Reference and Robust Measure

We assume a complete, filtered probability space (Ω,F ,F = (Ft)t≥0 ,P) satisfying the usual assump-

tions where we denote by P the reference probability measure. The investment set available to the

investor at any time t ≥ 0 consists of a riskless asset (locally deterministic) with price S0,t and a risky

asset with price S1,t following compensated exponential Lévy process. More precisely, the dynamics

are given by

dS0,t

S0,t
= rdt, S0,0 > 0 (1)

dS1,t

S1,t−
= (r +R)dt+ σdBt + JdỸt, S1,0 > 0, P− a.s. (2)

where r ≥ 0 is the riskless return, R ∈ R denotes the excess return of the risky asset over the

riskfree asset, σ > 0 is a constant volatility parameter, Bt = (Bt)t≥0 is a Brownian motion under

P and J ∈ (−1, 1) is a jump scaling factor. Ỹt = Yt − Λt is a pure compensated jump process

with Lévy measure λν(dz), where λ ≥ 0 is a fixed jump intensity parameter and the measure ν

satisfies
∫
R min(1, |z|)ν(dz) < ∞ so that jumps have finite variation. We denote by Λt = λκt, and

κ = E [Zt] <∞ the predictable compensator of the jump process Yt. In the sequel, we assume that
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Yt is a compensated compound Poisson process, i. e. Ỹt =
∑Nt

n=1 Zn − Λt, where Nt is a scalar

Poisson process with jump intensity λ. The jump sizes Zn are independent of Nt and are assumed

to be i.i.d with Lévy measure ν(dz). Then the risky assets dynamics under the reference measure

can be expressed as

dS1,t

S1,t−
= (r +R)dt+ σdBϑ

t + JdỸ

= (r +R)dt+ σdBϑ
t + J (dYt − E [ZtdNt])

= (r +R)dt+ σdBϑ
t + J

(
dYt −

∫
zν(dz)E [dNt]

)
=

(
r +R− λJ

∫
zν(dz)

)
dt+ σdBt + JdYt, S0,1 > 0, P− a.s. (3)

In order to introduce the notion of model misspecification we need to specify a set of alternative or

worst - case robust dynamics which are statistically close to the reference dynamics in Equation (3).

For this purpose we specify an equivalent probability measure which we denote by Pϑ and in the

sequel refer to it as the robust measure. Given this setup, the investor considers alternative models

under the robust measure Pϑ which take the general form

dS1,t

S1,t−
=

(
r +R+ σht − λϑJ

∫
zν(dz)

)
dt+ σdBϑ

t + JdY ϑ
t , S0,1 > 0, Pϑ − a.s. (4)

A first inspection of equation (4) shows that the drift has changed from (r+R) under the measure P

to (r+R+σht−λϑJ
∫
zνϑ(dz)) under the measure Pϑ where (ht)t≥0 is a continuous Ft -measurable

function of the Markovian state S1,t with the same dimensionality as the Brownian motion, i.e. one

dimensional. In what follows, we refer to ht as a drift perturbation function, since it perturbs the

drift dynamics of the risky asset under P and does not affect the jump component Ỹt. Secondly,

the stochastic process Bϑ
t = (Bϑ

t )t≤0 is a Brownian motion but now under the perturbed or robust

measure Pϑ. Lastly, the other set of perturbations affect the jump component Ỹ ϑ
t in Equation

(4), namely the jump intensity and the jump size distribution under Pϑ. The jump intensity λ is

transformed into λϑ under the robust probability measure as follows

λϑ = eaλ, a ∈ R

where a is a scalar jump intensity perturbation parameter that amplifies or diminishes the jump

intensity. From Equation (4) we observe that perturbating the intensity has two effects on the risky
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assets dynamics. First, it alters the drift and second it changes the frequency of jumps occurring

in the Poisson process Nt. For instance, when jumps are negative only, the compensation will lead

to higher expected returns when assets prices are low and vice versa to lower expected returns

when asset prices are high which is consistent with the empirical risk and return trade-off observed

in financial markets. In other words, compensating the jump process leads to St carrying a risk

premium for intensity misspecification. The jump size distribution under Pϑ has Lévy measure

νϑ(dz) = ν(dz; b), b ∈ RL, L ≥ 1

where b is a set of possibly vector valued perturbation parameters. For instance, if the jump size

distribution is normal, Zn
i.i.d∼ N (µ, σ2), a jump size perturbed model may read Zn

i.i.d∼ N (µ +

δµ, σ
2vσ), where δµ ∈ R shifts the mean from µ under P to µ+ δµ under Pϑ and likewise the variance

is scaled by vσ > 0. Thus for a = δµ = 0 and vσ = 1 we get back the jump distributions of the

reference model under the measure P.

2.2. Measure Change for Itô Semimartingales

The dynamics of the compensated exponential Lévy process under the reference as well as under the

robust measure are linked through a specific likelihood ratio or Radon-Nikodym density process ϑt.

This density process not only allows to change the dynamics of the risky asset but also, as it will

be shown in the next section, restricts the size of alternative models that are statistically difficult

to distinguish from the reference model. To be more precise, let Pϑ be the robust or perturbed

measure which is absolutely continuous with respect to the reference measure P. Fix T > 0 and

define ϑt = (ϑt)t∈[0,T ] = dPϑ
dP

∣∣∣
Ft

= ϑt = ϑDt ϑ
J
t where ϑDt is a (Ft,P)- martingale that defines the

measure change of the continuous part of the stochastic process and ϑJt , also a (Ft,P)- martingale,

that defines the measure change of the discontinuous or jump part.6 In a jump diffusive setting,

where the jumps follow a compound Poisson process, there are three ways to change the measure, i.

e. from P, the reference measure to Pϑ, the robust measure.

1. Measure change of the diffusive part through ϑDt affecting the drift and the Brownian motion.

6The change of measures of the diffusive and jump part factor only when the continuous and the jump part of the
stochastic process are independent, which is the case in the above, since [N,W ]t = 0.
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2. Measure change of the jump part through ϑJt by changing the jump intensity of the process

under Pϑ.

3. Measure change of the jump part through ϑJt by changing the jump size of the process under

Pϑ.7

From Girsanovs’ theorem for Itô-semimartingale, for the diffusive drift measure change ϑDt , with

(ht)t≥0 a progressively measurable process, we have that

Bϑ
t = Bt −

∫ t

0
hsds (5)

is a Brownian motion with respect to the measure Pϑ. Then it follows that, an absolutely continuous

change of measure can be represented by an exponential (P,Ft)- martingale ϑt satisfying

ϑDt = exp

{∫ t

0
hsdBs −

∫ t

0

h2
s

2
ds

}
, E0 [ϑt] = ϑ0 = 1, P− a.s. (6)

where Et[·] = E[·|Ft] denotes the conditional expectation up to time t with respect to the measure P

and likewise we define by Eϑt [·] the conditional expectation up to time t with respect to the robust

measure Pϑ.

