Abstract

We propose a new business cycle theory. Firms need to randomize over firing or keeping workers who have performed poorly in the past, in order to give them an ex-ante incentive to exert effort. Firms have an incentive to coordinate the outcome of their randomizations, as coordination allows them to load the firing probability on states of the world in which it is costlier for workers to become unemployed and, hence, allows them to reduce overall agency costs. In the unique equilibrium, firms use a sunspot to coordinate the randomization outcomes and the economy experiences endogenous and stochastic aggregate fluctuations.

JEL Codes: D86, E24, E32.

Keywords: Unemployment, Moral Hazard, Endogenous Business Cycles.
1 Introduction

We present a new business cycle theory, where aggregate fluctuations are caused by the fact that the agents in the economy randomize over some individual decision in a correlated fashion. We consider a model where firms need to randomize over firing or keeping workers who have performed poorly in the past, in order to give them an ex-ante incentive to exert effort. Firms have a desire to coordinate the outcome of their randomizations, as coordination allows them to load the firing probability on states of the world in which it is costlier for workers to become unemployed and, hence, it allows them to reduce the overall agency costs. In the unique robust equilibrium of the model, firms use a sunspot to coordinate outcome of their randomization and the economy experiences aggregate fluctuations that are endogenous—in the sense that they are not driven by exogenous shocks to fundamentals or by exogenous shocks to the selection of equilibrium—and stochastic—in the sense that they follow a non-deterministic path. Our theory of business cycles implies a novel view of recessions which is opposite to view of recessions as “rainy days” proposed by the Real Business Cycle theory of Kydland and Prescott (1982).

The theory is cast in the context of a search-theoretic model of the labor market in the spirit of Pissarides (1985) and Mortensen and Pissarides (1994). In particular, we consider a labor market populated by identical risk-averse workers—who look for vacancies when unemployed and produce output when employed—and by identical risk-neutral firms—that attract new workers by posting vacancies and produce according to a technology that has constant returns to scale in labor. Unemployed workers and vacant firms come together through a frictional process that is summarized by a matching function. Matched worker-firm pairs produce under moral hazard: the firm does not observe the worker’s effort but only his output, which is a noisy signal of effort. Matched firm-worker pairs Nash bargain over the terms of an employment contract that specifies the level of effort recommended to the worker, the wage paid by the firm to the worker, and the probability with which the worker is fired by the firm conditional on the output of the worker and on the realization of a sunspot, an inherently meaningless signal that is observed by all market participants.

The theory builds on two assumptions. First, the theory needs some decreasing returns to matching in the labor market. Decreasing returns to matching may either come directly from decreasing returns to scale in the matching function, or they may come from a vacancy cost that increases with the total number of vacancies in the market. Second, the theory needs employment contracts to be incomplete enough that firing takes place along the equilibrium path. In this paper, we simply assume that current wages are paid before observing output
and employment contracts are renegotiated period by period, so that firing is the only tool that firms can use to give workers an incentive to exert effort.

In the first part of the paper, we characterize the properties of the optimal employment contract. We show that the optimal contract is such that the worker is fired with positive probability only when the output of the worker is low and the realization of the sunspot is such that the gains from continued trade accruing to the worker are sufficiently high relative to the gains from continued trade accruing to the firm. The result is intuitive. Firing is costly—as it destroyed a valuable firm-worker relationship—but it is necessary—as it is the only way for the firm to give the worker an incentive to exert effort. However, when firing takes place, it is only the value of the destroyed relationship that would have accrued to the worker that gives incentives. The value of the destroyed relationship that would have accrued to the firm is just “collateral damage.” The optimal contract minimizes the collateral damage by loading the firing probability on the realizations of the sunspot for which the worker’s continuation gains from trade are highest relative to the firm’s. In other words, the optimal contract loads the firing probability on the states of the world where the cost to the worker from losing the job is highest relative to the cost to the firm from losing the worker.

In the second part of the paper, we characterize the relationship between the realization of the sunspot and firing in general equilibrium. We find that there is an equilibrium in which firms fire all of their non-performing workers for some realizations of the sunspot, and firms do not fire any of their non-performing workers for the other realizations. There is a simple logic behind this finding. Suppose that firms load up the firing probability on some realizations of the sunspot. In those states of the world, unemployment is higher and, because of decreasing returns to matching, the job-finding probability of unemployed workers is lower. In turn, if the job-finding probability is lower, the workers have a worse outside option when bargaining with the firms and their wage is lower. If the wage is lower, the workers’ marginal utility of consumption relative to the firms’ is lower and, according to Nash bargaining, the workers’ gains from trade relative to the firms’ are higher. Hence, if the other firms in the market load the firing probability on some realizations of the sunspot, an individual firm has the incentive to load the firing probability on the very same states of the world. In other words, firms have a desire to coordinate the outcome of the randomization between firing and keeping their non-performing workers, and the sunspot allows them to achieve coordination.

Naturally, alongside the equilibrium in which firms use the sunspot to coordinate on firing or keeping non-performing workers, there are also equilibria in which firms (fully or
partially) ignore the sunspot and randomize on firing or keeping non-performing workers independently. However, these equilibria are an artifact of the simplifying assumption that all firms randomize simultaneously. Indeed, we find that, in a version of the model where firms fire sequentially, only the equilibrium with perfect coordination survives. In this version of the model, the perfect coordination equilibrium takes the form of a firing cascade where the firing decisions of the first few firms uniquely determine the firing decision of all subsequent firms.

In the equilibrium where firms coordinate on firing or keeping non-performing workers, the economy experiences aggregate fluctuations. These aggregate fluctuations are endogenous. Indeed, they are not caused by exogenous shocks to fundamentals, nor by exogenous shocks to the selection of the equilibrium played by market participants. Instead, aggregate fluctuations in our model are caused by coordinated randomization—i.e. every firm needs to randomize on firing or keeping its non-performing workers, and different firms want to coordinate their randomization outcomes. The aggregate fluctuations in our model are stochastic. Indeed, the economy does not follow a deterministic limit cycle or a deterministic chaotic map as in previous theories of endogenous business cycles. Instead, the economy follows a stochastic process, in which the probability of a firing burst and, hence, of a recession is an equilibrium outcome.

In the last part of the paper, we calibrate the model to measure the magnitude and properties of Agency Business Cycles (ABC), i.e. the aggregate fluctuations experienced by the economy in the equilibrium where firms coordinate on firing or keeping non-performing workers. We find that ABC feature fluctuations in unemployment, in the rate at which unemployed workers become employed (UE rate), and in the rate at which employed workers become unemployed (EU rate) that are approximately half as large as those observed in the US labor market and that—as it has been the case in the US labor market since 1984—are uncorrelated with labor productivity.

We then test some of the distinctive features of ABC. First, in ABC, a recession starts with an increase in the EU rate which leads to an increase in the unemployment rate. In turn, the rise in the unemployment rate leads, because of decreasing returns to scale in matching, to a fall in the UE rate. Hence, the EU rate leads both the unemployment rate and the UE rate. We find that the US labor market features the same pattern of leads and lags. Second, in ABC, the probability of a recession is endogenous and depends on the aggregate state of the economy. Specifically, the lower is the unemployment rate, the higher is the probability with which firms need to fire their non-performing workers in order to give
them an incentive to exert effort and, hence, the higher is the probability of a recession. We find that the US labor market also features a negative relationship between unemployment and the probability of a recession. Third, in ABC, a recession is a period when the value of time in the market relative to the value of time at home is abnormally high. Using an admittedly crude approach, we construct a time-series for the net value of a job to a worker and we find this series to be strongly countercyclical. The finding is consistent with Davis and Von Wachter (2011) who document that the cost to a worker from losing a job is strongly countercyclical.

The first contribution of the paper is to advance a novel theory of business cycles, where aggregate fluctuations are endogenous and stochastic and emerge because different market participants have to randomize over some decision and find it optimal to coordinate the randomization outcomes. In the business cycle literature, there are theories where aggregate fluctuations are driven by exogenous shocks to the current value of fundamentals (e.g., Kydland and Prescott 1982 or Mortensen and Pissarides 1994), to the future value of fundamentals (e.g., Beaudry and Portier 2004 or Jaimovich and Rebelo 2009), or to the stochastic process of fundamentals (e.g., Bloom 2009). In our theory, all fundamentals are fixed. There are theories where aggregate fluctuations are driven by exogenous shocks to the selection of the equilibrium played by market participants (e.g., Heller 1986, Cooper and John 1988 or Benhabib and Farmer 1994). In our theory, market participants always play the same, unique equilibrium. There are theories where aggregate fluctuations emerge endogenously as limit cycles (e.g., Diamond 1982, Diamond and Fudenberg 1989, Mortensen 1999 or Beaudry, Galizia and Portier 2015) or as chaotic dynamics (e.g., Boldrin and Montrucchio 1986 or Boldrin and Woodford 1990). In our theory, the economy follow a stochastic process. There are theories where aggregate fluctuations are driven by common shocks to higher-order beliefs (e.g., Angeletos and La’O 2013). In our theory there are no such shocks.

The second contribution of the paper is to advance a new view of recessions. In theories where business cycles are caused by fluctuations in productivity—such as in the Real Business Cycle theory of Kydland and Prescott (1982) or in Mortensen and Pissarides (1994)—a recession is a period when the value of time in the market relative to the value of time at home is abnormally low. Indeed, in these theories, a recession is a period when the output of a worker in the market is unusually low. In our theory, a recession is a period when the value of time in the market relative to the value of time at home is abnormally high. Indeed, in our theory, a recession is a period when the output of a worker in the market is not relatively low, but the value of staying at home looking for a job is unusually low. At first glance, the data says that the net value of employment for a worker is countercyclical. But if the net value
of employment is countercyclical, why is there more unemployment in recessions? And why
is the rate at which workers lose their job higher and the rate at which unemployed workers
find a job lower? That is, if recessions are times when the gains from trade are high, why is
there less trade? Our theory provides an answer to this puzzle: when the gains from trade
in the labor market are high, firms find it optimal to get rid of their non-performing workers
and this creates congestions in the labor market that lowers the speed at which unemployed
workers find jobs.

2 Environment and Equilibrium

2.1 Environment

Time is discrete and continues forever. The economy is populated by a measure 1 of identical
workers. Every worker has preferences described by \(\sum \beta^t [v(c_t) - \psi e_t] \), where \(\beta \in (0, 1) \)
is the discount factor, \(v(c_t) \) is the utility of consuming \(c_t \) units of output in period \(t \), and \(\psi e_t \)
is the disutility of exerting \(e_t \) units of effort in period \(t \). The utility function \(v(\cdot) \) is strictly
increasing and strictly concave, with a first derivative \(v'(\cdot) \) such that \(v'(\cdot) \in [\underline{v}', \overline{v}] \), and a
second derivative \(v''(\cdot) \) such that \(-v''(\cdot) \in [\underline{v}'', \overline{v}''] \), with \(\underline{v}' > \overline{v}' > 0 \) and \(\overline{v}'' > \underline{v}'' > 0 \). The
consumption \(c_t \) is equal to the wage \(w_t \) if the worker is employed in period \(t \), and to the
value of home production \(b \) if the worker is unemployed in period \(t \). The coefficient \(\psi \) is
strictly positive, and the effort \(e_t \) is equal to either 0 or 1. Every worker is endowed with
one indivisible unit of labor.

The economy is also populated by a positive measure of identical firms. Every firm has
preferences described by \(\sum \beta^t c_t \), where \(\beta \in (0, 1) \) is the discount factor and \(c_t \) is the firm’s
profit in period \(t \). Every firm operates a constant returns to scale production technology
that transforms one unit of labor (i.e. one employee) into \(y_t \) units of output, where \(y_t \) is a
random variable that depends on the employee’s effort \(e_t \). In particular, \(y_t \) takes the value \(y_h \)
with probability \(p_h(e) \) and the value \(y_e \) with probability \(p_e(e) = 1 - p_h(e) \), with \(y_h > y_e \geq 0 \)
and \(0 < p_h(0) < p_h(1) < 1 \). Production suffers from a moral hazard problem, in the sense
that the firm does not directly observe the effort of its employee, but only the output.

Every period \(t \) is divided into five stages: sunspot, separation, matching, bargaining and
production. At the first stage, a random variable, \(z_t \), is drawn from a uniform distribution

1 As the reader can infer from the notation, we assume that workers are banned from the credit market and,

hence, they consume their income in every period. The assumption is made only for the sake of simplicity.

2 We assume that the worker’s effort and output can only take two values. We believe that it would

be straightforward to generalize the theory to the case where effort and output are continuous variables.
with support $[0,1]$. The random variable is aggregate, in the sense that it is publicly observed by all market participants. The random variable is a sunspot, in the sense that it does not directly affect technology, preferences or any other fundamentals, although it may serve to coordinate the behavior of market participants.

At the separation stage, some employed workers become unemployed. An employed worker becomes unemployed for exogenous reasons with probability $\delta \in (0,1)$. In addition, an employed worker becomes unemployed because he is fired with probability $s(y_{t-1}, z_t)$, where $s(y_{t-1}, z_t)$ is determined by the worker’s employment contract and it is allowed to depend on the output of the worker in the previous period, y_{t-1}, and on realization of the sunspot in the current period, z_t. For the sake of simplicity, we assume that a worker who becomes unemployed in period t can search for a new job only starting in period $t+1$.

At the matching stage, some unemployed workers become employed. Firms decide how many job vacancies v_t to create at the unit cost $k > 0$. Then, the u_{t-1} workers who were unemployed at the beginning of the period and the v_t vacant jobs that were created by the firms search for each other. The outcome of the search process is described by a decreasing return to scale matching function, $M(u_{t-1}, v_t)$, which gives the measure of bilateral matches formed between unemployed workers and vacant firms. We denote v_t/u_{t-1} as θ_t, and we refer to θ_t as the tightness of the labor market. We denote as $\lambda(\theta_t, u_{t-1})$ the probability that an unemployed worker meets a vacancy, i.e. $\lambda(\theta_t, u_{t-1}) = M(u_{t-1}, \theta_t u_{t-1})/u_{t-1}$. Similarly, we denote as $\eta(\theta_t, u_{t-1})$ the probability that a vacancy meets an unemployed worker, i.e. $\eta(\theta_t, u_{t-1}) = M(u_{t-1}, \theta_t u_{t-1})/\theta_t u_{t-1}$. We assume that the job-finding probability $\lambda(\theta_t, u_{t-1})$ is strictly increasing in θ_t and strictly decreasing in u_{t-1} and that the job-filling probability $\eta(\theta_t, u_{t-1})$ is strictly decreasing in both θ_t and u_{t-1}. That is, the higher is the labor market tightness, the higher is the job-finding probability and the lower is the job-filling probability. However, for a given labor market tightness, both the job-finding and the job-filling probabilities are strictly decreasing in unemployment.\footnote{Given any constant returns to scale matching function, the job-finding and the job-filling probabilities are only functions of the market tightness. Given any decreasing returns to scale matching function, the job-finding and the job-filling probabilities are also (decreasing) functions of unemployment.}

At the bargaining stage, each firm-worker pair negotiates the terms of a one-period employment contract x_t. The contract x_t specifies the effort e_t recommended to the worker in the current period, the wage w_t paid by the firm to the worker in the current period, and the probability $s(y_t, z_{t+1})$ with which the firm fires the worker at the next separation

\footnote{Assuming that the sunspot is drawn from a uniform distribution with support $[0,1]$ is without loss in generality.}
stage, conditional on the output of the worker in the current period and on the realization of the sunspot at the beginning of next period. We assume that the outcome of the bargain between the firm and the worker is the Axiomatic Nash Bargaining Solution.

At the production stage, an unemployed worker home-produces and consumes b units of output. An employed worker chooses an effort level, e_t, and consumes w_t units of output. Then, the output of the worker, y_t, is realized and observed by both the firm and the worker.

A few comments about the environment are in order. We assume that the employment contract cannot specify a wage that depends on the current realization of the worker’s output. Hence, the firm cannot use the current wage to give the worker an incentive to exert effort. We also assume that the employment contract is re-bargained every period. Hence, the firm cannot use future wages to give the worker an incentive to exert effort. Overall, firing is the only tool that the firm can use to incentivize the worker. These restrictions on the contract space are much stronger than what we need. Indeed, our theory of business cycles only requires that principals sometimes fire their non-performing agents along the equilibrium path. As we know from Clementi and Hopenhayn (2006), equilibrium firing may obtain under complete contracts as long as the agent is protected by some form of limited liability.

We assume that the matching function $M(u, v)$ has decreasing returns to scale. From the theoretical point of view, one can justify the assumption by noting that the classic urn-ball matching function with finite urns and finite balls has decreasing returns to scale (see, e.g., Burdett, Shi and Wright 2001). From the empirical point of view, it is easy to justify the assumption, since estimating a Cobb-Douglass matching function for the US economy reveals that the exponents on unemployment and vacancies sum up to less than 1. Moreover, the assumption is not critical. Indeed, the equilibrium conditions of our model are identical to those of a model in which the matching function has constant returns to scale but the cost of a vacancy is strictly increasing in the aggregate number of vacancies.

5Petrongolo and Pissarides (2000) show that some empirical studies on the matching function have found increasing returns to scale, some have found constant returns to scale and others have found decreasing returns to scale depending on the data and on the estimation method. Menzio and Shi (2011) show that the estimates of the matching functions are biased if—as most of the studies reviewed by Petrongolo and Pissarides (2000) do—one abstracts from the fact that both employed and unemployed workers search for and match with vacancies.

6As the assumption of an increasing marginal cost of a vacancy is more common in than the assumption of a decreasing returns to scale matching function, the reader may be more comfortable with this alternative interpretation of the equilibrium conditions.
2.2 Equilibrium

We now derive the conditions for an equilibrium in our model economy. Let u denote the measure of unemployed works at the beginning of the bargaining stage. Let $W_0(u)$ denote the lifetime utility of a worker who is unemployed at the beginning of the production stage. Let $W_1(x, u)$ denote the lifetime utility of a worker who is employed under the contract x at the beginning of the production stage. Let $W(x, u)$ denote the difference between $W_1(x, u)$ and $W_0(u)$. Let $F(x, u)$ denote the present value of profits for a firm that, at the beginning of the production stage, employs a worker under the contract x. Let $x^*(u)$ denote the equilibrium contract between a firm and a worker when unemployment is u. Finally, let $(u; \hat{z})$ denote the labor market tightness at the matching stage of next period, when the current unemployment is u and next period’s sunspot is \hat{z}. Similarly, let $h(u; \hat{z})$ denote the unemployment at the bargaining stage of next period, when the current unemployment is u and next period’s sunspot is \hat{z}.

