Dominant Currencies
How firms choose currency invoicing and why it matters

Mary Amiti
Mary.Amiti@NY.FRB.ORG

Oleg Itskhoki
Itskhoki@Econ.UCLA.EDU

Jozef Konings
Joep.Konings@KULeuven.BE

Duke University
September 2020
The Dollar Hegemon
summary piece by Gourinchas (2019)

1. Global trade is invoiced in dollars — Dominant Currency Paradigm (DCP) (Gopinath et al. 2019)

2. Cross-border financial flows, security issuances are in dollars (e.g. Maggiori, Neiman and Schreger 2020)

3. Monetary authorities anchor to the dollar (e.g. Ilzetzki, Reinhart and Rogoff 2019)

4. International reserves are held in dollars (safe assets) — with likely strong complementarities
Global trade is invoiced in dollars — **Dominant Currency Paradigm (DCP)** (Gopinath et al. 2019)

Cross-border financial flows, security issuances are in dollars (e.g. Maggiori, Neiman and Schreger 2020)

Monetary authorities anchor to the dollar (e.g. Ilzetzki, Reinhart and Rogoff 2019)

International reserves are held in dollars (safe assets) — with likely strong complementarities

This paper: analysis of the DCP (foreign-currency invoicing) mechanism at the very micro (firm-product-destination) level
This Paper: Currency Use in Trade

- Currency use in international trade is central for
 1. international transmission of shocks
 2. optimal monetary and exchange rate policy

- Evidence in favor of endogenous currency choice
 — active firm-level decision (in the cross section)
 — slow changes in the roles of individual currencies over time

- Dominant currencies: US dollar and Euro
 — welfare benefits?
 — macro consequences of a switch from dollar to euro (or yuan)

- Unique role of Belgian data:
 — detailed micro-level data suitable for firm-level analysis
 — substantial variation in currency use in the cross-section
Main Findings

1. Little role for PCP in imports & LCP in exports (ex-EU trade)
 Instead, two dominant currencies:
 — regional Euro: dominates by count of transactions
 — global US dollar: dominates by value of trade

2. Substantial variation in currency use within country × industry
 Firm-level characteristics key determinants of currency choice
 — import intensity, in particular in foreign currency
 — size of the firm
 — currency use by competitors (strategic complementarities)
 — foreign ownership (cross-border FDI, global value chains)

3. Currency choice feeds back into the dynamics of ERPT, still matters beyond annual horizon and for quantities
 — causal allocative effect of foreign-currency price stickiness

4. These patterns are consistent with a sticky-price model of currency choice, which thereby has real consequences
Main Findings

1. Little role for PCP in imports & LCP in exports (ex-EU trade)
 Instead, two dominant currencies:
 — regional Euro: dominates by count of transactions
 — global US dollar: dominates by value of trade

2. Substantial variation in currency use within country × industry
 Firm-level characteristics key determinants of currency choice
 — import intensity, in particular in foreign currency
 — size of the firm
 — currency use by competitors (strategic complementarities)
 — foreign ownership (cross-border FDI, global value chains)
Main Findings

1. Little role for PCP in imports & LCP in exports (ex-EU trade)
 Instead, two dominant currencies:
 - regional Euro: dominates by count of transactions
 - global US dollar: dominates by value of trade

2. Substantial variation in currency use within country \(\times\) industry
 Firm-level characteristics key determinants of currency choice
 - import intensity, in particular in foreign currency
 - size of the firm
 - currency use by competitors (strategic complementarities)
 - foreign ownership (cross-border FDI, global value chains)

3. Currency choice feeds back into the dynamics of ERPT, still matters beyond annual horizon and for quantities
 - causal allocative effect of foreign-currency price stickiness

4. These patterns are consistent with a sticky-price model of currency choice, which thereby has real consequences
Related Literature

1. Theory of currency choice and ERPT
 - Engel (2006)
 - Gopinath, Itskhoki and Rigobon (2010)

2. Firm-level analysis of exchange rate pass-through
 - Berman, Martin and Mayer (2012)

3. Empirical analysis of currency choice and dominant currencies
 - Goldberg and Tille (2008)
 - Gopinath (2016), Gopinath, Boz, Casas, Díez, Gourinchas and Plagborg-Møller (2020)
THEORETICAL FRAMEWORK
Model Environment