Concerning the jump part of the risky asset, we let N = (Nt)t∈[0,T ] be a Poisson process with jump

intensity λ > 0 on the probability space (Ω,Ft,P) and T > 0 again fixed. We want to change

the intensity λ of the Poisson process (Nt)t∈[0,T ] on P to a jump intensity λϑ under the robust

measure Pϑ. Likewise, we want to perturb the Lévy measure such that the jumps have distribution

νϑ(dz) = ν(dz; b) under the robust measure. The appropriate measure change ϑJ = (ϑJt )t∈[0,T ] is

dPϑ

dP

∣∣∣∣
Ft

= ϑJt = e(λ−λϑ)t
Nt∏
n=1

λϑ

λ

νϑ(Zn)

ν(Zn)
, E
[
ϑJt
]

= ϑJ0 = 1, P− a.s. (7)

which is a (Ft,Pϑ)- martingale and satisfies

dϑJt = ϑJt−d
(
Ht − λϑ

)
− ϑJt d (Nt − λt) , Ht =

Nt∑
n=1

λϑ

λ

νϑ(Zn)

ν(Zn)
. (8)

where Ht is a compound Poisson process and Ht−λϑt is a (Ft,Pϑ)-martingale. Therefore the density

process in Equation (7) is a right-continuous, adapted process with left limits (càdlàg). By changing

the perturbation parameters ht, a and b we control the discrepancy between the dynamics of the

7One distinguishes between a finite number of jump sizes and the case where the jump sizes can take on a continuum of values.
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risky asset under the reference measure with respect to its dynamics under the robust measure.

Therefore, the more ht, a and b deviate from their no-perturbation values, the more different the

dynamics of the risky asset become under the reference with respect to the robust measure, i.e. the

set of alternative models expands. However, the possible set of models under consideration has to

be restricted to a subset of models which are statistically difficult to distinguish from the reference

model. A popular statistical tool to measure ’distances’ between two probability distributions is

relative entropy which we discuss in the next section.

2.3. Relative Entropy Growth Bounds and Error-Detection Probabilities

The alternative set of possible models that are similar in a statistical sense are tightly linked to the

measure change ϑt. Given two probability measures P and Pϑ, growth in entropy of Pϑ relative to P

over the time interval [t, t+ ∆t] is defined as

G(t, t+ ∆t) = Eϑt
[
log

(
ϑt+∆t

ϑt

)]
,→ R(ϑt)

def
= lim

∆t→0

G(t, t+ ∆t)

∆t
∀t ≥ 0 (9)

Thus the set of admissible model misspecification can be characterized as

{ϑt : R(ϑt) ≤ η, ∀t ≥, η ≥ 0} (10)

where η is a constant that defines an upper bound on the set of alternative models.8 As η → 0

the investor gets fully confident about his reference model, while increasing η expands the set of

alternative models that are statistically further away from the reference model, in other words overall

model uncertainty increases. Due to the independence of the diffusive and the jump component, the

measure change is given by ϑt = ϑDt ϑ
J
t , which implies that relative entropy growth is simply the sum

of the two components ’drift’ and ’jump’, namely R(ϑt) = R(ϑDt )+R(ϑJt ). Therefore, by varying the

perturbation function ht and perturbation parameters a and b we regulate the space of admissible

models within the set [0, η], ∀t ≥ 0. An immediate question that arises in this context is: What is a

reasonable value for η? Anderson et al. (2003) provide a statistical tool for model detection based on

the log of the measure change ϑt in the form of detection-error probabilities in order to quantify the

8While the upper bound on relative entropy growth rate is constant in this model, it is possible to make it time-varying
such as for instance in Ulrich (2010), Ulrich (2012) or Drechsler (2013).

9



amount of model uncertainty that seems plausible to the investor. The basic intuition behind this

test statistic is, given the right model is P and a finite time series sample of the state variable (risky

asset) of length T − t, how likely will the investor mistakenly assume the data have been generated

by model Pϑ instead of the true model P. The detection-error probability is precisely quantifying

the likelihood that the investor is going to select the wrong model. Thus if the true model is P, the

investor will falsely reject it for model Pϑ based on a time series sample of length T − t whenever

log(ϑT ) > 0. Conversely, if the true model is Pϑ he will erroneously reject it for model P whenever

log(ϑT ) < 0.

2.4. Wealth Dynamics and Utility Specification under Robustness

We denote by Xt = (X)t≥0 the investor’s wealth at time t. Let ω0,t = w0,t/Xt be the percentage of

wealth (or portfolio weight) invested in the risk free asset and by ω1,t the percentage of wealth invested

in the risky asset. Let ω1,t = w1,t/Xt be an adapted predictable càdlàg process and wi,t, i ∈ {0, 1} is

the absolute amount of money invested into asset i. Then, the portfolio weights satisfy ω0,t+ω1,t = 1.

The investor consumes at an instantaneous rate Ct at time t. Under the robust dynamics given in

Equation (4) his wealth evolves as follows

dXt = ω0,tXt
dS0,t

S0,t
+ ω1,tXt

dS1,t

S1,t−
− Ctdt

dXt =

[
Xt

(
r + ωtR+ σhtωt − ωtλϑJ

∫
zνϑ(dz)

)
− Ct

]
dt+ ωtXtσdW

ϑ
t + ωtXtJdỸ

ϑ
t , (11)

with X0 > 0, Pϑ − a.s. and we have set ωt = ω1,t. The investor’s robust consumption and portfolio

allocation problem is to choose in a first step, a set of worst-case functions {hs}t≤s<∞ and worst-

case parameters a, b, and in a second step to select admissible consumption and portfolio holdings

{Cs, ωs}t≤s<∞ that maximize his expected utility of consumption under the worst-case scenario.

More formally speaking, let β ∈ (0,∞) be his subjective discount or ’impatience’ rate, the optimal

robust consumption and portfolio problem is given by

max
{Cs,ωs}t≤s<∞

min
{hs}t≤s<∞,a,b

Eϑt
[∫ ∞

t
e−βsU(Cs)ds

]
(12)
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subject to the entropy growth constraint

R(ϑt) ≤ η, ∀t ≥ 0 (13)

and his wealth constraint in Equation (11). We define by

V = V (Xt, t) = max
{Cs,ωs}t≤s<∞

min
{hs}t≤s<∞,a,b

Eϑt
[∫ ∞

t
e−βsU(Cs)ds

]
(14)

the value function associated to the optimal stochastic robust control problem in Equation (12).