The lifetime utility $W_0(u)$ of an unemployed worker is such that

$$W_0(u) = v(b) + \beta E_{\hat{z}} \left[W_0(h(u, \hat{z})) + \lambda(\theta(u, \hat{z}), u)W(x^*(h(u, \hat{z})), h(u, \hat{z})) \right]. \tag{1}$$

In the current period, the worker home-produces and consumes b units of output. At the matching stage of next period, the worker finds a job with probability $\lambda(\theta(u, \hat{z}), u)$ in which case his continuation lifetime utility is $W_0(h(u, \hat{z}))+W(x^*(h(u, \hat{z})), h(u, \hat{z}))$. With probability $1 - \lambda(\theta(u, \hat{z}), u)$, the worker does not find a job and his continuation lifetime utility is $W_0(h(u, \hat{z}))$.

The lifetime utility $W_1(x, u)$ of a worker employed under the contract $x = (e, w, s)$ is such that

$$W_1(x, u) = v(w) - \psi e + \beta E_{y, \hat{z}} \left[W_0(h(u, \hat{z})) + (1 - \delta)(1 - s(y, \hat{z}))W(x^*(h(u, \hat{z})), h(u, \hat{z})) \right]. \tag{2}$$

In the current period, the worker consumes w units of output and exerts effort e. At the separation stage of next period, the worker keeps his job with probability $(1 - \delta)(1 - s(y, \hat{z}))$, in which case his continuation lifetime utility is $W_0(h(u, \hat{z}))+W(x^*(h(u, \hat{z})), h(u, \hat{z}))$. With probability $1 - (1 - \delta)(1 - s(y, \hat{z}))$, the worker loses his job and his continuation lifetime utility is $W_0(h(u, \hat{z}))$.

The difference $W(x, u)$ between $W_1(x, u)$ and $W_0(u)$ represents the gains from trade to a worker employed under the contract x. From (1) and (2), it follows that $W(x, u)$ is such
that
\[
W(x, u) = v(w) - v(b) + e +
\beta E_{y, \tilde{z}} \{ [(1 - \delta)(1 - s(y, \tilde{z})) - \lambda(\theta(\tilde{z}, u), u)]W(x^*(h(u, \tilde{z})), h(u, \tilde{z})) \}.
\]

We find it useful to denote as \(V(u) \) the gains from trade for a worker employed under the equilibrium contract \(x^*(u) \), i.e. \(V(u) = W(x(u), u) \). We refer to \(V(u) \) as the equilibrium gains from trade accruing to the worker.

The present value of profits \(F(x, u) \) for a firm that employs a worker under the contract \(x = (e, w, s) \) is such that
\[
F(x, u) = E_y[y|e] + \beta E_{y, \tilde{z}} [(1 - \delta)(1 - s(y, \tilde{z}))F(x^*(h(u, \tilde{z})), h(u, \tilde{z}))]|e|
\]

In the current period, the firm enjoys a profit equal to the expected output of the worker net of the wage. At the separation stage of next period, the firm retains the worker with probability \((1 - \delta)(1 - s(y, \tilde{z})) \), in which case the firm’s continuation present value of profits is \(F(x^*(h(u, \tilde{z})), h(u, \tilde{z})) \). With probability \(1 - (1 - \delta)(1 - s(y, \tilde{z})) \), the firm loses the worker, in which case the firm’s continuation present value of profits is zero. We find it useful to denote as \(J(u) \) the present value of profits for a firm that employs a worker at the equilibrium contract \(x^*(u) \), i.e. \(J(u) = F(x^*(u), u) \). We refer to \(J(u) \) as the equilibrium gains from trade accruing to the firm.

The equilibrium contract \(x^*(u) \) is the Axiomatic Nash Solution to the bargaining problem between the firm and the worker. That is, \(x^*(u) \) is such that
\[
\max_{x=(e, w, s)} W(x, u)F(x, u), \quad (5)
\]
subject to the logical constraints
\[
e \in \{0, 1\} \text{ and } s(y, \tilde{z}) \in [0, 1],
\]
and the worker’s incentive compatibility constraints
\[
\psi \leq \beta(p_h(1) - p_h(0))E_{\tilde{z}} [(1 - \delta)(s(y, \tilde{z}) - s(y, \tilde{z}))V(h(u, \tilde{z}))], \quad \text{if } e = 1,
\]
\[
\psi \geq \beta(p_h(1) - p_h(0))E_{\tilde{z}} [(1 - \delta)(s(y, \tilde{z}) - s(y, \tilde{z}))V(h(u, \tilde{z}))], \quad \text{if } e = 0.
\]

In words, the equilibrium contract \(x^*(u) \) maximizes the product between the gains from trade accruing to the worker, \(W(x, u) \), and the gains from trade accruing to the firm, \(F(x, u) \), among all contracts \(x \) that satisfy the worker’s incentive compatibility constraints. The first incentive compatibility constraint states that, if the contract specifies \(e = 1 \), the cost to the
worker from exerting effort must be smaller than the benefit. The second constraint states that, if the contract specifies \(e = 0 \), the cost to the worker from exerting effort must be greater than the benefit. The cost of effort is \(\psi \). The benefit of effort is given by the effect of effort on the probability that the realization of output is high, \(p_h(1) - p_h(0) \), times the effect of a high realization of output on the probability of keeping the job, \((1 - \delta)(s(y_t, z) - s(y_h, z)) \), times the value of the job to the worker, \(\beta V(h(u, \hat{z})) \).

The equilibrium market tightness \(\theta(u, \hat{z}) \) must be consistent with the firm’s incentives to create vacancies. The cost to the firm from creating an additional vacancy is \(k \). The benefit to the firm from creating an additional vacancy is given by the job-filling probability, \(\eta(\theta(u, \hat{z}), u) \), times the value to the firm of filling a vacancy, \(J(h(u, \hat{z})) \). The market tightness is consistent with the firm’s incentives to create vacancies if \(k = \eta(\theta(u, \hat{z}), u)J(h(u, \hat{z})) \) when \(\theta(u, \hat{z}) > 0 \), and if \(k \geq \eta(\theta(u, \hat{z}), u)J(h(u, \hat{z})) \) when \(\theta(u, \hat{z}) = 0 \). Overall, the market tightness is consistent with the firm’s incentives to create vacancies iff

\[
k \geq \eta(\theta(u, \hat{z}), u)J(h(u, \hat{z})) \quad \text{and} \quad \theta(u, \hat{z}) \geq 0,
\]

where the two inequalities hold with complementary slackness.

The equilibrium law of motion for unemployment, \(h(u, \hat{z}) \), must be consistent with the equilibrium firing probability \(s^*(y, \hat{z}, u) \) and with the job-finding probability \(\lambda(\theta(u, \hat{z}), u) \). Specifically, \(h(u, \hat{z}) \) must be such that

\[
h(u, \hat{z}) = u - u\mu(J(h(u, \hat{z}), u) + (1 - u)E_y[\delta + (1 - \delta)s^*(y, \hat{z}, u)],
\]

where

\[
\mu(J, u) = \lambda \left(\eta^{-1}(\min\{k/J, 1\}, u), u \right),
\]

and \(\eta^{-1}(\min\{k/J, 1\}, u) \) is the labor market tightness that solves (6). The first term on the right-hand side of (7) is unemployment at the beginning of the bargaining stage in the current period. The second term in (7) is the measure of unemployed workers who become employed during the matching stage of next period, which is given by unemployment \(u \) times the probability that an unemployed worker becomes employed \(\mu(J(h(u, \hat{z}), u) \). The last term in (7) is the measure of employed workers who become unemployed during the separation stage of next period. The sum of the three terms on the right-hand side of (7) is the unemployment at the beginning of the bargaining stage in the next period.

We are now in the position to define a recursive equilibrium for our model economy.

Definition 1: A Recursive Equilibrium is a tuple \((W, F, V, J, x^*, h)\) such that: (i) The gains from trade accruing to the worker, \(W(x, u) \), and to the firm, \(F(x, u) \), satisfy (3) and (4) and
\[V(u) = W(x^*(u), u), \quad J(u) = F(x^*(u), u); \]

(ii) The employment contract \(x^*(u) \) satisfies (5); (iii) The law of motion \(h(u, \hat{z}) \) satisfies (7).

Over the next three sections, we will characterize the properties of the recursive equilibrium. We are going to carry out the analysis under the maintained assumptions that the equilibrium gains from trade are strictly positive, i.e. \(J(u) > 0 \) and \(V(u) > 0 \), and that the equilibrium contract requires the worker to exert effort, i.e. \(e^*(u) = 1 \). The first assumption guarantees that firms and workers trade in the labor market, and the second assumption guarantees that firms and workers find it optimal to solve the moral hazard problem.\(^7\)

3 Optimal Contract

In this section, we characterize the properties of the Axiomatic Nash Solution to the bargaining problem between the firm and the worker. That is, we characterize the properties of the employment contract that maximizes the product of the gains from trade accruing to the worker and the gains from trade accruing to the firm subject to the worker’s incentive compatibility constraint.\(^8\) We refer to such contract as the optimal employment contract. Our key finding is that the worker is fired if and only if the realization of output is low and the realization of the state of the world is such that the cost to the worker from losing the job relative to the cost to the firm from losing the worker is sufficiently high.

We carry out the characterization of the optimal employment contract in four lemmas, all proved in Appendix A. In order to lighten up the notation, and without risk of confusion, we will drop the dependence of the gains from trade to the worker, \(W \), and to the firm, \(F \), as well as the dependence of the optimal contract, \(x^* \), on unemployment in the current period, \(u \). We will also drop the dependence of the continuation gains from trade to the worker and to the firm on unemployment in the current period and write \(V(h(u, \hat{z})) \) as \(V(\hat{z}) \) and \(J(h(u, \hat{z})) \) as \(J(\hat{z}) \).

Lemma 1: Any optimal contract \(x^* \) is such that the worker’s incentive compatibility holds with equality. That is,

\[
\psi = \beta(p_h(1) - p_h(0))E_{\hat{z}} [(1 - \delta)(s^*(y_{\ell}, \hat{z}) - s^*(y_h, \hat{z}))V(\hat{z})]. \tag{8}
\]

\(^7\)It is straightforward to verify that the first assumption is satisfied as long as \(b \) is sufficiently low relative to \(p_h(1)y_h + p_{\ell}(1)y_{\ell} \), and that the second assumption is satisfied as long as \(y_{\ell} \) is sufficiently low relative to \(y_h \).

\(^8\)As mentioned at the end of Section 2, we will carry out the analysis under the maintained assumptions that the gains from trade are strictly positive and that it is optimal to recommend the worker to exert effort.
To understand Lemma 1 consider a contract x such that the worker’s incentive compatibility constraint is lax. Clearly, this contract prescribes that the worker is fired with some positive probability after a low realization of output, i.e. $s(y, \hat{z})$. If we lower $s(y, \hat{z})$ by some small amount, the worker’s incentive compatibility constraint is satisfied. Moreover, if the lower $s(y, \hat{z})$, the survival probability of the match increases. Since the continuation value of the match is strictly positive for both the worker and the firm, an increase in the survival probability of the match raises the gains from trade accruing to the worker, W, the gains from trade accruing to the firm, F, and the Nash product WF. Therefore, the contract x cannot be optimal.

Lemma 2: Any optimal contract x^* is such that, if the realization of output is high, the worker is fired with probability 0. That is, for all $\hat{z} \in [0, 1],

$$s^*(y_h, \hat{z}) = 0.$$

(9)

To understand Lemma 2 consider a contract x such that the worker is fired with positive probability when the realization of output is high, i.e. $s(y_h, \hat{z}) > 0$. If we lower the firing probability $s(y_h, \hat{z})$, the incentive compatibility constraint of the worker is relaxed. Moreover, if we lower the firing probability $s(y_h, \hat{z})$, the survival probability of the match increases. In turn, the increase in the survival probability of the match raises the gains from trade accruing to the worker, W, the gains from trade accruing to the firm, F, and the Nash product WF. Thus, the contract x cannot be optimal.

Lemma 3: Let $\phi(\hat{z}) \equiv V(\hat{z})/J(\hat{z})$. Any optimal contract x^* is such that, if the realization of output is low, the worker is fired with probability 1 if $\phi(\hat{z}) > \phi^*$, and the worker is fired with probability 0 if $\phi(\hat{z}) < \phi^*$. That is, for all $\hat{z} \in [0, 1],

$$s^*(y_l, \hat{z}) = \begin{cases} 1, & \text{if } \phi(\hat{z}) > \phi^*, \\ 0, & \text{if } \phi(\hat{z}) < \phi^*. \end{cases}$$

(10)

Lemma 3 is one of the main results of the paper. It states that any optimal contract x^* is such that, if the realization of output is low, the worker is fired with probability 1 in states of the world \hat{z} in which the continuation gains from trade to the worker, $V(\hat{z})$, relative to the continuation gains from trade to the firm, $J(\hat{z})$, are above some cutoff, and the worker is fired with probability 0 in states of the world in which the ratio $V(\hat{z})/J(\hat{z})$ is below the cutoff. There is a simple intuition behind this result. Firing is costly—as it destroys a valuable relationship—but also necessary—as it is the only tool to provide the worker with an incentive to exert effort. However, only the value of the destroyed relationship that would have accrued to the worker serves the purpose of providing incentives. The value of
the destroyed relationship that would have accrued to the firm is "collateral damage." The optimal contract minimizes the collateral damage by concentrating firing in states of the world in which the value of the relationship to the worker would have been highest relative to the value of the relationship to the firm. In other words, the optimal contract minimizes the collateral damage by concentrating firing in states of the world in which the cost to the worker from losing the job, \(V(\tilde{z}) \), is highest relative to the cost to the firm from losing the worker, \(J(\tilde{z}) \). Notice that this property of the optimal contract follows immediately from the linearity of the problem with respect to the firing probability, and it does not depend on the fact that the optimal contract maximizes the product of the gains from trade rather than the gains from trade to the firm taking subject to delivering a given level of gains from trade to the worker. In this sense, the property is rather general to contractual environments in which firing takes place along the equilibrium path.

In any optimal contract \(x^* \), the firing cutoff \(\phi^* \) is such that

\[
\psi = \beta(p_h(1) - p_h(0))(1 - \delta) \left[\int_{\phi(\tilde{z}) > \phi^*} V(\tilde{z})d\tilde{z} + \int_{\phi(\tilde{z}) = \phi^*} s^*(y, \tilde{z})V(\tilde{z})d\tilde{z} \right],
\]

(11)

The above equation is the worker’s incentive compatibility constraint (8) written in light of the fact that \(s^*(y_h, \tilde{z}) \) is given by (9) and \(s^*(y, \tilde{z}) \) is given by (10). Figure 1 plots the right-hand side of (11), which is the worker’s benefit from exerting effort, as a function of the firing cutoff \(\phi^* \). On any interval \([\phi_0, \phi_1]\) where the distribution of the random variable \(\phi(\tilde{z}) \) has positive density, the right-hand side of (11) is strictly decreasing in \(\phi^* \). On any interval \([\phi_0, \phi_1]\) where the distribution of \(\phi(\tilde{z}) \) has no density, the right-hand side of (11) is constant. At any value \(\phi \) where the distribution of \(\phi(\tilde{z}) \) has a mass point, the right-hand side of (11) can take on an interval of values, as the firing probability \(s^*(y, \tilde{z}) \) for \(\tilde{z} \) such that \(\phi(\tilde{z}) = \phi \) varies between 0 and 1. Overall, the right-hand side of (11) is a weakly decreasing function of the firing cutoff \(\phi^* \).

In any optimal contract \(x^* \), the firing cutoff \(\phi^* \) is such that the right-hand side of (11) is equal to the worker’s cost psi from exerting effort. There are three cases to consider. First, consider the case in which the right-hand side of (11) equals \(\psi \) at a point where the right-hand side of (11) is strictly decreasing in \(\phi^* \). In this case, the equilibrium firing cutoff is uniquely pinned down. Moreover, since the right-hand side of (11) is strictly decreasing in \(\phi^* \), the random variable \(\phi(\tilde{z}) \) has no mass point at the equilibrium firing cutoff. Hence, in this case, the firm either fires the worker with probability 0 or with probability 1. This is the case of \(\psi_1 \) in Figure 1. Second, consider the case in which the right-hand side of (11) equals \(\psi \) at a point where the right-hand side of (11) can take on a range of values. In this case, the
equilibrium firing cutoff is uniquely pinned down. However, the random variable \(\phi(\hat{z}) \) has a mass point at the equilibrium firing cutoff. Hence, in this case, for any realization of \(\phi(\hat{z}) \) equal to the equilibrium firing cutoff, the firm fires the worker with the probability \(s^*(y_t, \hat{z}) \) that satisfies (11). This is the case of \(\psi_2 \) in Figure 1. Finally, consider the case in which there is an interval of values of \(\phi(\hat{z}) \) such that the right-hand side of (11) equals \(\psi \). In this case, the equilibrium firing cutoff can take on any value in the interval. However, the choice of the cutoff is immaterial, as the probability that the random variable \(\phi(\hat{z}) \) falls in the interval is zero. This is the case of \(\psi_3 \) in Figure 1. In any of the three cases, the equilibrium firing cutoff is effectively unique and so is the firing probability for any realization of the random variable \(\phi(\hat{z}) \).

Lemma 4: Any optimal contract \(x^* \) is such that the wage \(w^* \) satisfies

\[
\frac{W(x^*)}{F(x^*)} = \frac{v'(w^*)}{1}.
\]

(12)

Lemma 4 states that any optimal contract \(x^* \) prescribes a wage such that the ratio of the marginal utility of consumption to the worker to the marginal utility of consumption to the firm, \(v'(w^*)/1 \), is equal to the ratio of the equilibrium gains from trade accruing to the worker to the equilibrium gains from trade accruing to the firm, \(W(x^*)/F(x^*) = V/J \). This
is the standard optimality condition for the wage in the Axiomatic Nash Solution. Lemma 4 is important, as it tells us that the relative gains from trade accruing to the worker are higher in states of the world in which the worker’s wage is lower. Hence, it follows from Lemma 3 that the optimal contract is such that the firm fires the worker if and only if the realization of output is low and the realization of the state of the world is such that the worker’s wage next period would have been sufficiently low.

We are now in the position to summarize the characterization of the optimal contract.

Theorem 1: (*Contracts*) Any optimal contract x^* is such that: (i) the worker is paid the wage w^* given by (12); (ii) If the realization of output is high, the worker is fired with probability $s^*(y_h, \hat{z})$ given by (9); (iii) If the realization of output is low, the worker is fired with probability $s^*(y_l, \hat{z})$ given by (10), where the ϕ^* is uniquely pinned down by (11).