- Consider a problem of a Belgian exporter i serving its product in a given industry s in foreign country k
- The desired export price of the firm in producer currency is:
 \[\tilde{p}_i = \tilde{p}_i(\Omega) = \arg \max_{p_i} \Pi_i(p_i|\Omega) \]
 - $\Pi_i(\cdot)$ is profit (surplus) function
 - state vector Ω includes exogenous states (e.g., productivity), endogenous shocks (e.g., exchange rate) and competitor prices

Desired price can be converted to any currency ℓ:

\[\tilde{p}_\ell^i = \tilde{p}_i + e_\ell \]
- e_ℓ is euro-ℓ bilateral exchange rate, with an increase in e_ℓ corresponding to a euro appreciation (ℓ depreciation)
- $\ell = D$ corresponds to the Dollar and $\ell = k$ to the destination currency with a special notation:

\[\tilde{p}^*_i = \tilde{p}_k^i = \tilde{p}_i + e_k \]
Model Environment

- Consider a problem of a Belgian exporter i serving its product in a given industry s in foreign country k

- The **desired export price** of the firm in producer currency is:

$$\tilde{p}_i = \tilde{p}_i(\Omega) = \arg\max_{p_i} \Pi_i(p_i | \Omega)$$

 - $\Pi_i(\cdot)$ is profit (surplus) function
 - state vector Ω includes exogenous states (e.g., productivity), endogenous shocks (e.g., exchange rate) and competitor prices

- Desired price can be converted to any currency ℓ:

$$\tilde{p}_i^\ell = \tilde{p}_i + e_\ell$$

 - e_ℓ is euro-ℓ bilateral exchange rate, with an increase in e_ℓ corresponding to a euro appreciation (ℓ depreciation)
 - $\ell = D$ corresponds to the Dollar and $\ell = k$ to the destination currency with a special notation:

$$\tilde{p}_i^* \equiv \tilde{p}_i^k = \tilde{p}_i + e_k$$
Nominal Rigidities

• A firm's preset price \bar{p}_i^ℓ in currency ℓ before Ω is realized.

• With probability δ, \bar{p}_i^ℓ stays in effect ex post, and otherwise the price is adjusted to its desired level \tilde{p}_i.

• Hence, the realized producer-currency price is:

$$p_i = \begin{cases}
\bar{p}_i^\ell - e_\ell, & \text{w/prob. } \delta \\
\tilde{p}_i, & \text{w/prob. } 1 - \delta
\end{cases}$$
Nominal Rigidities

• A firm sets price \bar{p}_i^ℓ in currency ℓ before Ω is realized.
• With probability δ, \bar{p}_i^ℓ stays in effect ex post, and otherwise the price is adjusted to its desired level \tilde{p}_i.
• Hence, the realized producer-currency price is:

$$p_i = \begin{cases}
\bar{p}_i^\ell - e_\ell, & \text{w/prob. } \delta \\
\tilde{p}_i, & \text{w/prob. } 1 - \delta
\end{cases}$$

• The optimal preset price in currency ℓ solves:

$$\bar{p}_i^\ell = \arg\max_{\bar{p}_i^\ell} \mathbb{E}(\Pi_i(\bar{p}_i^\ell - e_\ell | \Omega))$$

• **Lemma 1 (Preset prices)** For any currency ℓ, the first-order approximation to the optimal preset price is:

$$\bar{p}_i^\ell = \mathbb{E}\{\tilde{p}_i + e_\ell\}.$$
Optimal Currency Choice

A firm chooses currency ℓ in which to preset \bar{p}_i^ℓ:

$$\ell = \arg \max_\ell \left\{ \max_{\bar{p}_i} \mathbb{E} \Pi_i(\bar{p}_i^\ell - e_\ell | \Omega) \right\}$$

— ℓ minimizing the loss from stickiness $\Pi_i(\hat{p}_i) - \Pi_i(\bar{p}_i^\ell - e_\ell)$
Optimal Currency Choice