Since we work in incomplete markets and thus the martingale measure is not unique, we have

to rely on (standard) stochastic dynamic programming techniques. Then, using Itô’s formula for

semi-martingales the perturbed Hamilton-Jacobi-Bellman (HJB) equation characterizing the optimal

robust consumption and portfolio allocation problem is given by

0 = max
{Ct,ωt}

min
{ht},a,b

e−βtU(Ct) +
∂V (Xt, t)

∂t
+
∂V (Xt, t)

∂X

[
Xt

(
r + ωtR+ σhtωt − ωtλϑJ

∫
zν(dz)

)
− Ct

]
+

1

2

∂2V

∂X2
ω2
tX

2
t σ

2 + λea
∫ [

V (Xt− +Xt−ωtJz, t)− V (Xt− , t)
]
ν(dz, b) (15)

subject to

R(ϑt) ≤ η (16)

and the transversality condition limt→∞ Eϑt [V (Xt, t)] = 0. Then by standard time-homogeneity

arguments for infinite horizon problems implies that

eβtV (Xt, t) = max
{Cs,ωs}t≤s<∞

min
{hs}t≤s<∞,a,b

Eϑt
[∫ ∞

t
e−β(s−t)U(Cs)ds

]
= max
{Ct+u,ωt+u}t≤u<∞

min
{ht+u}t≤u<∞,a,b

Eϑt
[∫ ∞

t
e−βuU(Ct+u)ds

]
= max
{Cu,ωu}0≤u<∞

min
{hu}0≤u<∞,a,b

Eϑ0
[∫ ∞

0
e−βuU(Cu)du

]
≡ L(Xt) (17)

where the third equality follows because the optimal robust control is Markov and L(Xt) is inde-

pendent of time. Thus V (Xt, t) = e−βtL(Xt). Then the optimal robust control problem in Equation
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(15) reduces to a time-homogeneous problem in L(Xt)

0 = max
{Ct,ωt}

min
{ht},a,b

U(Ct)− βL(Xt) +
∂L(Xt)

∂X

[
Xt

(
r + ωtR+ σhtωt − ωtλϑJ

∫
zν(dz)

)
− Ct

]
+

1

2

∂2L(Xt)

∂X2
ω2
tX

2
t σ

2 + λea
∫ [

L(Xt− +Xt−ωtJz)− L(Xt−)
]
ν(dz; b) (18)

subject to

R(ϑt) ≤ η (19)

and the transversality condition limt→∞ Eϑt [L(Xt)] = 0. To find a solution of the problem in (18) sub-

ject to the entropy growth constraint in (19), we formulate it as a Lagrange optimization problem with

inequality constraints. In a first step, we determine the optimal robust control policies h∗t , a
∗ and b∗,

by solving a constraint optimization problem. We denote by L = L(Ct, ωt, ht, a, b, θ) the Lagrangian

associated to the problem given in Equation (18) and by θ the corresponding Lagrange-multiplier of

the entropy growth constraint in Equation (19). Then the first order optimality conditions for the

minimization part of Equation (18) are given by

∂L
∂ht

= σωt −
∂

∂ht
θ (R(ϑt)− η) = 0, (20)

∂L
∂a

=
∂

∂a
λea

∫ [
L(Xt− +Xt−ωtJz)− L(Xt−)

]
ν(dz, b)− ∂

∂a
θ (R(ϑt)− η) = 0, (21)

∂L
∂bl

=
∂

∂bl
λea

∫ [
L(Xt− +Xt−ωtJz)− L(Xt−)

]
ν(dz; bl)−

∂

∂bl
θ (R(ϑt)− η) = 0, l = 1, . . . , L,

(22)

∂L
∂θ

= R(ϑt)− η = 0, θ ≥ 0, θ (R(ϑt)− η) = 0 (23)

Each Equation in (20) to (23) summarizes two opposing effects. For instance, from Equation (20), the

left term ∂Eϑ[V (Xt)]
∂ht

= σωt characterizes the marginal impact on the investor’s utility that results from

increasing perturbation. The right term in Equation (20) ∂
∂ht

θ (R(ϑt)− η) captures the associated

increase in detectability of the robust model. Thus under the robust measure, the perturbation of

the reference model is such that its effect is most harmful to the investor’s utility and simultaneously

remaining difficult to detect statistically. To solve the problem, from the first order conditions in

Equation (20) to (23) we obtain the optimal amount of perturbation of the drift component h∗t ,

jump intensity a∗ and size perturbation b∗ ∈ RL, that satisfy the growth entropy constraint, the

complementary slackness condition and non-negativity constraint of θ∗ in (23). Having obtained a
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set of optimal robust control parameters {h∗t , a∗, b∗}, we then plug them back into the Lagrangian

and solve the corresponding perturbed HJB equation for the optimal consumption policy C∗t and

portfolio weights ω∗. Thus given {h∗t , a∗, b∗}, the first order condition for the investor’s optimal

consumption and portfolio policies are given by,

∂L(h∗t , a
∗, b∗, θ∗)

∂Ct
=
∂U(Ct)

∂Ct
=
∂L(Xt)

∂X
→ C∗t =

[
∂U

∂X

]−1 ∂L(Xt)

∂X
(24)

∂L(h∗t , a
∗, b∗, θ∗)

∂ωt
=

∂

∂ωt

[
∂L(Xt)

∂X

[
Xt

(
r + ωtR+ σhtωt − ωtλϑJ

∫
zν(dz)

)
− Ct

]
+

1

2

∂2L(Xt)

∂X2
ω2
tX

2
t σ

2 + λea
∗
∫ [

L(Xt− +Xt−ωtJz)− L(Xt−)
]
ν(dz; b∗)

]
(25)

The first order condition for optimal consumption is standard and says that at the optimum, marginal

utility of consumption must be equal to the marginal utility of wealth. Since U is concave, the investor

wants to smooth consumption. From Equation (25) we obtain the optimal portfolio allocations as

a function of the perturbation parameters {h∗t , a∗, b∗}. We are now going to discuss first the case

where we the case when both drift and jump intensity are being distorted.

3. Explicit Robust Portfolio weights: Drift versus Jump Intensity

Perturbation

In order to derive explicit results, we need to make some assumptions about the investor’s utility,

the Lévy measure characterizing the jump sizes and the amount of perturbation of the reference

model we allow for. We consider an investor with power utility, U(c) = c1−γ

1−γ and CRRA coefficient

γ ∈ (0, 1)
⋃

(1,∞) and U(c) = −∞ whenever c ≤ 0. To obtain fully explicit portfolio weights,

we do not perturb the Lévy measure, i.e. ν(dz; b) = ν(dz) under both measures. Furthermore, we

conjecture a solution of the form

L(x) =
K−γx1−γ

(1− γ)
, (26)
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for some constant K. Then, after division by (1− γ)L(Xt) the HJB equation is given by9

0 = max
Ct,ωt

min
ht,a

U(Ct)

(1− γ)L(Xt)
− β

(1− γ)
+

[
r + ωtR+ σhtωt − ωtλϑJ

∫
zν(dz)− Ct

Xt

]
− 1

2
γω2

t σ
2 +

λϑ

(1− γ)

∫ [
(1 + ωtJz)

1−γ − 1
]
ν(dz), subject to R(ϑt) ≤ η. (27)

It is worth noting that the objective function is time independent. This follows because γ,R, σ, J

and λ are constant which implies that the optimal drift perturbation parameter ht will also be

independent of time, ht = h, ∀t ≥ 0. Furthermore, since
[
R+ σht − λϑJ

∫
zν(dz)

]
ωt − 1

2γω
2
t σ

2 +

λϑ

(1−γ)

∫ [
(1 + ωtJz)

1−γ − 1
]
ν(dz) does not depend on the investor’s time t wealth Xt, the optimal

portfolio share will not only be time- but also be state-independent, i. e. ω∗(Xt, t) = ω∗, ∀t ≥ 0.