4 Properties of Equilibrium

In this section, we characterize the properties of the equilibrium. First, we characterize the role of the sunspot within a period. We show that there exists a Perfect Coordination Equilibrium in which all firms fire their non-performing workers with probability 1 for some realization of the sunspot and with probability 0 for the other realizations of the sunspot. In this equilibrium, firms use the sunspot to randomize over keeping or firing their non-performing workers in a perfectly correlated fashion. There is also a No Coordination Equilibrium in which firms fire workers with the same probability independently of the realization of the sunspot. In this equilibrium, firms randomize over firing or keeping their non-performing workers independently from each other. However, we show that the No Coordination Equilibrium only exists because of the firms randomize simultaneously and have to rely on an inherently meaningless signal to coordinate. Indeed, we show that, in a version of the model where firms randomize sequentially, the unique equilibrium is the one with perfect coordination. Finally, we establish the existence and characterize the properties of the recursive equilibrium of the economy.

4.1 Stage Equilibrium

In any Recursive Equilibrium, the probability $s^*(y_t, \hat{z})$ with which firms fire non-performing workers and the worker’s relative gains from trade $\phi(\hat{z})$ must simultaneously satisfy two conditions. For any \hat{z}, the firing probability $s^*(y_t, \hat{z})$ must be part of the optimal employment contract given the worker’s relative gains from trade $\phi(\hat{z})$ and the probability distribution
of the worker’s relative gains from trade across realizations of the sunspot. Moreover, for any \tilde{z}, the worker’s relative gains from trade $\phi(z')$ must be those implied by the evolution of unemployment, given the firing probability $s^*(y_t, \tilde{z})$. Formally, in any equilibrium, the functions $\phi(\tilde{z})$ and $s^*(y_t, \tilde{z})$ must be a fixed-point of the mapping we just described. Borrowing language from game theory, we refer to such a fixed-point as the stage equilibrium, as it describes the key outcomes of the economy within one period.

We first characterize the effect of the firm’s firing probability $s^*(y_t, \tilde{z})$ on the worker’s relative gains from trade $\phi(\tilde{z})$. Given that unemployment at the beginning of the period is u and that the firing probability at the separation stage is $s(\tilde{z}) = s^*(y_t, \tilde{z})$, the law of motion (7) implies that unemployment at the bargaining stage is $\hat{u}(s(\tilde{z}))$ such that

$$\hat{u}(s(\tilde{z})) = u - \mu(J(\hat{u}(s(\tilde{z}))), u) + (1 - u)(\delta + (1 - \delta)p(1)s(\tilde{z})). \tag{13}$$

We conjecture that the gains from trade accruing to the firm are a strictly increasing function of unemployment, i.e. $J(\hat{u}(s(\tilde{z})))$ is strictly increasing in $\hat{u}(s(\tilde{z}))$. Under this conjecture, there is a unique $\hat{u}(s(\tilde{z}))$ that satisfies (13) and $\hat{u}(s(\tilde{z}))$ is strictly increasing in the firing probability $s(\tilde{z})$.

Given that unemployment at the bargaining stage is $\hat{u}(s(\tilde{z}))$, the worker’s wage is $w^*(\hat{u}(s(\tilde{z})))$. Then, it follows from the optimality condition (12) that the worker’s relative gains from trade are such that

$$\phi(\tilde{z}) = \frac{V(\hat{u}(s(\tilde{z})))}{J(\hat{u}(s(\tilde{z})))} = \frac{w'(w^*(\hat{u}(s(\tilde{z}))))}{1}. \tag{14}$$

We conjecture that the wage is a strictly decreasing function of unemployment, i.e. $w^*(\hat{u}(s(\tilde{z})))$ is strictly decreasing in $\hat{u}(s(\tilde{z}))$. Under this conjecture, the worker’s relative gains from trade $\phi(\tilde{z})$ are strictly increasing in the unemployment $\hat{u}(s(\tilde{z}))$ and, since $\hat{u}(s(\tilde{z}))$ is strictly increasing in $s(\tilde{z})$, they are also strictly increasing in the firing probability $s(\tilde{z})$. The solid red line in Figure 2 illustrates the effect of the firing probability on the worker’s relative gains from trade.

The conjectures that the worker’s wage is decreasing in unemployment and the firm’s gains from trade are increasing in unemployment are natural and will be verified in Section 4.3. Intuitively, when the matching function has decreasing returns to scale, an increase in unemployment tends to lower the job-finding probability of unemployed workers. In turn, a decline in the job-finding probability lowers the value of unemployment. Since the value of unemployment is the worker’s outside option in bargaining, the equilibrium wage falls and the worker’s relative gains from trade increase.
Next, we characterize the effect of the worker’s relative gains from trade \(\phi(\hat{z}) \) on the probability \(s(\hat{z}) = s^*(y_t, \hat{z}) \) with which firms fire their non-performing workers. From the optimality condition (10), it follows that the firing probability \(s(\hat{z}) \) is such that

\[
s(\hat{z}) = \begin{cases}
0, & \text{if } \phi(\hat{z}) < \phi^*, \\
\in [0, 1], & \text{if } \phi(\hat{z}) = \phi^*, \\
1, & \text{if } \phi(\hat{z}) > \phi^*,
\end{cases}
\]

where \(\phi^* \) is implicitly defined by the worker’s incentive compatibility constraint (11). As explained in the previous section, the higher are the worker’s relative gains from trade in \(\hat{z} \), the stronger is the firm’s incentive to fire its non-performing workers in that state of the world. The dashed green line in Figure 2 illustrates the effect of the worker’s relative gains from trade \(\phi(\hat{z}) \) on the firing probability \(s(\hat{z}) \).

For any realization \(\hat{z} \) of the sunspot, the firing probability must be optimal given the worker’s gains from trade (i.e. we must be on the dashed green line) and the worker’s gains from trade must be consistent with the firing probability (i.e. we must be on the solid red line). As it is clear from Figure 2, for any realization of \(\hat{z} \), only three outcomes are possible: points A, B and C. The first outcome, point A, is such that the firm’s firing probability \(s(\hat{z}) \) is zero, and the worker’s relative gains from trade \(\phi(\hat{z}) \) are smaller than
\(\phi^* \). The second outcome, point B, is such that the firm's firing probability \(s(\tilde{z}) \) is greater than zero and smaller than one, and the worker's relative gains from trade \(\phi(\tilde{z}) \) are equal to \(\phi^* \). The third outcome, point C, is such that the firm's firing probability \(s(\tilde{z}) \) is one, and the worker's relative gains from trade \(\phi(\tilde{z}) \) are greater than \(\phi^* \). The coexistence of multiple outcomes is a consequence of the fact that firms have a desire to coordinate the outcome of the randomization over firing or keeping their workers. If other firms are more likely to fire their workers in one state of the world than in another, an individual firm wants to do the same, because, in the state of the world where other firms are more likely to fire their workers, unemployment is higher and so are the worker's relative gains from trade.

Let \(Z_0 \) denote the realizations of the sunspot for which firms fire non-performing workers with probability 0, and let \(\pi_0 \) denote the measure of \(Z_0 \). Let \(Z_1 \) denote the realizations of the sunspot for which firms fire non-performing workers with a probability \(s^*(y_t, \tilde{z}) = s_1 \in (0, 1) \), and let \(\pi_1 \) denote the measure of \(Z_1 \). Similarly, let \(Z_2 \) denote the realizations of the sunspot for which firms fire non-performing workers with probability 1, and let \(\pi_2 \) denote the measure of \(Z_2 \).

Depending on the value of \(\pi_1 \), we can identify three different types of stage equilibria. If \(\pi_1 = 1 \), we have a No Coordination Equilibrium. In this equilibrium, firms fire the non-performing workers with probability \(s^*(y_t, \tilde{z}) = s_1 \in (0, 1) \) for all \(\tilde{z} \in [0, 1] \). Basically, firms ignore the sunspot and randomize over firing or keeping their non-performing workers independently from each other. In a No Coordination Equilibrium, the worker's incentive compatibility constraint (11) becomes

\[
\psi = \beta(p_h(1) - p_h(0))(1 - \delta)s_1V(\hat{u}(s_1)). \tag{16}
\]

When we solve the constraint with respect to \(s_1 \), we find that the constant probability with which firms fire their non-performing workers is

\[
s_1 = \frac{\psi}{\beta(p_h(1) - p_h(0))(1 - \delta)V(\hat{u}(s_1))}. \tag{17}
\]

If \(\pi_1 = 0 \), we have a Perfect Coordination Equilibrium. In this equilibrium, firms fire their non-performing workers with probability 0 for the realizations of the sunspot \(\tilde{z} \in Z_0 \), and with probability 1 for the other realization of the sunspot. Basically, firms use the sunspot to randomize over firing or keeping their non-performing workers in a perfectly correlated fashion. In a Perfect Coordination Equilibrium, the worker's incentive compatibility constraint (11) becomes

\[
\psi = \beta(p_h(1) - p_h(0))(1 - \delta)\pi_2V(\hat{u}(1)). \tag{18}
\]
When we solve the constraint with respect to π_2, we find that the probability with which firms coordinate on firing all of their non-performing workers is given by

$$\pi_2 = \frac{\psi}{\beta (p_h(1) - p_h(0))(1 - \delta)V(\hat{u}(1))}.$$ \hspace{1cm} (19)

If $\pi_1 \in (0,1)$, we have a *Partial Coordination Equilibrium*. In this equilibrium, firms fire workers with probability $s^*(y_\ell, \hat{z}) = s_1 \in (0,1)$ for all $\hat{z} \in Z_1$. Hence, when $\hat{z} \in Z_1$, firms randomize over firing or keeping their non-performing workers independently from each other. However, if $\hat{z} \notin Z_1$, firms fire their workers with probability 0 if $\hat{z} \in Z_0$ and with probability 1 if $\hat{z} \in Z_2$. Hence, when $\hat{z} \notin Z_1$, firms use the sunspot to randomize over firing or keeping their non-performing workers in a correlated fashion. Overall, a Partial Correlation Equilibrium is a combination of a No Coordination and a Perfect Coordination Equilibrium. In a Partial Coordination Equilibrium, the worker’s incentive compatibility constraint (11) becomes

$$\psi = \beta (p_h(1) - p_h(0))(1 - \delta) [\pi_1 s_1 V(\hat{u}(s_1)) + \pi_2 V(\hat{u}(1))].$$ \hspace{1cm} (20)

When we solve the constraint with respect to s, we find that the constant probability with which firms fire their non-performing workers for $\hat{z} \in Z_1$ is

$$s_1 = \frac{\psi - \beta (p_h(1) - p_h(0))(1 - \delta) \pi_2 V(\hat{u}(1))}{\beta (p_h(1) - p_h(0))(1 - \delta) \pi_1 V(\hat{u}(s_1))}.$$ \hspace{1cm} (21)

The above results are summarized in Theorem 2.

Theorem 2: *(Stage Equilibrium).* Three 1-Period Equilibria exist: (i) No Coordination Equilibrium where $s^*(y_\ell, \hat{z}) = s_1$ for all $\hat{z} \in Z_1$, where Z_1 has probability measure $\pi_1 = 1$ and s_1 is given by (17); (ii) Perfect Coordination Equilibrium where $s^*(y_\ell, \hat{z}) = 0$ for all $\hat{z} \in Z_0$ and $s^*(y_\ell, \hat{z}) = 1$ for all $\hat{z} \in Z_2$, where Z_0 has probability measure $1 - \pi_2$ and Z_2 has probability measure π_2 and $\pi_2 \in (0,1)$ is given by (19); (iii) Partial Coordination Equilibrium where $s^*(y_\ell, \hat{z}) = 0$ for all $\hat{z} \in Z_0$, $s^*(y_\ell, \hat{z}) = s_1$ for all $\hat{z} \in Z_1$, and $s^*(y_\ell, \hat{z}) = 1$ for all $\hat{z} \in Z_2$, where Z_1 has probability measure $\pi_0 \in (0,1)$ and s_1 is given by (21).

The Perfect Coordination Equilibrium exists because firms have an incentive to coordinate the outcome of the randomization over firing and keeping their non-performing workers in order to minimize the “collateral damage” involved in providing workers with incentives. Moreover, firms are able to coordinate the outcome of the randomization because of the sunspot. The No Coordination Equilibrium and the Partial Coordination Equilibrium exist because the sunspot is inherently meaningless and, hence, there always exist an equilibrium
in which it is ignored. However, if firms do not need to rely on an inherently meaningless signal to coordinate, they will always be able to do so and the No Coordination and Partial Coordination Equilibria will disappear. Indeed, in the next subsection, we consider a version of the stage game in which firms fire sequentially and show that its unique equilibrium is the one with perfect coordination.

In a Perfect Coordination Equilibrium the economy experiences aggregate fluctuations: for some realizations of the sunspot, all of the firms fire their non-performing workers and unemployment is high; for other realizations of the sunspot, all of the firms keep their non-performing workers and unemployment is low. First, notice that these aggregate fluctuations are endogenous. Indeed, they do not originate from exogenous shocks to fundamentals, or from exogenous shocks to the selection of the equilibrium played by the market participants. They are caused by the fact that, in the unique robust equilibrium, different firms randomize over firing or not firing in a correlated fashion. Second, notice that these aggregate fluctuations are stochastic. Indeed, the economy does not follow a more or less complicated deterministic path (as in the earlier literature on endogenous cycles), but a genuinely stochastic process. We believe that our model is the first example of a theory of endogenous and stochastic fluctuations. In fact, we do not know of any other model where the stochastic process for aggregate fluctuations is an equilibrium outcome as it is in our model (see equation (19)).

4.2 Equilibrium Refinement

As we discussed above, the existence of No Coordination and Partial Coordination Equilibria is an artifact of the simplifying assumption that all firms randomize over firing or keeping non-performing workers simultaneously. When firms randomize simultaneously, they need to rely on the sunspot to correlate the outcome of their randomization. However, since the sunspot is inherently meaningless, there is always an equilibrium in which the sunspot is ignored and firms cannot correlate the outcome of their randomization. In this subsection, we consider a version of the environment in which firms randomize over firing or keeping their non-performing workers sequentially. We show that, firms moving later can always condition their randomization on the outcome of firms moving earlier and, hence, the unique equilibrium is the one with perfect coordination.

Here is a formal description of the modified environment. Let $1 - u$ denote the measure of employed workers at the bargaining stage of the current period. The measure of employed workers is equally divided into a large number NK firms, each employing one worker of
“measure” \((1 - u)/NK\). Firms are clustered into a large number \(K\) of groups, each comprising a large number \(N\) of firms. Firms and workers bargain over the terms of the one-period employment contract knowing the group to which they belong. At the separation stage of next period, firm-worker pairs in different groups break up sequentially. First, the firm-worker pairs in group 1 simultaneously decide to separate or not. Second, after observing the outcomes of group 1, the firm-worker pairs in group 2 simultaneously decide to separate or not. Third, after observing the outcomes of groups 1 and 2, the firm-worker pairs in group 3 simultaneously decide to separate or not. The process continues until the firm-worker pairs in group \(K\) simultaneously decide to separate or not, after having observed the outcomes of groups 1 through \(K - 1\). Naturally, in this version of the model, we do not need the sunspot.

Let \(T_i\) denote the measure of workers separating from firms in groups 1 through \(i\). We assume that each firm in group \(i\) takes as given the probability distribution of \(T_i\) conditional on \(T_{i-1}\), which we denote as \(P_i(T_i|T_{i-1})\). The assumption means that each firm views itself as small compared to its group. The assumption is reasonable when \(N\) is large. We also assume that \(P_i(T_i|T_{i-1})\) is increasing, in the sense of first-order stochastic dominance, in \(T_{i-1}\). The assumption means that firms in a group view themselves as small compared to the whole economy. The assumption is reasonable when \(K\) is large. We also approximate the worker’s gains from trade, \(V(\hat{u})\), and the firm’s gains from trade, \(J(\hat{u})\), with linear functions. The approximation implies that the expectation of the worker’s relative gains from trade over next period’s unemployment, \(E[V(\hat{u})]/E[J(\hat{u})]\), is equal to the worker’s relative gains from trade evaluated at the expectation of next period’s unemployment, \(V(E[\hat{u}])/J(E[\hat{u}]) = \phi(E[\hat{u}])\).

We can now characterize the optimal contract between a worker and a firm in group \(i = 2, 3, \ldots K\). The contract can condition the firing probability \(s_i(y, T_{i-1})\) on the realization of the worker’s output \(y\) and on the measure \(T_{i-1}\) of workers separating from firms in groups 1 through \(i-1\). As in Section 3, it is easy to show that the optimal contract is such that: (i) the worker’s incentive compatibility constraint holds with equality; (ii) if the realization of output is high, the worker is fired with probability 0, i.e. \(s_i(y_h, T_{i-1}) = 0\) for all \(T_{i-1}\); (iii) if the realization of output is low, the worker is fired with probability 0 if the worker’s relative gains from trade are below a cutoff \(\phi^*_i\), and with probability 1 if they are above the cutoff, i.e. \(s_i(y_e, T_{i-1}) = 0\) if \(\phi(E[\hat{u}|T_{i-1}]) < \phi^*_i\), and \(s_i(y_e, T_{i-1}) = 1\) if \(\phi(E[\hat{u}|T_{i-1}]) > \phi^*_i\). The optimal contract between a worker and a firm in group 1 can only condition the firing probability on the realization of the worker’s output \(y\). In this case, the optimal contract is such that \(s_1(y_h) = 0\) and \(s_1(y_e) = s_1\), where \(s_1\) is such that the worker’s incentive compatibility constraint holds with equality.
The following lemma shows that the probability $s_i(y_t, T_{i-1})$ with which firms in group $s_i(y_t, T_{i-1})$ fire their non-performing workers has a threshold property with respect to T_{i-1}, the measure of workers separating from firms in groups 1 through T_{i-1}. This property of equilibrium is intuitive, as a higher T_{i-1} leads to a higher expectation for unemployment and, in turn, to a higher expectation for the worker’s relative gains from trade.

Lemma 5: For $i = 2, \ldots K$, the firing probability $s_i(y_t, T_{i-1})$ equals 0 for all $T_{i-1} < T_{i-1}^*$, and it equals 1 for all $T_{i-1} > T_{i-1}^*$.