• A firm chooses currency ℓ in which to preset \bar{p}_i^ℓ:

$$\ell = \arg \max_\ell \left\{ \max_{\bar{p}_i^\ell} \mathbb{E} \Pi_i (\bar{p}_i^\ell - e_\ell | \Omega) \right\}$$

— ℓ minimizing the loss from stickiness $\Pi_i(\hat{p}_i) - \Pi_i(\bar{p}_i^\ell - e_\ell)$

• Lemma 2 (Currency choice) For a general $\Pi_i(\cdot)$, the optimal currency choice is second-order equivalent to:

$$\ell = \arg \min_\ell \left\{ \text{var} (\hat{p}_i + e_\ell) \right\} .$$

— optimal ℓ has the least volatile \hat{p}_i^ℓ, making easier target for \bar{p}_i^ℓ
Optimal Currency Choice

• A firm chooses currency \(\ell \) in which to preset \(\bar{p}_i^\ell \):

\[
\ell = \arg \max_\ell \left\{ \max_{\bar{p}_i} \mathbb{E} \Pi_i (\bar{p}_i - e_\ell | \Omega) \right\}
\]

— \(\ell \) minimizing the loss from stickiness \(\Pi_i(\bar{p}_i) - \Pi_i(\bar{p}_i^\ell - e_\ell) \)

• Lemma 2 (Currency choice) For a general \(\Pi_i(\cdot) \), the optimal currency choice is second-order equivalent to:

\[
\ell = \arg \min_\ell \left\{ \text{var}(\bar{p}_i + e_\ell) \right\} .
\]

— optimal \(\ell \) has the least volatile \(\bar{p}_i^\ell \), making easier target for \(\bar{p}_i \)

• Lemma 2 replaces complex problem with a more tractable, e.g. \(\ell \) is preferred over the producer currency iff:

\[
\text{var}(\bar{p}_i) > \text{var}(\bar{p}_i^\ell) = \text{var}(\bar{p}_i + e_\ell) \iff \frac{\text{cov}(\bar{p}_i + e_\ell, e_\ell)}{\text{var}(e_\ell)} < \frac{1}{2},
\]

or equivalently low desired ERPT
PCP, LCP and DCP

• Three common cases:
 1. PCP = producer currency pricing (euro)
 2. LCP = local (destination) currency pricing
 3. DCP = dominant currency pricing (dollar)
PCP, LCP and DCP

• Three common cases:
 1. PCP = producer currency pricing (euro)
 2. LCP = local (destination) currency pricing
 3. DCP = dominant currency pricing (dollar)

• Resulting destination-currency price over preset price duration:

\[
p_i^* = \begin{cases}
\bar{p}_i + e_k, & \text{under PCP (euro)}, \\
\bar{p}_i^D + e_k^D, & \text{under DCP (dollar)}, \\
\bar{p}_i^*, & \text{under LCP (destination currency } k),
\end{cases}
\]

— contrast the desired \(\bar{p}_i^* \) with realized \(p_i^* \)
Desired ERPT

- Desired (log) markup: \(\tilde{p}_i = \tilde{\mu}_i + mc_i \), where \(\tilde{\mu}_i = M_i(p_i - z) \)

- Desired price decomposition (AIK 2019):

 \[
 \tilde{p}_i = \frac{1}{1 + \Gamma_i} mc_i + \frac{\Gamma_i}{1 + \Gamma_i} (z_k^* - e_k) + \varepsilon_i
 \]

 - \(z_k^* \) is the competitor price index in the destination currency
 - \(\Gamma_i \equiv -\partial \tilde{\mu}_i / \partial p_i \), elasticity of desired markup, increases in \(S_i \)
 - \(1/(1 + \Gamma_i) \) is the own cost pass-through
 - \(\Gamma_i/(1 + \Gamma_i) \) reflects strategic complementarities in price setting
Desired ERPT

• Desired (log) markup: \(\tilde{p}_i = \tilde{\mu}_i + mc_i \), where \(\tilde{\mu}_i = M_i(p_i - z) \)

• Desired price decomposition (AIK 2019):

\[
\tilde{p}_i = mc_i + \frac{\Gamma_i}{1 + \Gamma_i}(z_k^* - e_k - mc_i) + \varepsilon_i
\]