However, contrarily to the setting for instance introduced in Aı̈t-Sahalia et al. (2009), the optimal

portfolio allocation will be a function of the perturbation parameters {h∗, a∗}, in other words, ω∗ =

ω∗(h∗, a∗). Lastly, we now derive the measure change, to characterize the set of alternative models.

When there is no jump size perturbation, the Radon-Nikodym derivative in (8) reduces to

dϑIt = (ea − 1)ϑIt−dN̂t, ϑI0 = 1 with N̂t = Nt − λt (28)

whose solution is given by

ηJt = exp {aNt − λ (ea − 1) t} , ηJ0 = 1. (29)

Therefore, together with Equation (6) characterizing the measure change of the diffusive part we

arrive at

R(ϑt) = R(ϑDt ) +R(ϑJt ) =
1

2
h2
t + eaλ (a− 1) + λ. (30)

The investor’s consumption and portfolio choice problem is summarized by Equation (27) and (30)

which limits the set of alternative models. The solution to this problem is given by a two step-

procedure. In a first step, which corresponds to the min-part in Equation (27), the investor has

to decide how rich the alternative set of models is, he considers reasonably close to his reference

model. In doing so, he specifies his preference for robustness with respect to small perturbations

of his reference model by optimally choosing {h∗, a∗}.10 In a second step, he has to decide on his

9Given {h∗t , a∗} and θ∗, [R+ σht]ωt − 1
2
γω2

t σ
2 and λϑ

(1−γ)

∫ [
(1 + ωtJz)

1−γ − 1
]
ν(dz) are both concave in ωt, thus

any solution to (27) will always have a unique maximizer.
10If we were to allow for jump size perturbation, the investor would of course, additionally need to decide upon the

optimal jump size perturbation b∗.
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optimal consumption and portfolio policies. With CRRA preferences, from the first order condition

of consumption in Equation (24) we obtain

C∗t = C∗t (h∗, a∗) = K(h∗, a∗)Xt (31)

where we require that Xt > 0 such that consumption remains non-negative. Then given {h∗, a∗}

evaluating Equation (27) at optimal consumption C∗t and portfolio holdings ω∗t the constant K =

K(h∗, a∗) is given by

K =
(1− γ)

γ
(r +Rω∗)− β

γ
− 1

2
(1− γ)ω∗2σ2 − λ(1− γ)

γ

∫ [
(1 + ω∗Jz)1−γ − 1

]
ν(dz) (32)

which will be fully determined once we have first solved for the optimal perturbation parameters

{h∗, a∗} and secondly obtained the optimal portfolio holdings ω∗. Furthermore, from Equation (31)

and (32) it follows that optimal consumption is affected by robustness concerns. This result is in

contrast to the case of robust control problems when the sources of randomness are only diffusive, as

for instance studied in Maenhout (2004), Trojani and Vanini (2004) or Sbuelz and Trojani (2008).

Thus Equation (24) shows that the same conclusion in the case the risky asset has continuous

dynamics do not carry over to the case where the risky asset follows a jump-diffusion process. We

now discuss the joint perturbation of the drift and jump intensity.

3.1. Explicit Portfolio Weights: Joint Drift and Jump Intensity Perturbation

We now discuss the case where the investor is concerned about potential drift and jump intensity

misspecification simultaneously.11 In order to obtain fully explicit portfolio weights, we need to be

more precise about the level of risk aversion, the Lévy measure and the treatment of the entropy

growth constraints. In the sequel, we focus on a Lévy measure ν(dz) defined on [0, 1] and set the

deterministic jump scaling factor J ∈ [−1, 0]. This implies that we only consider negative jumps in

the asset price dynamics since those are the ones the investor is more concerned about as they are

more harmful to his utility. To be more precise we choose ν(dz) to follow a power law under both

11We do not consider jump size misspecification, i. e. νϑ(dz) = ν(dz), since this type of perturbation leads to highly-
nonlinear first order conditions of both the jump size perturbation parameter b as well as for the optimal portfolio
holdings which can only be resolved numerically.
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measures, i. e.

νϑ(dz) = ν(dz) = dz/z, if z ∈ (0, 1] (33)

Concerning the treatment of the entropy growth constraints, we use a separation argument. Since

total relative entropy separates into a diffusive and a jump part, i. e. R(ϑt) = R(ϑDt )+R(ϑJt ), we can

treat entropy growth with respect to the drift and jump part independently.12 However, this implies

that, the total maximal amount of robustness η is the sum of the maximal amount of robustness

with respect to drift misspecification, denoted by ηD and the maximal amount of robustness with

respect to jump intensity misspecification, denoted by ηJ . Therefore η = ηD + ηJ ↔ 1 = η̃D + η̃I

with η̃i = ηJ/η, i ∈ {D, I} where η̃D, η̃I denote the share of total amount of robustness in drift and

jump intensity perturbation, respectively. Then the entropy growth constraints are given by

R(ϑDt ) ≤ ηD, R(ϑJt ) ≤ ηJ , ∀t ≥ 0. (34)

Define as L(ωt, ht, θ
D, θI) the Lagrangian associated to the constraint HJB problem in (27) with

Lagrange multipliers θD and θI . Then taking γ = 2 we obtain

L(ω, h, a, θD, θI) = ωR+ σhω − ωλJea − ω2σ2 + λea log (1 + ωtJ)

+ θD
(

1

2
h2 − ηD

)
+ θI

(
λea(a− 1) + λ− ηJ

)
. (35)

The necessary first order optimality conditions are

∂L(ω, h, a, θD, θJ)

∂h
= σωt + θDh = 0, → h∗ = −σωt

θD
, θD ≥ 0 (36)

∂L(ω, h, a, θD, θJ)

∂a
= λea

(
aθI + log (1 + Jω)− wJ)

)
= 0, (37)

→ a =
ωJ − log (1 + Jω)

θJ
, θJ ≥ 0 (38)

∂L(ω, h, a, θD, θJ)

∂θD
= ηD − 1

2
h2 = 0, → θD∗ = ±

√
σ2ω2

2ηD
(39)

∂L(ω, h, a, θD, θJ)

∂θJ
= ηJ − λea(a− 1)− λ = 0. → θJ∗ =

ωJ − log (1 + Jω)

1 +W
(
ηJ−λ
eλ

) ≥ 0 (40)