Proof: In Appendix B. □

We can now compute the equilibrium probability distribution of the measure t_i of workers separating from firms in group $i = 1, 2, \ldots K$, conditional on the measure T_{i-1} of workers separating from firms in groups 1 through $i - 1$. Any firm-worker pair in group 1 separates with probability $\tau_1 = \delta + (1 - \delta)p_t(1)s_1$. Since N is large, we can use the Central Limit Theorem to approximate the measure t_1 of workers separating from firms in group 1 with a Normal distribution with mean $E[t_1] = \tau_1(1 - u)/K$ and variance $Var[t_1] = \tau_1(1 - \tau_1)[(1 - u)/K]^2/N$. Conditional on T_{i-1}, a firm-worker pair in group $i = 2, 3, \ldots K$ separates with probability $\tau_i(T_{i-1}) = \delta + (1 - \delta)p_t(1)s_i(y_t, T_{i-1})$. Since N is large, we can approximate the measure t_i of workers separating from firms in group i with a Normal distribution with mean $E[t_i|T_{i-1}] = \tau_i(T_{i-1})(1 - u)/K$ and variance $Var[t_i|T_{i-1}] = \tau_i(T_{i-1})(1 - \tau_i(T_{i-1}))[1 - (1 - u)/K]^2/N$. We find it convenient to define $t_x = \delta(1 - u)/K$, and $t_y = [\delta + (1 - \delta)p_t(1)](1 - u)/K$.

The following lemma shows that, for $N \to \infty$, there exists an equilibrium in which the firms in groups 2 through K either all fire or all keep their non-performing workers depending on the measure of workers separating from firms in group 1. Let us give some intuition for this result in the case of $K = 3$. If the firms in group 1 happen to break up with more than T_1^* workers, firms in group 2 fire their non-performing workers with probability 1. If the firms in group 1 happen to break up with less than T_1^* workers, firms fire in group 2 fire their non-performing workers with probability 0. Since the variance of t_1 and t_2 is vanishing as $N \to \infty$, $T_2 = E[t_1] + t_h$ with probability $1 - P_1(T_1^*)$ and $T_2 = E[t_1] + t_x$ with probability $P_1(T_1^*)$. Suppose that $T_2^* = E[t_1] + (t_h + t_x)/2$. Then, firms in group 3 fire their non-performing workers with probability 1 if $T_2 = E[t_1] + t_h$ and with probability 0 if $T_2 = E[t_1] + t_x$. Since the variance of t_3 is vanishing as $N \to \infty$, $T_3 = E[t_1] + 2t_h$ with probability $1 - P_1(T_1^*)$ and $T_3 = E[t_1] + 2t_x$ with probability $P_1(T_1^*)$. Overall, firms in group 2 fire their non-performing workers with probability $1 - P_1(T_1^*)$ and, in that case, expect total separations $T_3 = E[t_1] + 2t_h$. Firms in group 3 fire their non-performing workers with
probability \(1 - P_1(T_1^*)\) and, in that case, they expect total separations \(T_3 = E[t_1] + 2t_h\). Therefore, if \(T_1^*\) satisfies the incentive compatibility constraint of workers in group 2, then \(T_2^*\) satisfies the incentive compatibility constraint of workers in group 3. This confirms the existence of the desired equilibrium for \(K = 3\). Clearly, for \(K \to \infty\), this equilibrium converges to the Perfect Coordination Equilibrium.

Lemma 6: For \(N \to \infty\), there is an equilibrium in which firms in groups 2 through \(K\) fire their non-performing workers with probability 0 if \(T_1 < T_1^*\), and with probability 1 if \(T_1 > T_1^*\), where \(T_1^*\) is such that

\[
\psi = \beta(1 - \delta)(p_h(1) - p_h(0))(1 - P_1(T_1^*))V(E[\hat{u}|T_K = E[t_1] + (K - 1)t_h]). \tag{22}
\]

Proof: In Appendix B.

Next, we rule out the existence of other equilibria. To this aim, notice that, in any equilibrium, firms in group 2 fire their non-performing workers with probability 0 if \(T_1 < T_1^*\), and they fire them with probability 1 if \(T_1 > T_1^*\), where \(T_1^*\) is such that the worker’s incentive compatibility constraint is satisfied, i.e.

\[
\psi = \beta(1 - \delta)(p_h(1) - p_h(0))(1 - P_1(T_1^*))V(E[\hat{u}|T_1 > T_1^*]) \tag{23}
\]

For \(N \to \infty\), \(T_2\) is approximately equal to \(E[t_1] + t_\ell\) with probability \(P_1(T_1^*)\) and, it is approximately equal to \(E[t_1] + t_h\) with probability \(1 - P_1(T_1^*)\).

Now, suppose that the threshold \(T_2^*\) is such that \(P_2(T_2^*) > P_1(T_1^*)\). Then, conditional on any \(T_2\) approximately equal to \(E[t_1] + t_\ell\), firms in group 3 fire their non-performing workers with probability 0. Conditional on \(T_2\) being approximately equal to \(E[t_1] + t_h\), firms in group 3 do not fire their non-performing workers with probability \((P_2(T_2^*) - P_1(T_1^*))/(1 - P_1(T_1^*))\) and they do with probability \((1 - P_2(T_2^*))/(1 - P_1(T_1^*))\). The incentive compatibility constraint for workers employed by firms in group 3 is thus given by

\[
\psi = \beta(1 - \delta)(p_h(1) - p_h(0))(1 - P_2(T_2^*))V(E[\hat{u}|T_2 > T_2^*]) \tag{24}
\]

However, the incentive compatibility constraints (23) and (24) cannot hold simultaneously and, hence, there cannot be an equilibrium in which \(P_2(T_2^*) > P_1(T_1^*)\). To see why this is the case, notice that \(E[\hat{u}|T_1 > T_1^*]\) is equal to \(E[\hat{u}|T_2 > T_2^*] + E[\hat{u}|T_2 < T_2^*, T_1 > T_1^*] + 1 - P_1(T_1^*) > 1 - P_2(T_2^*)\). Therefore, the right-hand side of (23) is strictly greater than the right-hand side of (24). Following a similar argument, we can rule also out equilibria in which \(P_2(T_2^*) < P_1(T_1^*)\). Hence, in any equilibrium, \(P_2(T_2^*) = P_1(T_1^*)\), which implies that firms in
group 3 fire their non-performing workers if and only if firms in group 2 do. Repeating the above argument for \(i = 4, 5, \ldots, K\), we can show that, in any equilibrium, firms in group \(i\) fire their non-performing workers if and only if firms in group \(i - 1\) do. Therefore, the only equilibrium of the modified environment is the one described in Lemma 6.

We have thus completed the proof of the following theorem.

Theorem 3: (Refinement) For \(K \to \infty\) and \(N \to \infty\), the unique equilibrium of the environment with \(K\) groups of \(N\) firms firing sequentially is the Perfect Coordination Equilibrium.

The analysis of the environment where firms fire sequentially sheds additional light on the nature of aggregate fluctuations in our model. The firms in the first group find it optimal to randomize on whether to fire or keep their non-performing workers. If the first group of firms fire enough workers, then all the other firms in the economy find it optimal to fire their non-performing workers. Otherwise, all the other firms in the economy find it optimal to keep their non-performing workers. That is, the equilibrium is such that the firing decision of the first group of firms leads to a “firing cascade”. In contrast to the models of herding of Banerjee (1992) and Bikhchandani et alii (1992), the cascades in our model do not take place because the actions of the first group of firms contain information about the realization of an exogenous aggregate shock, but because the actions of the first group of firms affect the incentive of subsequent firms from taking the same action. Hence, cascades in our model start from the realization of idiosyncratic shocks, absent any aggregate uncertainty. In this sense, aggregate fluctuations in our model have a granular origin, as in Jovanovic (1987) and Gabaix (2011). However, unlike Jovanovic (1987) and Gabaix (2011), idiosyncratic shocks in our model propagate because of strategic interactions between firms rather than because of the input-output structure of the economy.

4.3 Recursive Equilibrium

In the previous subsections, we established the existence of a Perfect Coordination Equilibrium of the stage game under the conjecture that unemployment is increasing and the wage is decreasing in unemployment. We also argued that the Perfect Coordination Equilibrium is the only equilibrium of the stage game that is robust to a natural perturbation of the environment. In this subsection, we show that, given a Perfect Coordination Equilibrium of the stage game, there exists a Recursive Equilibrium such that the unemployment is increasing in firing and the wage is decreasing in unemployment.
The existence proof is an application of Schauder’s fixed point theorem. The proof is lengthy and relegated in Appendix C. Here we outline the structure of the proof. Denote as Ω the set of bounded functions (V_+, J_+), $V_+ : [0, 1] \rightarrow \mathbb{R}$ and $J_+ : [0, 1] \rightarrow \mathbb{R}$, such that for all u_0 and u_1, $0 \leq u_0 \leq u_1 \leq 1$, $V_+(u_1) - V_+(u_0)$ is greater than $\overline{D}_{V_+}(u_1 - u_0)$ and smaller than $\overline{D}_{V_+}(u_1 - u_0)$, and $J_+(u_1) - J_+(u_0)$ is greater than $\overline{D}_{J_+}(u_1 - u_0)$ and smaller than $\overline{D}_{J_+}(u_1 - u_0)$, where $\overline{D}_{V_+} > \overline{D}_{V_+} > 0$, $\overline{D}_{J_+} > 0 \geq \overline{D}_{J_+}$. That is, Ω is the set of functions (V_+, J_+) that are bounded and Lipschitz continuous, with Lipschitz bounds respectively given by \overline{D}_{V_+} and \overline{D}_{V_+}, and \overline{D}_{J_+} and \overline{D}_{J_+}. Also, we denote as μ_u and μ_u the upper and the lower bound of the partial derivative of the job-finding probability $\mu(J, u)$ with respect to u, and as μ_J and μ_J the upper and the lower bound of the partial derivative of $\mu(J, u)$ with respect to J.

Take an arbitrary pair of functions $V_+(u)$ and $J_+(u)$ from the set Ω. We let V_+ be the worker’s expected gains from trade at the end of the production stage, and we let J_+ be the firm’s expected gains from trade at the end of the production stage. First, given (V_+, J_+), we use the fact that $W(w, u) = v(w) - v(b) - \psi + V_+(u)$ and $F(w, u) = E[y] - w + J_+(u)$ and condition (12) for the optimal contract to compute the equilibrium wage function $w(u)$. We prove that $w(u)$ is strictly decreasing in u. Intuitively, given the choice for the bounds \overline{D}_{V_+} and \overline{D}_{J_+}, an increase in unemployment leads to a larger increase in $W(w, u)$ than in $v'(w)F(w, u)$ for any given wage w. For this reason, the wage must fall to make sure that the worker’s relative gains from trade, $W(w, u)/F(w, u)$, are equal to the worker’s relative marginal utility of consumption $v'(w)$.

Second, given the functions $V_+(u)$ and $J_+(u)$ and the wage function $w(u)$, we use the fact that $V(u) = W(w(u), u)$ and $J(u) = F(w(u), u)$ to compute the equilibrium gains from trade accruing to the worker and to the firm. We prove that $J(u)$ is strictly increasing in u. Intuitively, given the choice for the bound \overline{D}_{J_+}, an increase in unemployment leads to a decline in the wage that more than compensates the largest possible decline in $J_+(u)$. Similarly, we prove that $V(u)$ is strictly increasing in u. Intuitively, $V(u)$ is equal to $J(u)v'(w(u))$ and both $J(u)$ and $v'(w(u))$ are strictly increasing in u.

Third, given the function $J(u)$, we use (7) to compute the law of motion for unemployment $h(u, \hat{v})$. We prove that, as long as $(1 - \delta)p_h(1) - \mu(J, u) > 0$, next period’s unemployment $h(u, \hat{v})$ is strictly increasing in current period’s unemployment. Moreover, we prove that next period’s unemployment $h(u, \hat{v})$ is strictly greater for the realization of the sunspot for which firms coordinate on firing their non-performing workers, i.e. for $\hat{v} \in Z_2$, than for

9The reader can find the expression for the Lipschitz in Appendix B.
the realizations for which firms coordinate on keeping their non-performing workers, i.e. for \(\hat{z} \in Z_0 \).

Finally, given the functions \(V(u), J(u) \) and \(h(u, \hat{z}) \), we compute updates \(\mathcal{F}V_+(u) \) and \(\mathcal{F}J_+(u) \) for the worker’s and firm’s expected gains from trade at the end of the production process. More precisely, we compute \(\mathcal{F}V_+(u) \) and \(\mathcal{F}J_+(u) \) as

\[
\mathcal{F}V_+(u) = \beta E_{\hat{z}} \{ [(1 - \delta)(1 - p_\ell(1)s(y_\ell, \hat{z})) - \mu(J(h(u, \hat{z})))V(h(u, \hat{z}))],
\]

\[
\mathcal{F}J_+(u) = \beta E_{\hat{z}} \{ [(1 - \delta)(1 - p_\ell(1)s(y_\ell, \hat{z}))J(h(u, \hat{z}))],
\]

where the firing probability \(s(y_\ell, \hat{z}) = 1 \) for \(\hat{z} \in Z_2 \) and \(s(y_\ell, \hat{z}) = 0 \) for \(\hat{z} \in Z_0 \), while the probability that \(\hat{z} \in Z_2 \) is given by \(\pi_2 \) in (19) and the probability that \(\hat{z} \in Z_2 \) is \(\pi_0 = 1 - \pi_2 \). We prove that, as long as \(\mu_u - \overline{\mu}_J(1 - \delta + \overline{\mu}_u) > 0 \), \(\mathcal{F}V_+(u) \) is bounded and such that \(\mathcal{F}V_+(u_1) - \mathcal{F}V_+(u_0) \) is greater than \(\overline{D}_{V_+}(u_1 - u_0) \) and smaller than \(\overline{D}_{V_+}(u_1 - u_0) \) for all \(u_0, u_1 \) with \(0 \leq u_0 \leq u_1 \leq 1 \). Similarly, we prove that \(\mathcal{F}J_+(u) \) is bounded and such that \(\mathcal{F}J_+(u_1) - \mathcal{F}J_+(u_0) \) is greater than \(\overline{D}_{J_+}(u_1 - u_0) \) and smaller than \(\overline{D}_{J_+}(u_1 - u_0) \) for all \(u_0, u_1 \) with \(0 \leq u_0 \leq u_1 \leq 1 \).

The above observations imply that the operator \(\mathcal{F} \) is a self-map, in the sense that it maps pairs of functions in the set \(\Omega \) into pairs of functions that also belong to the set \(\Omega \). The set \(\Omega \) is a non-empty, bounded, closed convex subset of the space of bounded continuous functions with the sup norm (see Lemma A.1 in Menzio and Shi, 2010). We also establish that the operator \(\mathcal{F} \) is continuous. Finally, we establish that the family of functions \(\mathcal{F}(\Omega) \) is equicontinuous. Equicontinuity, which is typically rather difficult to establish, here follows immediately because the functions \(\mathcal{F}V_+ \) and \(\mathcal{F}J_+ \) have the same Lipschitz bounds for all \((V_+, J_+) \in \Omega \).

The properties of the operator \(\mathcal{F} \) are the conditions of Schauder’s fixed point theorem (see Theorem 17.4 in Stokey, Lucas and Prescott 1989). Thus, there exists a pair of functions \((V^*_+, J^*_+) \in \Omega \) such that \(\mathcal{F}(V^*_+, J^*_+) = (V^*_+, J^*_+) \). Given the functions \(V^*_+ \) and \(J^*_+ \), we construct the associated wage function, \(w^* \), the gains from trade to the worker and to the firm, \(V^* \) and \(J^* \), and the law of motion for unemployment, \(h^* \). These objects, together with an optimal contract \(x^*(u) \) that prescribes the wage \(w^*(u) \) and the firing probabilities \(s^*(y_\ell, \hat{z}, u) = 0 \), \(s^*(y_h, \hat{z}, u) = 1 \) for \(\hat{z} \in Z_2 \) and \(s^*(y_h, \hat{z}, u) = 0 \) for \(\hat{z} \in Z_0 \) constitute a Recursive Equilibrium in which, for all \(u \), the equilibrium stage game is such that firms perfectly coordinate on firing or keeping their non-performing workers.

This completes the proof of the following theorem.
Theorem 4: (Recursive Equilibrium) Assume \((1 - \delta)p_h(1) - \mu(u, J) > 0\) and \(\mu_a - \overline{\mu}_h(1 - \delta + \overline{\mu}_a) > 0\). For all \((\beta, \psi)\) such that \(\beta \in (0, \beta^*)\) and \(\psi \in (0, \psi^*)\), where \(\beta^* > 0\) and \(\psi^* > 0\), there is a Recursive Equilibrium in which the stage equilibrium is a Perfect Coordination Equilibrium.

5 Agency Business Cycles

In a Perfect Coordination Equilibrium, the economy experiences aggregate fluctuations that are endogenous and stochastic. We refer to these aggregate fluctuations as Agency Business Cycles (ABC). In this section, we calibrate the model to the US economy to assess the magnitude of ABC. We find that ABC can generate large fluctuations in unemployment, in the rate at which employed workers become unemployed (EU rate) and in the rate at which unemployed workers become employed (the UE rate). We then test three distinctive features of ABC. First, in ABC, a recession starts with an increase in the EU rate which drives up unemployment and, because of decreasing returns to scale in matching, lowers the UE rate. This causal chain implies that the EU rate leads the unemployment rate and the UE rate. We find the same pattern of leads and lags in the US data. Second, in ABC, the probability of a recession is endogenous and, in particular, it becomes higher the lower is unemployment. We find that, in the US economy, the probability of a recession depends negatively on unemployment. Third, in ABC, a recession is a period when the value of time in the market relative to the value of time at home is abnormally high. We find preliminary evidence that this is also the case for the US economy.

5.1 Calibration

We start by calibrating the primitives of the model. Preferences are described by the worker’s periodical utility function, \(u(c) - \psi e\), and by the discount factor, \(\beta\). Market production is described by the realizations of output, \(y_h\) and \(y_e\), by the probability that output is high given the worker’s effort, \(p_h(1)\) and \(p_h(0)\), and by the exogenous job destruction probability \(\delta\). Home production is described by the output of an unemployed worker, \(b\). The search and matching process is described by the vacancy cost, \(k\), and the matching function, \(M(u, v)\). We specialize the utility function for consumption to be of the form \(u(c) = c^{1-\sigma}/(1 - \sigma)\), where \(\sigma\) is the coefficient of relative risk aversion. We specialize the matching function to be of the form \(M(u, v) = A(u)m(u, v)\), where \(m(u, v) = uv(u^\xi + v^\xi)^{-1/\xi}\) is a constant returns to scale matching function with an elasticity of substitution \(\xi\), and \(A(u) = \exp(-\rho u)\) is a matching efficiency function with a semi-elasticity with respect to unemployment of \(-\rho\).
We calibrate the parameters of the model to match some key statistics of the US labor market between 1951 and 2014, such as the average unemployment rate, the average UE rate, and the average EU rate. We measure the US unemployment rate as the CPS civilian unemployment rate. We measure the UE and the EU rates using the civilian unemployment and short-term unemployment rates from the CPS, following the same methodology as in Shimer (2005). We measure labor productivity as output per worker in the non-farm sector.