12A similar idea has also been used by Ulrich (2010) and Ulrich (2012) to solve a model ambiguity problem where there
risks are only diffusive. In our particular case, a joint entropy growth constraint gives rise to first order conditions
of the drift and the jump intensity perturbation parameter which cannot be solved analytically and one needs to
rely on numerical techniques to solve the system.
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From the system of Equations (36) to (40) we find that the optimal drift h∗ and jump intensity (a∗)

perturbation parameters are given by

h∗t = h∗ = −
√

2ηD, ∀ηD ≥ 0, a∗ = 1 +W

(
ηJ − λ
eλ

)
≥ 0, ∀ηJ ≥ 0, λ ∈ (0,∞) (41)

where W
(
ηJ−λ
eλ

)
= W (·, λ) denotes Lambert’s W function and e is Euler’s constant. W (·, λ) is

plotted in Figure 1 below.13 Note that limη→0W (η;λ) = W
(−1
e ;λ

)
= −1 so that λϑ = λ, in other
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Figure 1: Lambert’s W -Function for various levels of jump intensities λ.

words we are back to the case where there are no robustness concerns of the investor. Furthermore,

λϑ > λ, ∀η, λ > 0. Thus the robust jump intensity under Pϑ is always higher than the jump intensity

under the reference measure P. In the case where there are no robustness concerns, i. e. ηJ = 0 we

have of course λϑ = λ. Since λ > 0, λϑ is increasing in ηJ as ∂W
∂η =

W

(
ηJ−λ
eλ

)
(ηJ−λ)(1+W

(
ηJ−λ
eλ

) > 0 ∀ηJ , λ > 0.

This implies that the larger the set of potential models (ηJ ↑) is we allow for, the higher the jump

frequency under the robust measure becomes.

In order to make sure that the optimal robust control variables h∗ and a∗ are indeed (global) mini-

13Since η is real, the function W is injective on the interval −1/e ≤ η < 0. Furthermore, on the domain [−1/e,∞] the
function W (·, λ) is real for any λ > 0 and η ∈ [0,∞).
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mizers we need to check the second order optimality conditions. For the optimal drift perturbation h∗

we have ∂2L(ω,h,a,θD,θI)
∂h2

= θD and thus we need θD ≥ 0 such that L(ω, h, a, θD, θI) is convex in h and

therefore the solution in Equation (41) is indeed a (global) minimum. This implies θD =
√

σ2ω2

2η ≥ 0

and therefore the second order Lagrange-conditions are satisfied for h∗ and θD∗. Along the same line

of argumentation, we have θJ∗ =
ωJ−log(1−J2w2)

1+W
(
ηJ−λ
eλ

) ≥ 0 for any ω satisfying the solvency constraint

|ωJ | < 1 and 1 +W
(
ηJ−λ
eλ

)
∈ (0,∞), ∀λ, ηJ > 0, and ∂L2(ω,h∗,a∗,θD∗,θJ∗)

∂a2
= eaλθJ∗ ≥ 0 which shows

that a∗ is the global minimizer. Next, using the optimal perturbation parameters h∗ and a∗ we can

now solve for the optimal robust portfolio weights in closed form. Given L(ω, h∗, a∗, θD∗, θJ∗) in

Equation (35) the first order condition for ω is given by

∂L(ω, h∗, a∗, θD∗, θJ∗)

∂ω
= R−

√
2ηDσ − λJe

1+W

(
ηJ−λ
eλ

)
− 2ωσ2 + λe

1+W

(
ηJ−λ
eλ

)
J/(1 + ωJ) = 0

(42)

which is a quadratic polynomial in the portfolio weights ω whose solution is given by14

ω∗(h∗, a∗) =
J(R−

√
2ηDσ)− J2λe

1+W

(
ηJ−λ
eλ

)
− 2σ2

4Jσ2

+

√
8Jσ2(R−

√
2ηDσ) +

(
J2λe

1+W
(
ηJ−λ
eλ

)
+ 2σ2 − J(R−

√
2ηDσ)

)2

4Jσ2
(43)

and we require that solvency constraint |ω∗J | < 1 holds at the optimal portfolio allocation ω∗. In

Figure 2 we plot the optimal robust portfolio weights as a function of the share of total robustness

assigned to drift perturbation η̃D. As expected, the robust portfolio allocation is such that the amount

invested into the risky asset is lower compared to the case when the investor has full confidence in

his reference model (η = 0). Further, regardless of the share of η allocated to drift or jump intensity

robustness, the optimal portfolio weights are more sensitive when η is low compared to the case

when η is large. This implies that the marginal effect of increasing the total amount of robustness on

ω∗(h∗, a∗) is declining. Next, comparing the case of only drift η̃D = 1 to only jump intensity η̃D = 0

perturbation shows that ω∗ is reduced more in the case when there are solely concerns about potential

drift as opposed to only jump intensity misspecification. This is a direct consequence of compensating

14Another case which leads to fully explicit portfolio weights is when γ = 3. The first order conditions for optimal
portfolio holdings lead to a cubic equation, which given that |wJ | < 1, is solvable in closed form using standard
methods.

18



0 0.01 0.02 0.03 0.04 0.05
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Robustness parameter η

Optimal robust portfolio weights

 

 

η̃
D = 0
η̃
D = 1/3
η̃
D = 2/3
η̃
D = 1

Figure 2: Comparison optimal robust portfolio weights as given in Equation (43) for η̃D ∈ {0, 1/3, 2/3, 1}.
The selected parameters values are: R = 0.1, σ = 0.1, J = −0.3, λ = 2 and η ∈ [0, 0.05].

the Lévy process. Furthermore, the optimal portfolio weights are lowest when η̃D = 2/3, suggesting

that a very conservative investor, meaning very averse to model misspecification, would want to

distribute about two thirds of the maximal amount of robustness to drift and one third to jump

intensity perturbation.

There are also other settings where one can derive fully explicit portfolio weights. An interesting

example is when the Poisson process is not compensated, meaning Yt =
∑Nt

n=1 Zn and the i.i.d. jumps

Zn have symmetric Lévy measure about zero, i. e.

λν(dz) =


λdz/z if z ∈ (0, 1],

−λdz/z if z ∈ [−1, 0)

(44)

so that the underlying asset exhibits both positive and negative jumps. The quantitative behavior

of the optimal portfolio weights is very similar to the compensated Lévy case. An other interesting

example is given when the jumps are negative only and we do not compensate the Lévy - process St.

In this case, the portfolio weights are more sensitive to jump intensity perturbation, meaning the
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fraction of wealth invested into the risky asset is not only lower, but also decreases in ηJ substantially

faster compared to the compensated Lévy case.

3.2. Sensitivity Analysis of optimal Portfolio weights

Given the explicit portfolio weights we can now analyze their sensitivity with respect to both the asset

price parameters R, σ, J, λ and the entropy growth parameters ηD and ηJ . We start our analysis by

comparing ω∗ in Equation (43) to the classical Merton solution with and without robustness concerns,

which can be obtained by letting λ→ 0. In this case, the risks are only diffusive and ω∗ reduces to

ω∗M,R =
R−

√
2ηDσ

2σ2
(45)

From Equation (45) one can immediately see that an investor who is concerned about potential

model misspecification will always invest less into the risky asset. Furthermore, for any λ > 0,

ω∗ = 0 whenever R =
√

2ηDσ. This is intuitive as when the expected return under the robust

measure is zero, since Eϑt [Ỹt] = 0, the investor has no benefit in allocating funds into the risky asset.

Note that

∂ω∗

∂R
=

1

4σ2

1 +

(
R−

√
2ηDσ

)
− e

1+W

(
ηJ−λ
eλ

)
J2λ+ 2σ2

H

 > 0↔ 0 > Jλe
1+W

(
ηJ−λ
eλ

)
, (46)

H :=

√
8Jσ2(R−

√
2ηDσ) +

(
J2λe

1+W
(
ηJ−λ
eλ

)
+ 2σ2 − J(R−

√
2ηDσ)

)2

> 0 (47)

from which we see that the inequality in (46) will always be satisfied under both measures. Thus

increasing the expected return will lead to an increase of investment into the risky asset. Next, the

partial derivative of ω∗ with respect to λ is

∂ω∗

∂λ
=

J
(
W
(
ηJ−λ
eλ

)
− 1
)(

2σ2 − J
(
R−

√
2ηDσ

)
+ e

1+W

(
ηJ−λ
eλ

)
J2λ−H

)
4σ2H

(
1 +W

(
ηJ−λ
eλ

))
When there is no concern about potential jump intensity misspecification, i. e. ηJ = 0 the optimal

portfolio weights are insensitive with respect to changes in the jump intensity as ∂ω∗

∂λ = 0. This

somewhat counterintuitive result is due to compensating the jump process. Increasing (decreasing)
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the jump intensity leads to negative jumps occurring more (less) frequently but simultaneously leads

to an increase (decrease) in the compensator and thus in the expected return. Note that when

R =
√

2ηDσ we have that ∂ω∗

∂λ = 0 for any ηJ > 0. For λ → ∞ the optimal portfolio weight

approach zero at the following rate

ω∗|λ→∞ ∼
1

λ

R−
√

2ηDσ

J2e
1+W

(
ηJ−λ
eλ

) +O

(
1

λ2

)
(48)

Thus, whenever R −
√

2ηDσ > 0, ω∗ > 0 and thus the optimal portfolio weight approaches zero

from positive territory and vice versa when R−
√

2ηDσ < 0. Further, under the robust measure the

rate is lower due to both drift (downward level shift) and jump intensity perturbation (downward

scaling). Figure 3 shows that, under robustness concerns, that the amount invested into the risky
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Figure 3: Comparison of robust and non-robust portfolio allocations when both drift and jump intensity are
perturbed: Panel A displays ω∗(h∗, a∗) when both the expected return R and the volatility σ vary.
Panel B displays ω∗(h∗, a∗) when both the jump scaling parameter J and the intensity λ vary. If
not otherwise stated, the selected parameters values are: R = 0.1, σ = 0.1, J = −0.3, λ = 2 and
η = 0.05.

asset is always lower than when there the investor has full confidence in his reference model. From

Panel A we see that increasing volatility of the risky asset leads the investor to optimally decrease

ω∗(h∗, a∗) and even short the asset whenever R is sufficiently low. Panel B shows that both J and

λ are high, then the investor simply allocates all his funds into the risk free asset. Thus, the model

can capture the well-documented empirical flight-to-quality behavior when jump risk λ is high and

J approaches -1. However, contrarily to the case when jumps are only negative and the process is
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not compensated which leads the investor to optimally short the risky asset, i. e. ω∗ → −∞ as

λ → ∞ (see Aı̈t-Sahalia et al. (2009)), in this setting our robust investor does not short the risky

asset whenever J and λ are sufficiently high, but instead optimally chooses ω∗ = 0. Further, if either

the jump scaling parameter or the intensity approach zero, i. e. the risky assets dynamics converges

to a purely diffusive process, ω∗(h∗, a∗) increases non-linearly and the gap between the robust and

non-robust portfolio weights widens. This suggests that for low jump risks λ ↓ and simultaneously

low jump size scaling J → 0, perturbations of the reference model have a higher impact on ω∗(h∗, a∗),

meaning that there is a significant drop in the amount invested into the risky asset, compared to the

case when both J and λ are high.

4. Error-Detection Probability

The robust portfolio weights derived in the previous sections crucially depend on the amount of

model uncertainty we allow for. In order to quantify how much uncertainty seems reasonable to

the investor, we make use of detection error probabilities as suggested by Anderson et al. (2003).

More formally, let ξt = log (ϑt) and Ft be the filtration with respect to which the probabilities and

expectations are conditioned, the error-detection probability π(t, T ; η) is defined as the conditional

probability at time t of making a detection-error given a sample of length T > 0,

π(t, T ; η) =
1

2

(
P [ξT > 0|Ft] + Pϑ [ξT < 0|Ft]

)
, 0 ≤ t ≤ T. (49)

Therefore, as η increases, so does the set of admissible models for the risky asset under P and Pϑ,

thereby causing the detection-error probability to decrease towards zero. Thus the larger η, the

easier statistical discrimination between the model dynamics under P and Pϑ becomes. Anderson

et al. (2003) suggest to choose η such that the error-detection probability is at least 10%. Note that

when π(t, T ; η) = 0.5 the models are statistically indistinguishable. Following Maenhout (2006), we

now derive an expression for the conditional probabilities in (49) by means of Fourier transformation

of the conditional probability measures. The conditional characteristic functions of ξT , under the

reference measure P, denoted by φP(k, t, T ) and φPϑ(k, t, T ) under the robust measure Pϑ are given
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by

φP(k, t, T ) = EP
[
eikξT |Ft

]
= EP

[
ϑikT |Ft

]
(50)

φPϑ(k, t, T ) = EPϑ
[
eikξT |Ft

]
= EPϑ

[
ϑikT |Ft

]
(51)

where i =
√
−1 is the imaginary unit and k ∈ R is the transform variable. Using a simple measure

change of the form

φPϑ(k, t, T ) =

∫
ω∈Ω

ϑikT ϑTdP(ω) = EP
[
ϑ1+ik
T |Ft

]
(52)

the Fourier transform under the robust measure can be obtained by integrating with respect to the

reference measure. By an application of Feynman-Kac’s theorem, we can compute the conditional

expectations Equation (50) and (52) by solving a partial differential difference equation (PDDE)

with appropriate boundary conditions. In order to derive this PDDE for both conditional Fourier

transforms we need the dynamics of the measure change under P given the optimal perturbation

policies h∗t and a∗. An application of Itô’s product formula for Semimartingales to the optimally

perturbed ϑ∗t shows that

ϑ∗t = ϑ∗,Dt ϑ∗,Jt = ϑ∗,Dt ϑ∗,Jt +

∫ t

0
ϑ∗,Js− dϑ

∗,D
s +

∫ t

0
ϑ∗,Ds dϑ∗,Js +

[
ϑ∗,D, ϑ∗,J

]
t

= ϑ∗,Dt ϑ∗,Jt +

∫ t

0
ϑ∗,Js− dϑ

∗,D
s +

∫ t

0
ϑ∗,Ds dϑ∗,Js

Then applying Itô’s formula to Equation (6) and using Equation (28) we obtain

dϑ∗t = ϑth
∗
tdBt + ϑt−

(
ea
∗ − 1

)
dN̂t (53)