We calibrate the basic parameters of the model as is now standard in the literature. We choose the model period to be one month. We set the discount factor, \(\beta \), so that the annual real interest rate, \((1/\beta)^{1/12} - 1 \), is 5 percent. We choose the vacancy cost, \(k \), and the exogenous job destruction probability, \(\delta \), so that the model matches the average UE and EU rates in the US economy (respectively, 44% and 2.6%). We normalize the average value of market production, \(p_h(1)y_h + (1-p_h(1))y_t \), to 1. We choose the value of home production, \(b \), to be 70% of the average value of market production, which Hall and Milgrom (2010) argue is a reasonable estimate for the US economy.

We calibrate the parameters of the model that determine the extent of the agency problem as follows. The probability that the realization of output is \(y_h \) given that the worker exerts effort, \(p_h(1) \), affects the number of non-performing workers and, hence, the magnitude of firing bursts. The disutility of effort, \(\psi \), affects the frequency at which firms need to fire non-performing workers, hence, the frequency of firing bursts. Therefore, we choose \(y_h \) so that the model generates the same standard deviation in the cyclical component of the EU rate as in the US economy (9.85%). We choose \(\psi \) so that, on average, firms coordinate on firing their non-performing workers once every 50 months. The parameters \(y_h \) and \(y_t \) and \(p_h(0) \) cannot be uniquely pinned down. Given that average output is 1, the realizations of output \(y_h \) and \(y_t \) do not affect the equilibrium, as long as it is optimal for firms to require effort from their workers. Similarly, the probability \(p_h(0) \) only affects the equilibrium through the ratio \(\psi/(p_h(1) - p_h(0)) \). Therefore, we choose some arbitrary values for \(y_h, y_t \) and \(p_h(0) \) such that firms find it optimal to require effort.

Finally, we need to choose values for the parameters in the utility and the matching functions. We set the coefficient \(\sigma \) of relative risk aversion in the utility function \(u \) to 1. This is a standard value from micro-estimates of risk aversion. We set the elasticity \(\xi \) of substitution between unemployment and vacancy in the matching function \(m \) to 1.24. This is the value estimated by Menzio and Shi (2011).\(^{10}\) We tentatively set the parameter \(\rho \) in

\(^{10}\)Correctly estimating a matching function requires taking into account the fact that unemployed and employed workers all search for vacancies to some degree. Using a model of search off and on the job,
the matching efficiency function A to 6.11

Table 1: Calibrated Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_h high output</td>
<td>1.03</td>
</tr>
<tr>
<td>y_l low output</td>
<td>.000</td>
</tr>
<tr>
<td>$p_h(1)$ probability of y_h given $e = 1$</td>
<td>.967</td>
</tr>
<tr>
<td>$p_h(0)$ probability of y_h given $e = 0$</td>
<td>.467</td>
</tr>
<tr>
<td>b UI benefit/value of leisure</td>
<td>.700</td>
</tr>
<tr>
<td>ψ disutility of effort</td>
<td>.007</td>
</tr>
<tr>
<td>δ exogenous job destruction</td>
<td>.025</td>
</tr>
<tr>
<td>k vacancy cost</td>
<td>.257</td>
</tr>
<tr>
<td>ξ elasticity of sub. btw u and v</td>
<td>1.24</td>
</tr>
<tr>
<td>ρ semi-elasticity of A wrt u</td>
<td>6.00</td>
</tr>
</tbody>
</table>

5.2 Magnitude and Properties of ABC

Table 1 reports the calibrated value of the parameters of the model. Given these values, we simulate the model and create monthly time-series for the unemployment rate, the UE rate, the EU rate and other labor market variables. For each variable, we construct quarterly time-series by taking 3-month averages. We then compute the cyclical component of each variable as the percentage deviation of its quarterly value from a Hodrick-Prescott trend constructed using a smoothing parameter of 10^5. We use the same procedure to construct the cyclical component of labor market variables in the US data. Figure D1 in Appendix D presents a sample of the time-series generated by the model for the cyclical component of the unemployment rate, the UE rate and the EU rate. Figure D2 presents the cyclical component of the unemployment rate, the UE rate and the EU rate in the US economy over the period 1990-2014.

Table 2 reports some statistics about the unemployment rate, the UE rate, the EU rate and the labor productivity generated by the model and about the same variables in the data. Menzio and Shi (2011) estimate the elasticity of substitution between searching workers and vacant jobs in the matching function to be 1.24.11 When we calibrate the model using a higher value for ρ, we find that the model generates larger fluctuations in the UE rate and, hence, larger fluctuations in the unemployment rate. The qualitative predictions of the model, though, remain unchanged. We refer the reader to Footnote xx for a justification of our baseline choice of rho.
First, Table 2 shows that ABC can account for a significant fraction of the volatility of the US labor market. Specifically, the standard deviation of unemployment in the model is 55% of what we observe in the data. Similarly, the standard deviation of the UE rate in the model is 33% of its empirical counterpart, and the standard deviation of the EU rate in the model is the same as in the data. When we recalibrate the model using a higher value of ρ, the model generates larger fluctuations in the UE rate and, hence, larger fluctuations in the unemployment rate.\footnote{We are not arguing that ABC are the only source of aggregate fluctuations in the labor market and, hence, that it should explain all of the empirical volatility of unemployment, UE and EU rates. Indeed, we believe that ABC can either create additional fluctuations relative to those caused by fundamental shocks, or that correlated firings might amplify fundamental shocks. However, as we want to isolate the effect of ABC, in this paper we abstract from all fundamental shocks.} The reader should keep in mind that the model is calibrated under the identifying assumption that the volatility in the EU rate observed in the data is entirely explained by our theory.\footnote{Nonetheless, the finding that ABC can create large fluctuations in the unemployment, the UE and the EU rates is important. Indeed, as shown by Shimer (2005), the textbook search-theoretic model of the labor market with productivity shocks explains less than 10% of the empirical volatility of unemployment. Hall (2005), Menzio (2005), Hagedorn and Manovskii (2008), Kennan (2010), Menzio and Shi (2011) develop search-theoretic models in which productivity shocks generate larger fluctuations in unemployment. However, these models counterfactually predict a perfect negative correlation between unemployment and labor productivity.}

\begin{table}[h]
\centering
\caption{Agency Business Cycles}
\begin{tabular}{lllll}
\hline
\multicolumn{1}{c}{} & \multicolumn{1}{c}{u rate} & \multicolumn{1}{c}{UE rate} & \multicolumn{1}{c}{EU rate} & \multicolumn{1}{c}{APL} \\
\hline
Model & std & 9.34 & 4.09 & 9.11 & 0 \\
& cor. wrt u & 1 & -.98 & .32 & - \\
Data: 1951-2014 & std & 16.9 & 12.9 & 9.7 & 1.98 \\
& cor wrt u & 1 & -.94 & .80 & -.37 \\
Data: 1984-2014 & std & 17.3 & 13.8 & 6.91 & 1.38 \\
& cor wrt u & 1 & -.96 & .70 & .09 \\
\hline
\end{tabular}
\end{table}

Second, Table 2 shows that ABC feature the same pattern of comovement between the unemployment rate, the UE rate and the EU rate as in the data. In particular, in the model as in the data, the unemployment rate and the UE rate are negatively correlated, while the unemployment rate and the EU rate are positively correlated. However, in the model unemployment and vacancies are mildly positively correlated, while in the data these two variables are almost perfectly negatively correlated. This discrepancy between model and data is an artifact of the simplifying and counterfactual assumption that workers search the labor market only when they are unemployed. Indeed, under the assumption of off-the-job search, an increase in unemployment causes an increase in the number of workers searching...
the labor market which, in turn, gives firms an incentive to create more vacancies. Under the more realistic assumption of on and off-the-job search, an increase in unemployment does not cause an increase in the number of workers searching the labor market and, hence, does not give firms a clear incentive to create more vacancies.

Finally, Table 2 shows that the model generates relatively large fluctuations in unemployment that are uncorrelated with fluctuations in labor productivity. This is an important feature of the model. The empirical correlation between unemployment and labor productivity—which was significantly negative for the period 1951-1984—has become basically zero for the period 1984-2014. Therefore, over the period 1951-1984, fluctuations in labor productivity may have driven the cyclical movements of the US labor market. In contrast, over the period 1984-2014, fluctuations in labor productivity seem an unlikely driver of cycles in the US labor market. Our theory provides an explanation for the recent lack of comovement between labor productivity and unemployment by identifying a novel, non-technological source of aggregate fluctuations.14

Overall, Table 2 shows that Agency Business Cycles can be large. Now, we turn to examine some of the distinctive features of ABC. According to ABC, a recession starts with an increase in the EU rate which drives up unemployment and, because of decreasing returns to scale in matching, lowers the UE rate. This causal chain can be seen in Figure 3, where we display the correlation between unemployment in quarter t and other labor market variables in quarter $t + x$, with x going from -5 to $+5$. The red solid line is the correlation between the EU rate in quarter $t + x$ and the unemployment rate in quarter t. The green solid line is the correlation between the UE rate in quarter $t + x$ and the unemployment rate in quarter t. The black solid line is the correlation between the unemployment rate in quarter $t + x$ and in quarter t. It is immediate to see that the EU rate leads the unemployment rate by a quarter—in the sense that the absolute value of the correlation between unemployment in quarter t and the EU rate in quarter $t + x$ is highest for $x = -1$—while the UE rate is contemporaneous with unemployment—in the sense that the correlation between unemployment in quarter t and the UE rate in quarter $t + x$ is highest for $x = 0$. Moreover, the correlation between current unemployment and the future EU rate dies off much more rapidly than the correlation between current unemployment and the future UE rate. The US labor market displays exactly the same pattern of leads and lags, as can be seen from the dashed lines in Figure 3.

14Gali and van Rens (2014) document in detail the decline in the negative correlation between unemployment and labor productivity. Gali and van Rens (2014), Kaplan and Menzio (2015) and Beaudry, Galizia and Portier (2015) advance theories, alternative to ours, in which labor productivity does not correlate negatively with unemployment.
The main difference between the correlation functions in the model and in the data is that, in the model, all correlations die off more quickly than in the data. This shortcoming of the model is due to the fact that the driving force behind ABC (i.e. the coordinated firing of non-performing workers) has no persistence.

Fujita and Ramey (2009) were the first to point out that the EU rate leads the unemployment rate, while the UE rate is contemporaneous with the unemployment rate. Our theory explains this pattern as a causal link from the EU rate to the unemployment rate and from the unemployment rate to the UE rate.

Also, Fujita and Ramey (2009) used a VAR model to show that, once one takes into account the negative correlation between the current EU rate and the future UE rate, fluctuations in the EU rate can account for approximately 60% of the overall volatility of unemployment. Our theory can explain this finding. Indeed, as shown in Table 2, our theory implies that the fluctuations to the EU rate account for 60% of the volatility of unemployment.

15We believe we could create persistence in firings by assuming that firm and workers observe output in a staggered fashion—let’s say half in odd periods and half in even periods.

16Ahn and Hamilton (2015) estimate a statistical model of flows in and out of unemployment in which workers differ by their job-finding probability. They find that the increase in the EU rate at the onset of the Great Recession contained a disproportionate fraction of low job-finding probability workers and, hence, caused the subsequent decline in the UE rate. They also find that the low job-finding probability workers are typically those fired from their job.

17Since ρ determines the effect of shocks to the EU rate on the UE rate and, hence, on the unemployment
In ABC, the probability of a recession is endogenous and given by equation (19). The lower is unemployment in (19), the lower is the cost to the worker from losing his job and, hence, the higher is the probability with which firms need to fire their non-performing workers in order to give them an incentive to perform. Thus, the lower is unemployment, the higher is the probability that a recession starts. In order to find out whether this feature of our theory is borne out in the data, we take the time-series for the unemployment rate and define the start of a recession as a quarter in which the unemployment rate turns from decreasing to increasing and keeps growing for at least two consecutive quarters.\footnote{The estimates are robust to alternative ways to define the start of a recession.} We then estimate a probit model for the probability of the start of a recession as a function of the unemployment rate. The estimated coefficient on the unemployment rate is \(-.21\), with a standard deviation of 11%. The estimated coefficient implies that the probability of a recession increases from 8% to 11% as the unemployment falls from 5.5% to 4.5%. Clearly, it is not possible to precisely estimate the effect of unemployment on the probability that a recession starts because recessions are relatively rare events. In order to gather more observations, we take the time-series of unemployment for Australia, Canada, Italy, Japan, France and the UK.\footnote{These are countries for which the OECD provides sufficiently long time-series for unemployment. We drop Germany from the sample because of the large movements in unemployment related to the unification.} After taking out the average unemployment from the time-series of each country, we merge these data to those for the US and re-estimate the probit model. The estimated coefficient on the unemployment rate is \(-.20\) with a standard deviation of 4%.

We now turn to testing what is perhaps the most distinctive feature of ABC. In our theory, a recession is a period when the value of time in the market relative to its value at home is abnormally high. In contrast, in the Real Business Cycle theory of Kydland and Prescott (1982), in Mortensen and Pissarides (1994) or in any other theory where business cycles are driven by either exogenous or endogenous shocks to the value of production, a recession is a period when the value of time in the market relative to its value at home is abnormally low. To paint a picture, in RBC, a recession is a day when it is raining in the marketplace and, for that reason, workers find it optimal to stay at home. In ABC, a recession is a day when the TV set is broken at home and, for that reason, firms find it optimal to get rid of their non-performing workers. It is natural to wonder whether, empirically, the relative value of labor in the market is pro or countercyclical. In order to address this question, we construct rate, our choice for the value of rho is such that the model is consistent with the VAR findings of Fujita and Ramey (2009).
some rudimentary empirical measures of the net value of employment to a worker.

We measure the value of employment to a worker, $W_{1,t}$, and the value of unemployment to a worker, $W_{0,t}$, as

$$W_{1,t} = w_t + \beta [h_{t+1}^{EU}W_{0,t+1} + (1 - h_{t+1}^{EU})W_{1,t+1}] ,$$
$$W_{0,t} = b_t + \beta [h_{t+1}^{UE}W_{1,t+1} + (1 - h_{t+1}^{UE})W_{0,t+1}] ,$$

where w_t is a measure of the real wage in month t, b_t is a measure of unemployment benefit/value of leisure in month t, h_{t+1}^{EU} is a measure of the EU rate in month $t + 1$, h_{t+1}^{UE} is a measure of the UE rate in month $t + 1$, and $W_{1,t+1}$ and $W_{0,t+1}$ are respectively the value of employment and unemployment in month $t + 1$. We measure the net value of employment to a worker, V_t, in month t as the difference between $W_{1,t}$ and $W_{0,t}$.

We measure w_t using the time-series for the hourly wage that have been constructed by Haefke, Sonntag and van Rens (2013). We consider two alternative time-series: the average hourly wage in the cross-section of all employed workers, and the average hourly wage in the cross-section of newly hired workers after controlling for the composition of new hires. The first time-series may be more appropriate when we want to interpret V_t as the cost of losing a job to a worker, the second-time series may be more appropriate when we want to interpret V_t as the benefit of finding a job to a worker. As in Shimer (2005), we measure h_{t}^{UE} and h_{t}^{EU} using, respectively, the values for the UE rate and UE rates implied by the time-series for unemployment and short-term unemployment. In order to make the time-series for w_t, h_{t}^{UE} and h_{t}^{EU} stationary, we construct their Hodrick-Prescott trend using a smoothing parameter of 10^5. We then take the difference between the value of each variable and its trend and add this difference to the time-series average for that variable. Since b_t is not directly observable, we tentatively set it to be equal to 70% of the average of w_t.

We are now in the position to construct time-series for the value of employment to a worker, $W_{1,t}$, and the value of unemployment to a worker, $W_{0,t}$, over the period going from January 1979 to December 2014. We compute the values for W_1 and W_0 in December 2014 by assuming that, from January 2015 onwards, w, h^{UE}, and h^{EU} are equal to their historical averages. Given the values for W_1 and W_0 in December 2014, we compute the values for W_1 and W_0 from November 2014 back to January 1979 by using equation (26) and the time-series for w, b, h^{UE}, and h^{EU}. The reader should notice that the values of W_1 and W_0 thus computed differ from their theoretical counterpart because they are constructed using the realizations of future w, h^{UE}, and h^{EU}, rather than the expectation of these variables.

Figure 4 presents the result of our calculations. Figure 4 displays the time-series for the net value of employment to a worker, V_t, computed using the average wage of all employed
Figure 4: Net Value of Employment

Figure 4 also displays the time-series for the detrended unemployment rate (solid grey line). The figure clearly shows that V_t is countercyclical, in the sense that V_t moves together with the unemployment rate. This is the case whether we measure V_t using the average wage of all employed workers—in which the correlation between V_t and unemployment is 80%—or whether we measure V_t using the average wage of newly hired workers—in which case the correlation between V_t and unemployment is 71%. Mechanically, V_t is countercyclical because, when unemployment increases, the decline in the value of being unemployed caused by the large decline in the UE rate is larger than the decline in the value of being employed cause by the small decline in the wage and by the short-lived increase in the EU rate. The countercyclicality of V_t is a very robust finding. The measure of V_t becomes even more countercyclical if b_t is assumed to be constant fraction of w_t rather than a constant. The correlation between V_t and u_t remains practically unchanged if we do not filter the data.

The finding that V_t is countercyclical means that recessions are times when unemployed workers find it especially valuable to find a job, and when employed workers find it especially costly to lose a job. The finding is in stark contrast with the view of recessions as “days of rain in the marketplace” advanced by Kydland and Prescott (1982) or by Mortensen and Pissarides (1994). In contrast, the finding is supportive of the view of recessions as “days of no TV at home” advanced by our theory. Notice that our finding that V_t should not
be entirely surprising. In fact, using a different, more sophisticated approach and richer
data, Davis and von Wachter (2011) show that the lifetime earning cost of losing a job is
much higher in recessions than in expansions. Even if one is skeptical about our theory
of recessions, the finding that \(V_t \) is countercyclical represents a serious challenge for most
existing theories of business cycles.\(^{20}\)

6 Conclusions

This paper proposed a new theory of business cycles. At a very abstract level, our theory
states that business cycles emerge because different agents in the economy find it optimal to
randomize over some individual decision in a perfectly correlated fashion. More concretely,
business cycles emerge because firms need to randomize over firing or keeping workers who
have performed poorly in the past, in order to give them an ex-ante incentive to perform.
Moreover, firms find it optimal to correlate the randomization outcomes, as doing so allows
them to load up the firing probability on states of the world in which it is costlier for
workers to become unemployed and, hence, it allows them to economize on agency costs.
In the unique robust equilibrium, firms use a sunspot to perfectly correlate the outcome
of their individual randomizations. In this equilibrium, the economy experiences aggregate
fluctuations that are endogenous—in the sense that they are not caused by exogenous shocks
to fundamentals or by exogenous shocks to the selection of equilibrium, but they are an
inherent feature of the unique equilibrium—and are stochastic—in the sense that they do
not follow a deterministic path, but a genuinely stochastic one. We believe that this may be
the first theory of endogenous and stochastic business cycles.

References

uscript, University of California at San Diego.

\(^{20}\) An alternative explanation is that business cycles are driven by productivity shocks and wages are rigid
(see, e.g., Hall 2005, Menzio 2005, Gertler and Trigari 2009, Menzio and Moen 2010 and Kennan 2010 for
search theoretic models of the labor market with rigid wages). In fact, if wages are rigid, productivity shocks
may generate, just like in our theory, a positive correlation between unemployment and \(V_t \). However, if
wages are rigid, productivity shocks should generate a strong negative correlation between unemployment
and the value of a worker to a firm \(J_t \), while this correlation is positive in our theory. Applying the same
technique used to compute the time-series for \(V_t \), we can compute a time-series for \(J_t \). Using average labor
productivity as our measure of output per worker, we find that \(J_t \) is positively correlated with \(u_t \).
nomics, 107: 797-817.

Appendix

A Proof of Lemmas 1-4

A.1 Proof of Lemma 1

Let $\rho \geq 0$ denote the Lagrange multiplier on the worker’s incentive compatibility constraint, let $\nu(y, \hat{z}) \geq 0$ denote the multiplier on the constraint $1 - s(y, \hat{z}) \geq 0$ and let $\nu(y, \hat{z})$ denote the multiplier on the constraint $s(y, \hat{z}) \geq 0$.

The first order condition with respect to the firing probability $s(y_\ell, \hat{z})$ is given by

$$(1 - \delta) [F(x)V(\hat{z}) + W(x)J(\hat{z})] = \rho \beta (1 - \delta) (p_h(1) - p_h(0)) V(\hat{z}) + \nu(y_\ell, \hat{z}) - \nu(y_\ell, \hat{z}), \quad (A1)$$

together with the complementary slackness conditions $\nu(y_\ell, \hat{z}) \cdot (1 - s(y_\ell, \hat{z})) = 0$ and $\nu(y_\ell, \hat{z}) \cdot s(y_\ell, \hat{z}) = 0$. The left-hand side of (A1) is the marginal cost of increasing $s(y_\ell, \hat{z})$. This cost is given by the decline in the product of the worker’s and firm’s gains from trade caused by a marginal increase in the firing probability $s(y_\ell, \hat{z})$. The right-hand side of (A1) is the marginal benefit of increasing $s(y_\ell, \hat{z})$. This benefit is given by the value of relaxing the worker’s incentive compatibility and the $s(y_\ell, \hat{z}) \geq 0$ constraints net of the cost of tightening the $s(y_\ell, \hat{z}) \leq 1$ constraint by marginally increasing the firing probability $s(y_\ell, \hat{z})$.

Similarly, the first order condition with respect to the firing probability $s(y_h, \hat{z})$ is given by

$$(1 - \delta) [F(x)\nu(\hat{z}) + W(x)J(\hat{z}) + \rho \beta (p_h(1) - p_h(0)) \nu(\hat{z})] = \nu(y_h, \hat{z}) - \nu(y_h, \hat{z}), \quad (A2)$$

together with the complementary slackness conditions $\nu(y_h, \hat{z}) \cdot (1 - s(y_h, \hat{z})) = 0$ and $\nu(y_h, \hat{z}) \cdot s(y_h, \hat{z}) = 0$. The left-hand side of (A2) represents the marginal cost of increasing $s(y_h, \hat{z})$. The right-hand side of (A2) represents the marginal benefit of increasing $s(y_h, \hat{z})$. Notice that increasing the firing probability $s(y_h, \hat{z})$ tightens the worker’s incentive compatibility constraint and, hence, the term in ρ is now on the left-hand side of (A2).

Suppose $\rho = 0$. First, notice that the left-hand side of (A1) is strictly positive as $V(\hat{z}) > 0$, $J(\hat{z}) > 0$ by assumption, and $W(x) > 0$, $F(x) > 0$ at the optimum x^*. The right-hand side of (A1) is strictly positive only if $\nu(y_\ell, \hat{z}) > 0$. Hence, if $\rho = 0$, the only solution to the first order condition with respect to the firing probability $s(y_\ell, \hat{z})$ is 0. Next, notice that the left-hand side of (A2) is strictly positive and the right-hand side is strictly positive only if $\nu(y_\ell, \hat{z}) > 0$. Hence, if $\rho = 0$, the only solution to the first order condition with respect to the firing probability $s(y_\ell, \hat{z})$ is 0. However, if $s(y_\ell, \hat{z}) = s(y_h, \hat{z}) = 0$, the worker’s
incentive compatibility constraint is violated. Therefore, \(\rho > 0 \) and the worker’s incentive compatibility constraint holds with equality.

A.2 Proof of Lemma 2

The first order condition with respect to \(s(y_h, \tilde{z}) \) is given by (A2) together with the complementary slackness conditions \(\nu(y_h, \tilde{z})(1 - s(y_h, \tilde{z})) = 0 \) and \(\nu(y_h, \tilde{z}) s(y_h, \tilde{z}) = 0 \). The left-hand side of (A2) is strictly positive. The right-hand side of (A2) is strictly positive only if \(\nu(y_h, \tilde{z}) > 0 \). Therefore, the first order condition is satisfied only if \(\nu(y_h, \tilde{z}) > 0 \) and, hence, only if \(s(y_h, \tilde{z}) = 0 \).

A.3 Proof of Lemma 3

Using the definition of \(\phi(\tilde{z}) \), we can rewrite the first order condition with respect to the firing probability \(s(y_\ell, \tilde{z}) \) as

\[
(1 - \delta)V(\tilde{z}) [F(x) + W(x)/\phi(\tilde{z}) - \rho \beta (p_h(1) - p_h(0))] = \nu(y_\ell, \tilde{z}) - \nu(y_\ell, \tilde{z}), \tag{A3}
\]

together with \(\nu(y_\ell, \tilde{z}) \cdot (1 - s(y_\ell, \tilde{z})) = 0 \) and \(\nu(y_\ell, \tilde{z}) \cdot s(y_\ell, \tilde{z}) = 0 \). The left-hand side of (A3) is strictly decreasing in \(\phi(\tilde{z}) \). The right-hand side of (A3) is strictly positive if \(\nu(y_\ell, \tilde{z}) \) is strictly positive and it is strictly negative if \(\nu(y_\ell, \tilde{z}) \) is strictly positive. Therefore, there exists a \(\phi^* \) such that if \(\phi(\tilde{z}) > \phi^* \), the left-hand side is strictly negative and the solution to (A3) requires \(\nu(y_\ell, \tilde{z}) > 0 \). In this case, the solution to the first order condition for \(s(y_\ell, \tilde{z}) \) is 1. If \(\phi(\tilde{z}) < \phi^* \), the left-hand side is strictly positive and the solution to (A3) requires \(\nu(y_\ell, \tilde{z}) > 0 \). In this case, the solution to the first order condition for \(s(y_\ell, \tilde{z}) \) is 0.

A.4 Proof of Lemma 4

The first order condition with respect to the wage \(w \) is given by

\[
F(x)v'(w) - W(x) = 0. \tag{A4}
\]

The left-hand side of (A4) is the increase in the product of the worker’s and firm’s gains caused by a marginal increase in the worker’s wage \(w \). A marginal increase in \(w \), increases the worker’s gains from trade by \(v'(w) \) and decreases the firm’s gains from trade by 1. Therefore, a marginal increase in \(w \), increases the product of the worker’s and firm’s gains from trade by \(F(x)v'(w) - W(x) \). The first order condition for \(w \) states that the effect of a marginal increase in \(w \) is zero.
B Proof of Lemmas 5-6

B.1 Proof of Lemma 5

We first consider a firm-worker pair in group K. Since $P_K(T_K|T_{K-1})$ is strictly increasing in T_{K-1} and \hat{u} is strictly increasing in T_K, $E[\hat{u}|T_{K-1}]$ is strictly increasing in T_{K-1}. In turn, since $E[\hat{u}|T_{K-1}]$ is strictly increasing in T_{K-1} and $\phi(\hat{u})$ is strictly increasing in \hat{u}, $\phi(E[\hat{u}|T_{K-1}])$ is strictly increasing in T_{K-1}. It then follows from property (iii) of the optimal contract that there exists a T^*_{K-1} such that $s_{K}(y_t, T_{K-1}) = 0$ for all $T_{K-1} < T^*_{K-1}$, and $s_{K}(y_t, T_{K-1}) = 1$ for all $T_{K-1} > T^*_{K-1}$. This establishes that the firing probability $s_{K}(y_t, T_{K-1})$ has the desired threshold property. The threshold property implies that the measure t_K of workers separating from firms in group K is increasing in the measure T_{K-1} of workers separating from firms in groups 1 through $K - 1$.

Next, consider a firm-worker pair in group $K - 1$. Since $P_{K-1}(T_{K-1}|T_{K-2})$ is strictly increasing in T_{K-2} and t_K is increasing in T_{K-1}, it follows that $E[\hat{u}|T_{K-2}]$ and, in turn, $\phi(E[\hat{u}|T_{K-2}])$ are strictly increasing in T_{K-2}. Then property (iii) of the optimal contract implies that there exists a T^*_{K-2} such that $s_{K-1}(y_t, T_{K-2}) = 0$ for all $T_{K-2} < T^*_{K-2}$, and $s_{K-1}(y_t, T_{K-2}) = 1$ for all $T_{K-2} > T^*_{K-2}$. This establishes that the firing probability $s_{K-1}(y_t, T_{K-2})$ has the desired threshold property. The threshold property implies that the measure t_{K-1} of workers separating from firms in group $K - 1$ is increasing in the measure T_{K-2} of workers separating from firms in groups 1 through $K - 2$. By repeating the above argument for firm-worker pairs in groups $K - i$, with $i = 2, 3, \ldots K - 1$, we can establish that the firing probability $s_{K-i}(y_t, T_{K-i-1})$ has the threshold property and that the measure t_{K-i} is increasing in T_{K-i-1}.

B.2 Proof of Lemma 6

Let T^*_1 be given as in (22) and let $T^*_i = E[t_1] + (i - 1)(t_h - t_l)/2$ for $i = 2, 3, \ldots K - 1$. Given the thresholds $\{T^*_1, T^*_2, \ldots T^*_{K-1}\}$, we can compute the unconditional probability distribution of the random variable T_i. For $N \to \infty$, T_2 is approximately equal to $E[t_1] + t_l$ if $T_1 < T^*_1$, and it is approximately equal to $E[t_1] + t_h$ if $T_1 > T^*_1$. Since $E[t_1] + t_l < T^*_2$ and $E[t_1] + t_h > T^*_2$, T_3 is approximately equal to $E[t_1] + 2t_l$ if $T_1 < T^*_1$, and T_3 is approximately equal to $E[t_1] + 2t_h$ if $T_1 > T^*_1$. Similarly, for $i = 4, 5, \ldots K$, T_i is approximately equal to $E[t_1] + (i - 1)t_l$ if $T_1 < T^*_1$, and it is approximately equal to $E[t_1] + (i - 1)t_h$ if $T_1 > T^*_1$. Hence, if $T_1 < T^*_1$, firms in groups 2 through K fire their non-performing workers with probability 0 and the total measure of workers separating from firms is $T_K = E[t_1] + (K - 1)t_l$. If $T_1 > T^*_1$, firms
in groups 2 through K fire their non-performing workers with probability 1 and the total measure of workers separating from firms is $T_k = E[t_1] + (K-1)t_h$.

The above observations imply that benefit from exerting effort for a worker employed at a firm in group $i = 2, 3, \ldots K$ is given by

$$
\beta(1 - \delta)(p_h(1) - p_h(0))(1 - P_1(T^*_1))V(E[\hat{u}|T_K = E[t_1] + (K-1)t_h]).
$$

(B1)

The benefit in (B1) is equal to the cost ψ of exerting effort given the choice of T^*_1. Thus, the incentive compatibility for workers employed by firms in groups $i = 2, 3, \ldots K$ is satisfied.

The incentive compatibility constraint for workers employed by firms in group 1 is satisfied given the choice of s_1.

C Proof of Theorem 4

The existence proof is based on an application of Schauder’s fixed point theorem. In particular, we are going to take arbitrary value functions $V^+(u)$ and $J^+(u)$ denoting, respectively, the worker’s gains from trade at the end of the production stage and the firm’s gains from trade at the end of the production stage. Then, we are going to use the conditions for a Recursive Equilibrium with perfect coordination to construct a mapping \mathcal{F} that returns updates for $V^+(u)$ and $J^+(u)$. Using Schauder’s fixed point theorem, we are going to prove that the mapping \mathcal{F} admits a fixed point and we are going to show that this fixed point is a Recursive Equilibrium with perfect coordination in the stage game.

The functions $V^+(u)$ and $J^+(u)$ are chosen from a set Ω of Lipschitz continuous functions with fixed Lipschitz bounds. These property of the set Ω is critical to establish that the operator \mathcal{F} satisfies the conditions for Schauder’s fixed point theorem (namely, that the family of functions $\mathcal{F}(\otimes)$ is equicontinuous). Formally, let Ω denote the set of bounded and continuous functions $\omega(u, i) = IV^+(u) + (1 - i)J^+(u)$, with $\omega : [0, 1] \times \{0, 1\} \rightarrow \mathbb{R}$, and such that: (i) for all $u_0, u_1 \in [0, 1]$ with $u_0 < u_1$, $V^+(u_1) - V^+(u_0)$ is greater than $\overline{D}_{V^+}(u_1 - u_0)$ and smaller than $\underline{D}_{V^+}(u_1 - u_0)$; (ii) for all $u_0, u_1 \in [0, 1]$ with $u_0 < u_1$, $J^+(u_1) - J^+(u_0)$ is greater than $\overline{D}_{J^+}(u_1 - u_0)$ and smaller than $\underline{D}_{J^+}(u_1 - u_0)$. In other words, Ω is the set of bounded and Lipschitz continuous functions $\omega = (V^+, J^+)$ with fixed Lipschitz bounds \overline{D}_{V^+}, \overline{D}_{V^+}, \underline{D}_{J^+} and \underline{D}_{J^+}. We choose the Lipschitz bounds to satisfy $\overline{D}_{V^+} > \overline{D}_{V^+} > 0$, $\overline{D}_{J^+} > 0 \geq \underline{D}_{J^+}$, and $\overline{D}_{V^+} > \overline{D}_{V^+} = \overline{D}_{V^+}$.

Starting from $V^+(u)$ and $J^+(u)$ in Ω, we use the equilibrium conditions to construct the equilibrium wage, the equilibrium gains from trade accruing to the worker and the firm, the
equilibrium law of motion for unemployment and an update for $V^+(u)$ and $J^+(u)$. This
process implicitly defines the operator \mathcal{F}. In order to make sure that \mathcal{F} maps functions in
Ω into functions in Ω (which is a condition of Schauder’s fixed point theorem), we need to
verify that all equilibrium objects are Lipschitz continuous with fixed Lipschitz bounds. In
order to make sure that \mathcal{F} is continuous (which is also a condition of Schauder’s fixed point
theorem), we need to verify that all equilibrium objects are continuous. To carry out these
tasks, we need a few more pieces of notation. In particular, we use V, ∇, J and \bar{J} to denote
lower and upper bounds on the worker’s and firm’s gains from trade constructed as in (\approx).
Also, we use \underline{u} and \overline{u} to denote the minimum and the maximum of the (absolute value)
of the partial derivative of the job-finding probability $(J;u)$ with respect to $i = u$. That is,
\underline{u} denotes $\min |\partial \mu(J,u)/\partial u|$ for $(J, u) \in \mathcal{J} \times [0,1]$, and \overline{u} denotes $\max |\partial \mu(J,u)/\partial u|$ for $(J, u) \in \mathcal{J} \times [0,1]$. Similarly, we use \underline{J} and \overline{J} to denote the minimum and the maximum
on the (absolute value) of the partial derivative of $\mu(J,u)$ with respect to J.

C.1 Wage

Take an arbitrary pair of value functions $\omega = (V^+, J^+) \in \Omega$. For any u, the equilibrium
wage function $w(u)$ takes a value w such that

$$v(w) - v(b) - \psi + V^+(u) = v'(w) \left[E[y|e = 1] - w + J^+(u)\right].$$

For any u, there is a unique wage that satisfies (C1). In fact, the right-hand side of (C1) is
strictly increasing in w, as $v(w) - v(b) - \psi + V^+(u)$ is strictly increasing in w. The left-hand
side of (C1) strictly decreasing in w, as $v'(w)$ and $E[y|e = 1] - w + J^+(u)$ are both strictly
decreasing in w. Therefore, there exists a unique wage w that solves (C1) for any u.

The next lemma proves that the equilibrium wage function $w(u)$ is Lipschitz continuous
in u with fixed Lipschitz bounds. Moreover, the lemma proves that $w(u)$ is strictly decreasing
in u.