From Equation (53) the dynamics of the log measure change are

ξt = ξ0 +

∫ t

0
h∗sdBs −

∫ t

0

(
1

2
h∗2s + λ

(
ea
∗ − 1

))
ds+

∑
0<s≤t

(
ξs − ξs−

)
= ξ0 +

∫ t

0
h∗sdBs −

∫ t

0

(
1

2
h∗2s + λ

(
ea
∗ − 1

))
ds+ a∗Nt (54)

and therefore the PDDE for φP(t) = φP(k, t, T ) is given by

0 = AφP(k, t, T )

=
∂φP
∂t
− ∂φP

∂ξ

(
1

2
h∗2t + λ

(
ea
∗ − 1

))
+

1

2

∂2φP
∂ξ2

h∗2t + λ (φP(k, t, T )− φP(k, t−, T )) (55)
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subject to the following boundary condition

φP(k, T, T ) = ϑikT (56)

and likewise the PDDE for φPϑ(t) = φPϑ(k, t, T ) is equivalent and given by

0 = AφPϑ(k, t, T )

=
∂φPϑ

∂t
− ∂φPϑ

∂ξ

(
1

2
h∗2t + λ

(
ea
∗ − 1

))
+

1

2

∂2φPϑ

∂ξ2
h∗2t + λ (φPϑ(k, t, T )− φPϑ(k, t−, T )) (57)

subject to a different boundary condition given by

φPϑ(k, T, T ) = ϑ1+ik
T .

The PDDE in (57) admits a unique affine solution of the form

φP(k, t, T ) = eα(T−t)+β(T−t)ξt (58)

Inserting the conjecture of Equation (58) into Equation (57) gives

0 = −α′ − β′ξt − β
(

1

2
h∗2t + λ

(
ea
∗ − 1

))
+

1

2
h∗2t β

2 + λ
(
eβa

∗ − 1
)
.

Using the fact that this equation has to hold for all ξt and the constant terms we get two equations,

namely

β(T − t) = β =

∫ T

t
β
′

= K → K = ik = β (59)

α(T − t) =

∫ T

t
α
′

=

[
β

(
1

2
h∗2t + λ

(
ea
∗ − 1

))
+

1

2
h∗2t β

2 + λ
(
eβa

∗ − 1
)]

(T − t) (60)

where the expression for β in Equation (59) follows from the boundary condition in Equation (56).

The solution for Equation (57) is identical except that β = 1 + ik. Given these conditional charac-

teristic functions φPϑ(k, t, T ) and φP(k, t, T ), the error-detection probability in Equation (49) based

on a sample of length T − t is given by

π(t, T ; η) =
1

2
− 1

2π

∫ ∞
0

(
Re

[
φPϑ(k, 0, T )

ik

]
− Re

[
φP(k, 0, T )

ik

])
dk

where Re(·) denotes the real part of a complex number. Let τ = T − t, in Figure 4 we plot the

error-detection probability as a function of the robustness parameter η. As expected, π(t, T ; η) is

monotonously decreasing in η. However, the rate of decrease is higher for low values of the robustness
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Figure 4: Error-detection probability π(t, T ; η) computed from a time series length of 15 years.

parameter indicating that the error-detection probability is more sensitive to changes in η in this

area. Furthermore, a larger intensity under the reference measure P amplifies this sensitivity of

π(t, T ; η) as η grows. This shows that it becomes statistically easier to discriminate whether a given

time series realization was generated by a process under measure P or by a process under measure

Pϑ.

5. Conclusion

In this paper we study a robust optimal consumption and portfolio choice problem where the un-

derlying risky asset follows a Lévy process. We introduce model misspecification with respect to

drift and jump intensity parameters and derive explicit expressions for optimal consumption and

portfolio rules. Our main findings are that perturbations of the drift are relatively more important

than perturbation of the jump intensity in the case when jumps are symmetric about zero, i. e. the

occurrence of positive and negative jumps is equally likely. However, assuming only negative jumps

in the underlying asset shows that optimal portfolio weights become not only more sensitive to per-

turbations of the jump intensity but also, that misspecification with respect to the jump intensity

becomes more important than misspecification of the drift. If we incorporate a compensated Poisson
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process for the jump part of the risk asset, shows that optimal allocations are now less sensitive with

respect to perturbations of the jump intensity as opposed to perturbations of the drift. This is to be

expected as the investor receives a compensation in the form of higher expected return when jumps

are compensated. Additionally, we derive a semi-closed form solution for detection-error probabil-

ities. Our sensitivity analysis shows that the detection-error probability is relatively insensitive to

changes in the jump intensity which implies that for two processes one generated under the reference

and another one generated under the robust measure, they need to have very distinct jump intensities

in order to be correctly classified by the detection-error probability.
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6. Appendix

A. Optimal Portfolio weights

A.1. Joint Drift and Jump Intensity Perturbation with CRRA Utility and symmetric

jumps

In this section, we derive explicit portfolio weights when the risky asset follows an exponential Lévy

process under the robust measure Pϑ of the form

dS1,t

S1,t−
= (r +R+ σht)dt+ σdBϑ

t + JdY ϑ
t , S0,1 > 0, Pϑ − a.s.

and jumps follow a symmetric power law distribution as in Equation (44). Then the corresponding

Lagrangian reads

L(ω, h, a, θD, θI) = ωR+ σhω − ωλJea − ω2σ2 + λea log (1 + ωtJ)

+ θD
(

1

2
h2 − ηD

)
+ θI

(
λea(a− 1) + λ− ηJ

)
. (61)

from which we obtain the following first order conditions

θD∗ = ±

√
σ2ω2

2ηD
→ h∗t = −

√
2ηD (62)

θJ∗ =
− log

(
1− J2ω2

)
1 +W

(
ηJ−λ
eλ

) → a∗ = 1 +W

(
ηJ − λ
eλ

)
(63)

Note that θJ∗(ω) ≥ 0 for any ω satisfying the solvency constraint |ω∗J | < 1. Given the optimal

perturbation parameters in Equation (62) and (63), the objective function is

L(ω, h∗, a∗, θD∗, θJ∗) = ωR− σω
√

2ηD − ω2σ2 + λe
1+W

(
ηJ−λ
eλ

)
log (1 + ωJ)

+ λe
1+W

(
ηJ−λ
eλ

)
log (1− ωJ) (64)

and the first order condition for the optimal portfolio weight is

L(ω, h∗, a∗, θD∗, θJ∗)

∂ω
= R− σ

√
2ηD − 2ωσ2 + λe

1+W

(
ηJ−λ
eλ

)
J/(1 + ωJ)

− λe
1+W

(
ηJ−λ
eλ

)
J/(1− ωJ) = 0 (65)
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Equation (65) is a cubic polynomial in the portfolio weights ω. Let

A = 2J2σ2, BDI = J2(
√

2ηDσ −R)