Lemma C1: For all $u_0, u_1 \in [0,1]$ with $u_0 < u_1$, the wage function $w(u)$ is such that

$$D_w(u_1 - u_0) \leq w(u_0) - w(u_1) \leq D_w(u_1 - u_0),$$

where the bounds D_w and \overline{D}_w are defined as

$$D_w = \frac{D_{V_+}}{\tau' - \overline{D}_{J_+}}, \quad \overline{D}_w = D_{V_+}/\tau' - \underline{D}_{J_+}.$$

Proof: To alleviate notation, let w_0 denote $w(u_0)$ and w_1 denote $w(u_1)$. First, we establish
that $w_0 > w_1$. To this aim, notice that

$$v'(w_0) [E[y|e = 1] - w_0 + J^+(u_1)]$$

$$\leq v'(w_0)E[y|e = 1] - w_0 + J^+(u_0)] + \sigma D_{J^+}(u_1 - u_0).$$

(C4)

Also, notice that

$$v(w_0) - v(b) - c + V^+(u_1)$$

$$\geq v(w_0) - v(b) - c + V^+(u_0) + D_{V^+}(u_1 - u_0)$$

$$= v'(w_0)E[y|e = 1] - w_0 + J^+(u_0) + D_{V^+}(u_1 - u_0)$$

$$> v'(w_0)E[y|e = 1] - w_0 + J^+(u_0) + \sigma D_{J^+}(u_1 - u_0),$$

(C5)

where the third line follows from (C1) and the last line follows from $D_{V^+} > \sigma D_{J^+}$. Taken together (C4) and (C5) imply that $v(w_0) - v(b) - c + V^+(u_1)$ is strictly greater than $v'(w_0) [E[y|e = 1] - w_0 + J^+(u_1)]$. Therefore, the left-hand side of (C1) is strictly smaller than the right-hand side of (C1) when evaluated at $w = w_0$ and $u = u_1$. Since the left-hand of (C1) is strictly increasing in w and the left-hand side is strictly decreasing in w, w_1 is strictly smaller than w_0.

Next, we derive lower and upper bounds on $w_0 - w_1$. From (C1), it follows that

$$v(w_0) - v(w_1) + V^+(u_0) - V^+(u_1)$$

$$= v'(w_0) [E[y|e = 1] - w_0 + J^+(u_0)] - v'(w_1) [E[y|e = 1] - w_0 + J^+(u_0)]$$

$$+ v'(w_1) [E[y|e = 1] - w_0 + J^+(u_0)] - v'(w_1) [E[y|e = 1] - w_1 + J^+(u_1)]$$

(C6)

The above equation can be rewritten as

$$w_0 - w_1$$

$$= \left[\frac{V^+(u_1) - V^+(u_0)}{v'(w_1)} \right] - \left[\frac{J^+(u_1) - J^+(u_0)}{v'(w_1)} \right]$$

$$- \left[\frac{v(w_0) - v(w_1)}{v'(w_1)} \right] - \left[\frac{v'(w_1) - v'(w_0)}{v'(w_1)} \right] \left(E[y|e = 1] - w_0 + J^+(u_0) \right).$$

(C7)

The first term in square brackets on the right-hand side of (C6) is greater than $(D_{V^+}/v')(u_1 - u_0)$ and smaller than $(D_{V^+}/v')(u_1 - u_0)$. The second term in square brackets is greater than $D_{J^+}(u_1 - u_0)$ and smaller than $D_{J^+}(u_1 - u_0)$. The third term in square brackets is greater than zero and smaller than $w_1 - w_0$. The last term on the right-hand side of (C6) is greater than zero and smaller than $\sigma D_{\bar{u}} J/v'(w_1 - w_0)$. From the above observations, it follows that

$$w_0 - w_1 \leq \left[\frac{D_{V^+}}{v'} - D_{J^+} \right] (u_1 - u_0).$$

(C8)
Similarly, we have
\[w_0 - w_1 \geq \left[2 + \frac{v''}{\nu'} D_w J \right]^{-1} \left[\frac{D v}{\nu'} - D J \right] (u_1 - u_0). \tag{C9} \]

The inequalities (C8) and (C9) represent the desired bounds on \(w_0 - w_1 \).

The next lemma proves that the equilibrium wage function \(w \) is continuous with respect to the value functions \(V^+ \) and \(J^+ \). Specifically, consider \(\omega_0 = (V_0^+, J_0^+) \) and \(\omega_1 = (V_1^+, J_1^+) \) with \(\omega_0, \omega_1 \in \Omega \). Denote as \(w_i \) the wage function computed using \(\omega_i \) in (C1) for \(i = \{0, 1\} \). If the distance between \(\omega_0 \) and \(\omega_1 \) goes to 0, so does the distance between \(w_0 \) and \(w_1 \).

Lemma C2: For any \(\kappa > 0 \) and any \(\omega_0, \omega_1 \) in \(\Omega \) such that \(\|\omega_0 - \omega_1\| < \kappa \), we have
\[\|w_0 - w_1\| < \alpha_w \kappa, \quad \alpha_w = 1 + 1/\nu'. \tag{C10} \]

Proof: Take an arbitrary \(u \in [0, 1] \). To alleviate notation, let \(w_0 \) denote \(w_0(u) \) and \(w_1 \) denote \(w_1(u) \). From (C10), it follows that
\[v(w_0) - v(b) - c + V_0^+(u) - v'(w_0) \left[E[y|e = 1] - w_0 + J_0^+(u) \right] = 0, \]
\[v(w_1) - v(b) - c + V_1^+(u) - v'(w_1) \left[E[y|e = 1] - w_1 + J_1^+(u) \right] = 0. \tag{C11} \]

Subtracting the second equation from the first, we obtain
\[V_0^+(u) - V_1^+(u) + v(w_0) - v(w_1) \]
\[+ \nu' (w_0) \left[J_1^+(u) - J_0^+(u) + w_0 - w_1 \right] \]
\[+ [v'(w_1) - v'(w_0)] \left[E[y|e = 1] - w_1 + J_1^+(u) \right] = 0. \tag{C12} \]

Suppose without loss in generality that \(w_0 \geq w_1 \). We can rewrite the above equation as
\[w_0 - w_1 = \left[J_0^+(u) - J_1^+(u) \right] + \frac{V_1^+(u) - V_0^+(u)}{v'(w_0)} + \frac{v(w_1) - v(w_0)}{v'(w_0)} \]
\[+ E[y|e = 1] - w_1 + J_1^+(u) \left[\frac{v'(w_0) - v'(w_1)}{v'(w_0)} \right]. \tag{C13} \]

The first term in square brackets on the right-hand side of (C13) is strictly smaller than \(\kappa \).

The second term in square brackets is strictly smaller than \(\kappa/\nu' \). The third term in square brackets is strictly negative. The last term is strictly negative. Hence, we have
\[0 \leq w_0 - w_1 < (1 + 1/\nu') \kappa. \tag{C14} \]

Since the above inequality holds for any \(u \in [0, 1] \), we conclude that \(\|w_0 - w_1\| < \alpha_w \kappa \) where \(\alpha_w = (1 + 1/\nu') \).
C.2 Gains from trade to worker and firm

Given V^+, J^+ and w, the equilibrium gains from trade accruing to the firm and to the worker, J and V, are respectively given by

\[
J(u) = E[y|e = 1] - w(u) + J^+(u),
\]
\[
V(u) = v(w(u)) - v(b) - \psi + V^+(u)
\]

(C15)

The next lemma proves that the equilibrium gains from trade $J(u)$ and $V(u)$ are Lipschitz continuous in u with fixed Lipschitz bounds. Moreover, the lemma proves that $J(u)$ and $V(u)$ are strictly increasing in u.

Lemma C3: For all $u_0, u_1 \in [0, 1]$ with $u_0 < u_1$, the equilibrium gains from trade accruing to the firm, $J(u)$, and to the worker, $V(u)$, are such that

\[
\begin{align*}
D_J(u_1 - u_0) &\leq J(u_1) - J(u_0) \leq \overline{D}_J(u_1 - u_0), \\
D_V(u_1 - u_0) &\leq V(u_1) - V(u_0) \leq \overline{D}_V(u_1 - u_0),
\end{align*}
\]

(C16)

where the bounds are defined as

\[
\begin{align*}
D_J &= D_w + D_{J^+} > 0, & \overline{D}_J &= \overline{D}_w + \overline{D}_{J^+}, \\
D_V &= \varphi'(D_w + D_{J^+}) > 0, & \overline{D}_V &= \overline{\varphi'}(\overline{D}_w + \overline{D}_{J^+}) + \overline{\varphi''} \overline{D}_w J.
\end{align*}
\]

(C17)

Proof: To simplify notation, let w_0 denote $w(u_0)$ and w_1 denote $w(u_1)$. Then $J(u_1) - J(u_0)$ is given by

\[
J(u_1) - J(u_0) = w_0 - w_1 + J^+(u_1) - J^+(u_0).
\]

From the above expression, it follows that

\[
\begin{align*}
J(u_1) - J(u_0) &\geq (D_w + D_{J^+})(u_1 - u_0), \\
J(u_1) - J(u_0) &\leq (\overline{D}_w + \overline{D}_{J^+})(u_1 - u_0).
\end{align*}
\]

(C18)

The difference $V(u_1) - V(u_0)$ is given by

\[
V(u_1) - V(u_0) = \varphi'(w_1)J(u_1) - \varphi'(w_0)J(u_0)
\]
\[
= [\varphi'(w_1)J(u_1) - \varphi'(w_1)J(u_0)] + [\varphi'(w_1)J(u_0) - \varphi'(w_0)J(u_0)]
\]

From the above expression, it follows that

\[
\begin{align*}
V(u_1) - V(u_0) &\geq \varphi'(D_w + D_{J^+})(u_1 - u_0), \\
V(u_1) - V(u_0) &\leq [\overline{\varphi'}(\overline{D}_w + \overline{D}_{J^+}) + \overline{\varphi''} \overline{D}_w J] (u_1 - u_0).
\end{align*}
\]

(C19)

Lemma 7 follows directly from the inequalities in (C18) and (C19).
The next lemma proves that the firm’s and worker’s gains from trade are continuous with respect to V^+ and J^+. Specifically, consider $\omega_0 = (V_0^+, J_0^+)$ and $\omega_1 = (V_1^+, J_1^+)$ with ω_0, ω_1 in Ω. For $i \in \{0, 1\}$, denote as w_i the equilibrium wage computed using ω_i, and as J_i and V_i the equilibrium gains from trade computed using ω_i and w_i in (C15). If the distance between ω_0 and ω_1 goes to 0, so does the distance between J_0 and J_1 and between V_0 and V_1.

Lemma C4: For any $\kappa > 0$ and any ω_0, ω_1 in Ω such that $||\omega_0 - \omega_1|| < \kappa$, we have

$$||J_0 - J_1|| < \alpha_J \kappa, \quad \alpha_J = 1 + \alpha_w,$$

$$||V_0 - V_1|| < \alpha_V \kappa, \quad \alpha_V = 1 + \bar{\nu}' \alpha_w.$$ \hspace{1cm} (C20)

Proof: Take an arbitrary $u \in [0, 1]$. The difference $J_0(u) - J_1(u)$ is such that

$$|J_0(u) - J_1(u)| \leq |w_0(u) - w_1(u)| + |J_0^+(u) - J_1^+(u)|$$

$$< (\alpha_w + 1)\kappa.$$ \hspace{1cm} (C21)

The difference $V_0(u) - V_1(u)$ is such that

$$|V_0(u) - V_1(u)| \leq |v(w_0(u)) - v(w_1(u))| + |V_0^+(u) - V_1^+(u)|$$

$$< (\bar{\nu}' \alpha_w + 1)\kappa.$$ \hspace{1cm} (C22)

Since the inequalities (C21) and (C22) hold for all $u \in [0, 1]$, we conclude that $||J_0 - J_1|| < \alpha_J \kappa$ and $||V_0 - V_1|| < \alpha_V \kappa$, where $\alpha_J = \alpha_w + 1$ and $\alpha_V = \bar{\nu}' \alpha_w + 1$. \hfill \blacksquare

C.3 Law of motion for unemployment

Given J, the law of motion for unemployment $h(u, \hat{z})$, is such that—for any current period’s unemployment u and any realization of the sunspot \hat{z}—next period’s unemployment takes on a value \hat{u} such that

$$\hat{u} = u - u\mu(J(\hat{u}), u) + (1 - u)[\delta + (1 - \delta)p_t(1)s(y_t, \hat{z})],$$ \hspace{1cm} (28)

Since we are trying to construct a Recursive Equilibrium in which there is perfect coordination in the stage game, we set $s(y_t, \hat{z}) = 0$ if $\hat{z} \in Z_0$ and $s(y_t, \hat{z}) = 1$ if $\hat{z} \in Z_2$.

Next period’s unemployment \hat{u} is uniquely determined by (28). In fact, the left-hand side of (28) equals zero for $\hat{u} = 0$, it is strictly increasing in \hat{u} and it equals one for $\hat{u} = 1$. The right-hand side of (28) is strictly positive for $\hat{u} = 0$ and it is strictly decreasing in \hat{u}, as the worker’s job finding probability μ is strictly increasing in the firm’s gains from trade J, and J is strictly increasing in u. Therefore, there exists one and only one \hat{u} that satisfies
(28). Next period’s unemployment \hat{u} is strictly increasing in u. In fact, the left-hand side of (28) is independent of u. The right-hand side of (28) is strictly increasing in u, as its derivative with respect to u is greater than $(1 - \delta)p_{h}(1) - \mu$, which we assume to be strictly positive. Therefore, the \hat{u} that solves (28) is strictly increasing in u. Moreover, next period’s unemployment \hat{u} is strictly higher if $\hat{z} \in Z_2$ than if $\hat{z} \in Z_0$. To see this, it is sufficient to notice that the left-hand side of (28) is independent of $s(y_{\ell}, \hat{z})$, while the right hand side is strictly increasing in it.

The next lemma proves that $h(u, \hat{z})$ is Lipschitz continuous in u with fixed Lipschitz bounds.

Lemma C5: For all $u_0, u_1 \in [0, 1]$ with $u_0 < u_1$, $h(u, \hat{z})$ is such that

$$\frac{D_h(u_1 - u_0)}{h(u_1, \hat{z}) - h(u_0, \hat{z})} \leq \frac{D_h(u_1 - u_0)}{h(u_1, \hat{z}) - h(u_0, \hat{z})},$$

(C24)

where the bounds D_h and D_h are defined as

$$D_h = 0, \quad D_h = 1 - \delta + \mu_u.$$

(C25)

Proof: Let \hat{u}_1 denote the solution to (28) for $u = u_1$ and let \hat{u}_0 denote the solution to (28) for $u = u_0$, i.e.

$$\hat{u}_1 = u_1 - u_1\mu(J(\hat{u}_1), u_1) + (1 - u_1)[\delta + (1 - \delta)p_{e}(1)s(y_{\ell}, \hat{z}')]$$

$$\hat{u}_0 = u_0 - u_0\mu(J(\hat{u}_0), u_0) + (1 - u_0)[\delta + (1 - \delta)p_{e}(1)s(y_{\ell}, \hat{z}')]$$

Subtracting the second equation from the first one, we obtain

$$\hat{u}_1 - \hat{u}_0 = (u_1 - u_0)(1 - \delta)[1 - p_{e}(1)s(y_{\ell}, \hat{z}')] + u_0[\mu(J(\hat{u}_0), u_0) - \mu(J(\hat{u}_1), u_0)]$$

$$+ u_0[\mu(J(\hat{u}_0), u_0) - \mu(J(\hat{u}_1), u_1)]$$

$$+ u_0\mu(J(\hat{u}_0), u_1) - u_0\mu(J(\hat{u}_1), u_1).$$

(C26)

The first line on the right-hand side of (C26) is positive. Since $\mu(J, u)$ is increasing in J, J is increasing in u and, as established in the main text, $\hat{u}_1 > \hat{u}_0$, the second line on the right-hand side of (C26) is negative. Since $\mu(J, u)$ is decreasing in u and $u_1 > u_0$, the third line on the right-hand side of (C26) is positive. The fourth line on the right-hand side of (C26) is obviously negative. Hence, an upper bound on $\hat{u}_1 - \hat{u}_0$ is given by

$$\hat{u}_1 - \hat{u}_0 \leq (u_1 - u_0)(1 - \delta)[1 - p_{e}(1)s(y_{\ell}, \hat{z}')] + u_0[\mu(J(\hat{u}_0), u_0) - \mu(J(\hat{u}_1), u_1)]$$

$$\leq (u_1 - u_0)[1 - \delta + \mu_u].$$

(C27)
Combining the above inequality with \(\hat{u}_1 < \hat{u}_0 \), we obtain

\[
P_g(u_1 - u_0) < \hat{u}_1 - \hat{u}_0 \leq P_g(u_1 - u_0), \tag{C28}
\]

where

\[
P_g = 0, \quad P_g = 1 - \delta + \bar{p}_u. \blacktriangleleft
\]

Next, we prove that \(h(u, \hat{z}) \) is continuous with respect to \(V^+ \) and \(J^+ \). Formally, we consider \(\omega_0 = (V_0^+, J_0^+) \) and \(\omega_1 = (V_1^+, J_1^+) \) with \(\omega_0, \omega_1 \in \Omega \). For \(i = \{0, 1\} \), we denote as \(J_i \) the firm’s equilibrium gains from trade computed using \(\omega_i \) in (C15), and as \(h_i \) the equilibrium law of motion for unemployment computed using \(J_i \) in (28). Then, we show that, if the distance between \(\omega_0 \) and \(\omega_1 \) goes to 0, so does the distance between \(h_0 \) and \(h_1 \).