CDI = −2

(
σ2 + J2λe

1+W

(
ηJ−λ
eλ

))
, DDI = R−

√
2ηDσ

Then Equation (65) can be written as Ax3 +Bx2 +Cx+D. Defining aDI = BDI/A, bDI = CDI/A,

cDI = DDI/A and GDI = (aDI
2 − 3bDI)/9, HDI = (2aDI

2 − 9aDIbDI + 27cDI)/54 the solution to

Equation (65) subject to the solvency condition |Jω| < 1 is given by

ω∗ = −2
√
GDI cos

(
acos

(
1

3
HDI/

√
GDI − 2π

3

))
− aDI/3 (66)

A.2. Exponential Utility: Closed - form portfolio weights with compensated

exponential Lévy dynamics

In this section we consider an investor with exponential utility of the form

U(C) = −1

q
e−qC , with CARA coefficient q > 0

where his wealth dynamics under the robust measure evolves as in Equation (11), that is no jump

size perturbation. We analyze robust optimal portfolio holdings where the jumps sizes follow an

exponential distribution, i. e. Zn
i.i.d∼ Exp(ξ), with ν(dz) = fZ(z; ξ) = ξe−zξ, z ≥ 0. Then

conjecturing a solution to Equation (18) of the form L(x) = −K/qe−rqx where are r > 0 is the risk

free rate in Equation (1) and K some constant to be determined, we have

∂L(x)

∂x
= −rqL(x),

∂2L(x)

∂x2
= r2q2L(x) (67)

The robust control problem in Equation (18) is then given by

0 = max
{Ct,ωt}

min
{ht},a

U(Ct)− βL(Xt)− rqL(Xt)

[
Xt

(
r + ωt

(
R+ σht − λeaJ

∫
zν(dz)

))
− Ct

]
+

1

2
r2q2L(Xt)ω

2
tX

2
t σ

2 + λea
∫ [

e−rqXt−ωt−JzL(Xt−)− L(Xt−)
]
ν(dz) (68)

subject to
1

2
h2
t ≤ ηD, λea(a− 1) + λ ≤ ηD, ηD ≥ 0, ηJ ≥ 0 (69)
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We fix J = −1, so that jumps are negative. Dividing Equation (68) above by −rqL(Xt) > 0 we

obtain

0 = max
{Ct,ωt}

min
{ht},a

− U(Ct)

rqL(Xt)
+
β

qr
+Xt

(
r + ωt

(
R+ σht +

λea

ξ

))
− Ct

− 1

2
rqω2

tX
2
t σ

2 − λeaωtXt

ξ − qrωtXt
(70)

subject to
1

2
h2
t ≤ ηD, λea(a− 1) + λ ≤ ηJ , ηD ≥ 0, ηJ ≥ 0 (71)

We define as L = L(Ct, ht, a, θ
D, θJ) the Lagrangian corresponding to the perturbed HJB problem

in Equation (68) with Lagrange multiplier θD and θJ for the diffusive and jump intensity part of the

entropy constraint respectively. Then we have15

L(Ct, w, ht, a, θ
D, θJ) = − U(Ct)

rqL(Xt)
+ w

(
R+ σht + λea

∫
zν(dz)

)
− Ct −

1

2
rqw2σ2

− λea

rq

∫
[erqwz − 1] ν(dz) + θD

(
1

2
h2
t − ηD

)
+ θJ

(
λea(a− 1) + λ− ηJ

)
(72)

where w = ωtXt is the (absolute) amount of money invested into the risky asset. As before, it follows

that h∗t =
√

2ηD, θD =
√

σ2ω2

2ηD
and a∗ = 1 +W

(
ηJ−λ
eλ

)
and θI = qrw2

ξ
(

1+W
(
ηJ−λ
eλ

))
(ξ−qrw)

≥ 0, ∀w ∈ R.

Given the optimal perturbation parameters, the objective function is

L(Ct, w, h
∗, a∗, θD∗, θI∗) = − U(Ct)

rqL(Xt)
+ w

R−√2ησ +
λe

1+W

(
ηJ−λ
eλ

)
ξ


− λe

1+W

(
ηJ−λ
eλ

)
w

ξ − qrw
− 1

2
qrσ2w2 (73)

The first order condition for the optimal portfolio weight is

−λe
1+W

(
ηJ−λ
eλ

)
qrw

(ξ − qrw)2
+
λe

1+W

(
ηJ−λ
eλ

)
ξ

− λe
1+W

(
ηJ−λ
eλ

)
ξ − qrw

−
√

2ησ − qrσ2w +R = 0 (74)

15The integral with respect to the jump measure in Equation (70) is only convergent if ξ− qrw > 0 which is very likely
to be satisfied given standard parameter values for risk aversion q ∈ {1, . . . , 10}, r ∈ [0, 0.05] and ξ > 10 which
would correspond to a jump size of 10% or less.
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which is a cubic polynomial in the amount invested in the risky asset. Let

A(ξ) = −ξq3r3σ2, BDJ(ξ) = q2r2

(
λe

1+W

(
ηJ−λ
eλ

)
+ ξ

(
R−

√
2ηDJσ + 2ξσ2

))
,

CDJ(ξ) = −ξqr

(
2e

1+W

(
ηJ−λ
eλ

)
λ+ ξ

(
2(R−

√
2ηDσ) + ξσ2

))
, DDJ(ξ) = ξ3

(√
2ηDσ −R

)
Then Equation (74) can be written as A(ξ)x3 + BDI(ξ)x2 + CDI(ξ)x + DDI(ξ). Next, we define

aDI(ξ) = BDI(ξ)/A(ξ), bDI(ξ) = CDI(ξ)/A(ξ), cDI(ξ) = DDI(ξ)/A(ξ) andGDI(ξ) =
(
aDI(ξ)

2 − 3bDI(ξ)
)
/9,

HDI(ξ) =
(

2aDI(ξ)
2 − 9aDI(ξ)bDI(ξ) + 27cDI(ξ)

)
/54 such that the solution to Equation (74) sub-

ject to the integral convergence condition ξ − qrw > 0 is given by

w∗E = −2
√
GDJ(ξ) cos

(
acos

(
1

3
HDJ(ξ)/

√
GDJ(ξ)− 2π

3

))
− aDJ(ξ)/3

where w∗E refers to both drift and jump intensity compensated portfolio weights when the investor

is assumed to have exponential utility. In Figure 5 below we plot the portfolio weights for different

levels of jump sizes ξ. A first important observation from Panel A to D is that increasing the size of

the jumps (ξ ↓) reduces the absolute amount invested into the risky asset w∗E as Eϑ[z] = E[z] = 1/ξ.

A tenfold increase in the coefficient of risk aversion (q) leads to a proportional decrease in w∗E . On

the other hand, increasing the frequency of jumps (λ) by a factor of ten, shows that the optimal

investment into the risky asset decreases over-proportionally.
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Figure 5: Optimal portfolio holdings w∗
E in the case of exponential utility and the underlying risky asset

exhibits compensated Lévy dynamics as given in Equation (3) and both drift and jump intensity
are perturbed: The benchmark parameters values are: R = 0.1, σ = 0.2, J = 0.2, λ = 0.2, 2,
q = 1, 10 and η ∈ [0, 0.1].
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