Lemma C6: For any \(\kappa > 0 \) and any \(\omega_0, \omega_1 \) in \(\Omega \) such that \(||\omega_0 - \omega_1|| < \kappa \), we have

\[
||h_0 - h_1|| < \alpha_h \kappa, \quad \alpha_h = \bar{p}_J \alpha_J. \tag{C29}
\]

Proof: Take an arbitrary \(u \in [0, 1] \) and \(\hat{z} \in \{Z_0, Z_2\} \). Let \(\hat{u}_0 \) denote \(h_0(u, \hat{z}) \) and \(\hat{u}_1 \) denote \(h_1(u, \hat{z}) \). From (28), it follows that

\[
\begin{align*}
\hat{u}_0 &= u - u\mu(J_0(\hat{u}_0), u) + (1 - u)[\delta + (1 - \delta)p(1)s(y, \hat{z})], \\
\hat{u}_1 &= u - u\mu(J_1(\hat{u}_1), u) + (1 - u)[\delta + (1 - \delta)p(1)s(y, \hat{z})].
\end{align*}
\]

Without loss in generality suppose that \(\hat{u}_0 \geq \hat{u}_1 \). In this case,

\[
\hat{u}_0 - \hat{u}_1 = u \left\{ \mu(J_1(\hat{u}_1), u) - \mu(J_0(\hat{u}_0), u) \right\}. \tag{C30}
\]

The term \(\mu(J_0(\hat{u}_0), u) - \mu(J_0(\hat{u}_0), u) \) on the right-hand side of (C30) is negative as \(\mu(J, u) \) is increasing in \(J \), \(J_0 \) is increasing in \(u \) and \(\hat{u}_0 \geq \hat{u}_1 \). Therefore, we have

\[
\hat{u}_0 - \hat{u}_1 \leq u \left\{ \mu(J_1(\hat{u}_1), u) - \mu(J_0(\hat{u}_0), u) \right\} < \bar{p}_J \alpha_J \kappa. \tag{C31}
\]

Since the above inequality holds for any \(u \in [0, 1] \) and any \(\hat{z}' \in \{B, G\} \), we conclude that \(||h_0 - h_1|| < \alpha_h \kappa \), where \(\alpha_h = \bar{p}_J \alpha_J. \blacktriangleleft
\]

C.4 Updated value functions

Given \(J, V \) and \(h \), we can construct an update, \(V^{+'} \), for the worker’s gains from trade at the end of the production stage as

\[
V^{+'}(u) = \beta E_{\hat{z}} \left\{ [(1 - \delta)(1 - p(1)s(y, \hat{z})) - \mu(J(\hat{h}(u, \hat{z})), u)]V(h(u, \hat{z})) \right\} \tag{C32}
\]
Similarly, we can construct an update, \(J^{+'}(u) \), for the firm’s gains from trade at the end of the production stage as

\[
J^{+'}(u) = \beta E_{\hat{z}} [(1 - \delta)(1 - p_{f}(1)s(y_{t}, \hat{z}))(h(u, \hat{z}))]
\]

(C33)

Since we are looking for a Recursive Equilibrium with perfect coordination in the stage game, we set \(s(y_{t}, \hat{z}) = 0 \) for \(\hat{z} \in Z_{0} \) and \(s(y_{t}, \hat{z}) = 1 \) for \(\hat{z} \in Z_{2} \). Also, we set the probability \(\pi_0 \) that \(\hat{z} \in Z_{0} \) and the probability \(\pi_2 \) that \(\hat{z} \in Z_{2} \) so that \(\pi_0 = 1 - \pi_2 \) and

\[
\pi_2 = \frac{\psi}{\beta(p_{h}(1) - p_{h}(0))(1 - \delta)V(h(u, Z_{2}))}.
\]

(C34)

In the next lemma, we prove that \(V^{+'}(u) \) and \(J^{+'}(u) \) are Lipschitz continuous in \(u \) with fixed Lipschitz bounds.

Lemma C7: For all \(u_0, u_1 \in [0, 1] \) with \(u_0 < u_1 \), \(V^{+'} \) and \(J^{+'} \) are such that

\[
\begin{align*}
\mathcal{D}'_{V^{+}}(u_1 - u_0) &< V^{+'}(u_1) - V^{+'}(u_0) \leq \mathcal{D}'_{V^{+}}(u_1 - u_0), \\
\mathcal{D}'_{J^{+}}(u_1 - u_0) &< J^{+'}(u_1) - J^{+'}(u_0) \leq \mathcal{D}'_{J^{+}}(u_1 - u_0),
\end{align*}
\]

(C35)

where the bounds \(\mathcal{D}'_{V^{+}} \) and \(\mathcal{D}'_{J^{+}} \) are defined as

\[
\begin{align*}
\mathcal{D}'_{V^{+}} &= \beta \mathcal{V}(\mu - \mu_{J}\overline{D}_{J}\overline{D}_{h}) - \frac{2\psi \overline{D}_{V}\overline{D}_{h}\overline{V}}{(p_{h}(1) - p_{h}(0))(1 - \delta)\overline{V}^{2}}, \\
\mathcal{D}'_{V^{+}} &= \beta \mathcal{V}(\mu - \mu_{J}\overline{D}_{J}\overline{D}_{h}) + \frac{2\psi \overline{D}_{V}\overline{D}_{h}\overline{V}}{(p_{h}(1) - p_{h}(0))(1 - \delta)\overline{V}^{2}},
\end{align*}
\]

(C36)

and the bounds \(\mathcal{D}'_{J^{+}} \) are defined as

\[
\begin{align*}
\mathcal{D}'_{J^{+}} &= -(1 - \delta)\overline{D}_{J}\overline{D}_{h} \\
\mathcal{D}'_{J^{+}} &= -(1 - \delta)\overline{D}_{J} \overline{D}_{h}
\end{align*}
\]

(C37)

Proof: Take arbitrary \(u_0, u_1 \in [0, 1] \) with \(u_1 > u_0 \). To simplify notation, let \(\hat{u}_{j,0} \) denote \(h(u_0, \hat{z}) \) for \(\hat{z} \in Z_{j} \) and let \(\hat{u}_{j,1} \) denote \(h(u_1, \hat{z}) \) for \(\hat{z} \in Z_{j} \). Similarly, let \(\pi_{j,0} \) denote the probability that the realization of the sunspot is \(\hat{z} \in Z_{j} \) for \(u_0 \), and let \(\pi_{j,1} \) denote the probability that the realization of the sunspot is \(\hat{z} \in Z_{j} \) for \(u_1 \). Using this notation and (C32), we can write \(V^{+'}(u_1) - V^{+'}(u_0) \) as

\[
egin{align*}
V^{+'}(u_1) - V^{+'}(u_0) &= \beta \sum_{j} \{ (\pi_{j,1} - \pi_{j,0})(1 - \delta)(1 - p_{f}(1)s(y_{t}, \hat{z}) - \mu(J(\hat{u}_{j,1}, u_1))V(\hat{u}_{j,1}) \\
+ \pi_{j,0}(1 - \delta)(1 - p_{f}(1)s(y_{t}, \hat{z})) - \mu(J(\hat{u}_{j,1}, u_1)) [V(\hat{u}_{j,1}) - V(\hat{u}_{j,0})] \\
+ \pi_{j,0}V(\hat{u}_{j,0})[\mu(J(\hat{u}_{2,0}, u_0) - \mu(J(\hat{u}_{2,0}, u_1)].
\}
\end{align*}
\]

(C38)
The first term on the right-hand side of (C38) is negative. In absolute value, this term is smaller than \(cD_V D_h V(u_1 - u_0) / [\beta(p_h(1) - p_h(0))(1 - \delta)V^2] \). The second term on the right-hand side of (C38) is greater than zero and smaller than \(\pi_{j,0}(1 - \delta)D_V D_h(u_1 - u_0) \). The third term on the right-hand side of (C38) is positive, greater than \(\pi_j \nu p(u_1 - u_0) \) and smaller than \(\pi_{j,0} V p_u(u_1 - u_0) \). The last term on the right-hand side of (C38) is negative. In absolute value, this term is smaller than \(\pi_{j,0} V p_{u_j} D_i D_J D_h(u_1 - u_0) \). Overall, we have

\[
V^{++}(u_1) - V^{++}(u_0) \geq \beta V(\mu_u - \mu_J D_J D_h) - \frac{2cD_V D_h V}{(p_h(1) - p_h(0))(1 - \delta)V^2} (u_1 - u_0), \tag{C39}
\]

and

\[
V^{++}(u_1) - V^{++}(u_0) \leq \beta \left[V p_u + (1 - \delta)D_V D_h \right] (u_1 - u_0). \tag{C40}
\]

Using (C33), we can write \(J^{++}(u_1) - J^{++}(u_0) \) as

\[
J^{++}(u_1) - J^{++}(u_0) = \beta \sum_j \{ (\pi_{j,1} - \pi_{j,0}) [(1 - \delta)(1 - p_e(1)s(y, \hat{z}))] J(\hat{u}_{j,1}) + \pi_{j,0}[(1 - \delta)(1 - p_e(1)s(y, \hat{z}))] [J(\hat{u}_{j,1}) - J(\hat{u}_{j,0})] \}. \tag{C41}
\]

The first term on the right-hand side of (C41) is negative. In absolute value, this term is smaller than \(\psi D_V D_h J(u_1 - u_0) / [\beta(p_h(1) - p_h(0))(1 - \delta)V^2] \). The second term on the right-hand side of (C41) is greater than zero and smaller than \(\pi_{j,0}(1 - \delta)D_J D_h(u_1 - u_0) \). Overall, we have

\[
J^{++}(u_1) - J^{++}(u_0) \geq -\frac{2\psi D_V D_h J}{(p_h(1) - p_h(0))(1 - \delta)V^2} (u_1 - u_0), \tag{C42}
\]

and

\[
J^{++}(u_1) - J^{++}(u_0) \leq \beta(1 - \delta)D_J D_h(u_1 - u_0). \tag{C43}
\]

Lemma C7 follows directly from the inequalities in (C39)-(C40) and (C42)-(C43).

The next lemma shows that, under some parametric conditions, there exists a fixed point for the Lipschitz bounds on the firm’s and worker’s gains from trade at the end of the production stage.

Lemma C8: Assume \(\mu_u - \mu_J(1 - \delta + p_u) > 0 \). Then there exist \(\beta^* > 0 \) and \(\psi^* > 0 \) such that, if \(\beta \in (0, \beta^*) \) and \(\psi \in (0, \psi^*) \), there are Lipschitz bounds \(D_{V+}, D_{V+}, D_{J+}, D_{J+} \) such that: (i) \(D_{V+} = D_{V+}, \ D_{V+} = D_{V+}, \ D_{J+} = D_{J+} \), and \(D_{J+} = D_{J+} \); (ii) \(D_{V+} > D_{V+} > 0, \ D_{J+} > 0 \geq D_{J+} \) and \(D_{V+} > \psi(D_{J+} - D_{J+}) \).

Proof: Set \(D_{V+} \) and \(D_{J+} \) in (C36) equal to \(D_{V+} + D_{V+}, D_{V+} \) and \(D_{J+} + D_{J+} \) in (C37) equal to \(D_{J+} + D_{J+} \). Then solve for \(D_{V+}, D_{V+}, D_{J+} \) and \(D_{J+} \). It is immediate to verify that,
since $\mu_u - \overline{\mu}_J(1 - \delta + \overline{\mu}_u) > 0$, $D_{V^+} > D_{J^+} > 0$, $D_{J^+} > 0 \geq D_{J^+}$ and $D_{V^+} > \overline{\sigma}'(D_{J^+} - D_{J^+})$ for β and ψ small enough. ■

In the last lemma, we prove that V^{++} and J^{++} are continuous with respect to V^+ and J^+. Specifically, consider $\omega_0 = (V_0^+, J_0^+)$ and $\omega_1 = (V_1^+, J_1^+)$ with ω_0, $\omega_1 \in \Omega$. For $i \in \{0, 1\}$, denote as V_i^{++} and J_i^{++} the continuation value functions computed using V_i^+, J_i^+ and h_i in (C32) and (C33). If the distance between ω_0 and ω_1 goes to 0, so does the distance between V_0^+ and V_1^+ and between J_0^+ and J_1^+.

Lemma C9: For any $\kappa > 0$ and any ω_0, $\omega_1 \in \Omega$ such that $||\omega_0 - \omega_1|| < \kappa$, we have $||V_{0}^{++} - V_{1}^{++}|| < \alpha_{V^+} \kappa$ and $||J_{0}^{++} - J_{1}^{++}|| < \alpha_{J^+} \kappa$, where

$$
\begin{align*}
\alpha_{V^+} &= \frac{2\psi \sqrt{V}}{(p_h(1) - p_h(0))(1 - \delta) V^2 + 1} (\alpha_V + D_V \alpha_h) + \sqrt{V} \overline{\mu}_J (\alpha_J + D_J \alpha_h), \\
\alpha_{J^+} &= \frac{2\psi \sqrt{J}}{(p_h(1) - p_h(0))(1 - \delta) J^2 + 1} (\alpha_J + D_J \alpha_h).
\end{align*}
$$

(C44)

Proof: Take an arbitrary $u \in [0, 1]$. To simplify notation, let $\hat{u}_{j,0}$ denote $h_0(u, \hat{z})$ for $\hat{z} \in Z_j$, and let $\hat{u}_{j,1}$ denote $h_1(u, \hat{z})$ for $\hat{z} \in Z_j$. Similarly, let $\pi_{j,0}$ denote the probability that the realization of the sunspot is $\hat{z} \in Z_j$ defined by using V_0 and h_0 in (C34), and let $\pi_{j,1}$ denote the probability that the realization of the sunspot is $\hat{z} \in Z_j$ defined by using V_1 and h_1 in (C34). Using this notation and (C32), we can write $V_0^{++}(u) - V_1^{++}(u)$ as

$$
\begin{align*}
V_0^{++}(u) - V_1^{++}(u)
&= \beta \sum_j \{((\pi_{j,0} - \pi_{j,1}) [(1 - \delta)(1 - p\ell(1)s(y_t, \hat{z})) - \mu(J_0(\hat{u}_{j,0}, u)]V_0(\hat{u}_{j,0}) \\
&\quad + \pi_{j,1}(1 - \delta)(1 - p\ell(1)s(y_t, \hat{z})) - \mu(J_0(\hat{u}_{j,0}, u)] [V_0(\hat{u}_{j,0}) - V_1(\hat{u}_{j,1})] \\
&\quad + \pi_{j,1}V_1(\hat{u}_{j,1})[\mu(J_1(\hat{u}_{j,1}, u) - \mu(J_0(\hat{u}_{j,0}, u))].
\}
\end{align*}
$$

(C45)

From (C45), it follows that

$$
|V_0^{++}(u) - V_1^{++}(u)|
\leq \frac{2c \sqrt{V}}{(p_h(1) - p_h(0))(1 - \delta)V^2} (\alpha_V + D_V \alpha_h) \kappa + (\alpha_V + D_V \alpha_h) \kappa + \sqrt{V} \overline{\mu}_J (\alpha_J + D_J \alpha_h) \kappa,
$$

(C46)

where the first term on the right-hand side of (C46) is an upper bound on the absolute value on the first line on the right-hand side of (C45), the second term on the right-hand side of (C46) is an upper bound on the absolute value on the second line on the right-hand side of (C45), and the last term on the right-hand side of (C46) is an upper bound on the absolute value on the last line on the right-hand side of (C45).
Using (C33) we can write $J_0^{i+}(u) - J_1^{i+}(u)$ as
\[
J_0^{i+}(u) - J_1^{i+}(u) = \beta \sum_j \{(\pi_{j,0} - \pi_{j,1})(1 - \delta)(1 - p_0(1)s(y_t, \hat{z}))J_0(\hat{u}_{j,0}) + \pi_{j,1}(1 - \delta)(1 - p_0(1)s(y_t, \hat{z}))[J_0(\hat{u}_{j,0}) - J_1(\hat{u}_{j,1})].
\]

From (C47), it follows that
\[
\left|J_0^{i+}(u) - J_1^{i+}(u)\right| \leq \frac{2\psi J}{(p_0(1) - p_0(0))(1 - \delta)V^2} \left(\alpha_V + D_V\alpha_h\right) \kappa + \left(\alpha_J + D_J\alpha_h\right) \kappa,
\]
where the first term on the right-hand side of (C48) is an upper bound on the absolute value on the first line on the right-hand side of (C47), and the second term on the right-hand side of (C48) is an upper bound on the absolute value on the second line on the right-hand side of (C47). Since the inequalities (C46) and (C48) hold for any $u \in [0, 1]$, we conclude that $\|V_0^{i+} - V_1^{i+}\| < \alpha_{V+}\kappa$ and $\|J_0^{i+} - J_1^{i+}\| < \alpha_{J+}\kappa$.

\section*{C.5 Existence}

In the previous subsections, we have taken a pair of continuation gains from trade V^+ and J^+ and, using the conditions for a perfect coordination equilibrium, we have constructed an updated pair of continuation gains from trade V^{i+} and J^{i+}. We denote as \mathcal{F} the operator that takes $\omega(u, i) = (1 - i)V^+(u) + iJ^+(u)$ and returns $\omega'(u, i) = (1 - i)V^{i+}(u) + iJ^{i+}(u)$.

The operator \mathcal{F} has three key properties. First, the operator \mathcal{F} maps functions that belong to the set Ω into functions that also belong to the set Ω. In fact, for any $\omega = (V^+, J^+) \in \Omega$, $\omega' = (V^{i+}, J^{i+})$ is bounded and continuous and, as established in Lemma C8, it is such that: (i) for all $u_0, u_1 \in [0, 1]$ with $u_0 < u_1$, the difference $V^{i+}(u_1) - V^{i+}(u_0)$ is greater than $D_{V+}(u_1 - u_0)$ and smaller than $D_{V-}(u_1 - u_0)$; (ii) for all $u_0, u_1 \in [0, 1]$ with $u_0 < u_1$, the difference $J^{i+}(u_1) - J^{i+}(u_0)$ is greater than $D_{J+}(u_1 - u_0)$ and smaller than $D_{J-}(u_1 - u_0)$. Second, the operator \mathcal{F} is continuous, as established in Lemma C9. Third, the family of functions $\mathcal{F}(\Omega)$ is equicontinuous. To see that this is the case, let $\|\cdot\|_E$ denote the standard norm on the Euclidean space $[0, 1] \times \{0, 1\}$. For any $\epsilon > 0$, let
\[
\kappa_\epsilon = \min\{\max\{D_{V+}, D_{J+}, |D_{I_+}|\}^{-1}, 1\}.\]
Then, for all $(u_0, i_0), (u_1, i_1) \in [0, 1] \times \{0, 1\}$ such that $\|(u_0, i_0) - (u_1, i_1)\|_E < \kappa_\epsilon$, we have
\[
|\mathcal{F}(\omega)(u_0, i_0) - \mathcal{F}(\omega)(u_1, i_1)| < \epsilon, \text{ for all } \omega \in \Omega.
\]
Since $F : \Omega \rightarrow \Omega$, F is continuous and $F(\Omega)$ is equicontinuous, the operator F satisfies the conditions of Schauder’s fixed point theorem. Therefore there exists a $\omega^* = (V^{++}, J^{++}) \in F$ such that $F\omega^* = \omega^*$.

Now, we compute the equilibrium wage function w^* using V^{++} and J^{++}. We compute the equilibrium gains from trade accruing to the worker, V^*, and to the firm, J^*, using w^*, V^{++} and J^{++}. We compute the equilibrium law of motion for unemployment h^* using J^*. Finally, we construct the equilibrium employment contract $x^*(u)$ as the effort $e^* = 1$, the wage function w^* and the firing probabilities $s^*(y_h, \hat{z}) = 0$, $s^*(y_f, \hat{z}) = 0$ for $\hat{z} \in Z_0$ and $s^*(y_h, \hat{z}) = 1$ for $\hat{z} \in Z_2$. Since the wage function w^* is strictly decreasing in u and $h^*(u, Z_2)$ is strictly greater than $h^*(u, Z_0)$, these objects constitute a Recursive Equilibrium in which there is perfect coordination at the stage game.

D Additional Figures

![Figure D1: Model Labor Market](image-url)
Figure D2: US Labor Market

Figure D3: Recession Probability