— \(z_k^* \) is the competitor price index in the destination currency
— \(\Gamma_i \equiv -\partial \tilde{\mu}_i / \partial p_i \), elasticity of desired markup, increases in \(S_i \)
— \(1/(1 + \Gamma_i) \) is the own cost pass-through
— \(\Gamma_i/(1 + \Gamma_i) \) reflects strategic complementarities in price setting

• **Lemma 3** (Desired ERPT)

\[
d\tilde{p}_i^* = (1 - \varphi_i - \gamma_i) de_k + (\varphi_i^D + \gamma_i^D) de_k^D,
\]

where

\[
\varphi_i \equiv -\partial mc_i / \partial e_k, \quad \varphi_i^D \equiv \partial mc_i / \partial e_k^D, \quad \gamma_i \equiv -\frac{\Gamma_i}{1 + \Gamma_i} \frac{\partial [z_k^*-mc_i-e_k]}{\partial e_k}, \quad \gamma_i^D \equiv \frac{\Gamma_i}{1 + \Gamma_i} \frac{\partial [z_k^*-mc_i-e_k]}{\partial e_k^D}
\]

— A firm with \(\Gamma_i = 0 \) has \(\gamma_i = \gamma_i^D = 0 \) and \(mc_i \) stable in producer currency has \(\varphi_i = \varphi_i^D = 0 \) – optimally chooses PCP
— Foreign inputs lead to \(\gamma_i \geq \gamma_i^D > 0 \), encouraging LCP/DCP
Realized ERPT

- Realized ERPT:

\[
\begin{aligned}
d\rho_i^* &= \left[d[\bar{p}_i^\ell + e_k^\ell] = de_k^\ell, \text{ prob. } \delta, \right. \\
&\left. \quad d\bar{p}_i^*, \quad \text{ o/w,} \right] \\
\Rightarrow \mathbb{E}d\rho_i^* &= \delta de_k^\ell + (1-\delta)d\bar{p}_i^*
\end{aligned}
\]
Realized ERPT

- Realized ERPT:
 \[d\rho_i^* = \begin{cases}
 d[p_i + e_k^\ell] = de_k^\ell, & \text{prob.}\, \delta, \\
 d\bar{\rho}_i^*, & \text{o/w}
 \end{cases} \Rightarrow \mathbb{E}d\rho_i^* = \delta de_k^\ell + (1-\delta)d\bar{\rho}_i^* \]

- PCP \((\iota_i = 0)\), DCP \((\iota_i = \iota_i^D = 1)\) and LCP \((\iota_i = 1, \iota_i^D = 0)\):
 \[\mathbb{E}d\rho_i^* = \delta \cdot de_k + \frac{\delta}{1-\delta} \left[-\iota_i de_k + \iota_i^D de_k^D \right] + (1-\delta) \left[-\left(\varphi_i + \gamma_i \right) de_k + \left(\varphi_i^D + \gamma_i^D \right) de_k^D \right] \]
 1. bracket = sticky-price determinants (direct causal effect)
 2. bracket = flexible-price determinants (controls for firm type)
Realized ERPT

- Realized ERPT:
 \[d\bar{p}_i^* = dB\bar{p}_i^* + de_k, \quad \text{prob. } \delta, \quad \text{or/w,} \]
 \[\Rightarrow E d\bar{p}_i^* = de_k + (1 - \delta)d\tilde{p}_i^* \]

- PCP \((\nu_i = 0)\), DCP \((\nu_i = \nu_i^D = 1)\) and LCP \((\nu_i = 1, \nu_i^D = 0)\):
 \[E d\bar{p}_i^* = de_k + \delta[-\nu_i de_k + \nu_i^D de_k^D] + (1 - \delta)[- (\phi_i + \gamma_i)de_k + (\phi_i^D + \gamma_i^D)de_k^D] \]
 1. bracket = sticky-price determinants (direct causal effect)
 2. bracket = flexible-price determinants (controls for firm type)

- ERPT Dynamics — consider a dynamic Calvo environment with varying horizon \(h \) (months):
 \[\hat{\delta}(h) = \frac{1}{h} \frac{\delta}{1 - \delta^h} \]
 \[\delta^h \text{ is fraction of firms that have yet to adjust in } h \text{ periods} \]
DATA
We merge 3 micro-level datasets on Belgian firms:

1. **NBB and Customs:** New data on currency choice of Belgian firms at the firm-product-country-month level for both imports and exports from February 2017 to March 2019
 - CN 8-digit level (over 10,000 products)
 - Only extra-EU trade

2. **Customs:** Import and export data on values and quantities at firm-product-country level
 - Annual data from 2012 to 2019

3. **VAT:** Firm-level data on firm characteristics
 - Includes material costs, wagebill and employment

Baseline industry definition: NACE 4-digit level
Key Variables

- **Currency use**: $ν_{ikt} = 1$ for non-Euro, $ν_{ikt}^D = 1$ for Dollar, by firm $×$ CN8-product $×$ destination $×$ time

- **Export price change**: in euros by firm-product-destination-time

\[Δp_{ikt}^* = Δ \log \frac{\text{Export Value}_{ikt}^*}{\text{Export Quantity}_{ikt}} \]

- **Import intensity**: at the firm-year level

\[φ_{it} \equiv \frac{\text{Total non-EU import value}_{it}}{\text{Total variable costs}_{it}} \]

 — further split by currency (Euro vs non-Euro): $φ_{it} = φ_{it}^E + φ_{it}^X$

- **Firm size**: market share S_{ikt} and log Employment_{it}

- **Other variables**: FDI/ownership
STYLIZED FACTS
Currency Use in Trade
Outside EU

<table>
<thead>
<tr>
<th></th>
<th>Exports</th>
<th>Imports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count share</td>
<td>Value share</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>Diff</td>
</tr>
<tr>
<td>Euro</td>
<td>0.659</td>
<td>0.353</td>
</tr>
<tr>
<td>Dollar</td>
<td>0.230</td>
<td>0.516</td>
</tr>
<tr>
<td>Other</td>
<td>0.111</td>
<td>0.131</td>
</tr>
</tbody>
</table>

1. **Euro and US dollar dominate trade flows**
 - PCP is uncommon for imports and LCP uncommon for exports
 - some presence of LCP in exports for differentiated goods

2. **Euro is dominant by count vs Dollar dominates by value**
 - smaller transaction are predominantly priced in Euro
 - non-differented goods are predominantly priced in Dollar
 - even though US accounts for less than 20% of Belgian exports; however, trade share with dollar-pegged countries is ≈50%
Dominant Currencies

(a) Exports

- Dominance of Euro+Dollar; some role for LCP in exports
- A lot of variation in the relative role of Euro vs Dollar
Variance Decomposition

Currency choice in exports

- **Value-weighted projections of ν_{ikt} (non-Euro indicator)**

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted R^2</td>
<td>0.619</td>
<td>0.850</td>
<td>0.155</td>
<td>0.371</td>
<td>0.612</td>
<td>0.713</td>
<td>0.865</td>
<td>0.877</td>
</tr>
<tr>
<td># of observations ('000)</td>
<td>3,491.2</td>
<td>3,458.7</td>
<td>3,497.3</td>
<td>3,497.3</td>
<td>3,483.3</td>
<td>3,430.8</td>
<td>3,445.7</td>
<td>3,394.3</td>
</tr>
<tr>
<td># of fixed effects ('000)</td>
<td>16.5</td>
<td>84.8</td>
<td>0.2</td>
<td>1.2</td>
<td>58.7</td>
<td>171.1</td>
<td>141.5</td>
<td>249.6</td>
</tr>
<tr>
<td>· firm</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· firm×destination</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· destination</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· HS4 industry</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· HS4 industry×destination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· CN8 product×destination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Almost no variation in currency choice over time, at the level of the firm-product-destination**

- **Firm-destination fixed effects absorb the bulk of variation in currency choice, considerably more than product-destination**
EMPIRICAL RESULTS I: CURRENCY CHOICE
Currency Choice: Exports

<table>
<thead>
<tr>
<th>Dep. var.: ι_{ikt}</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_i</td>
<td>0.417***</td>
<td>0.270**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.143)</td>
<td>(0.107)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ_i^E</td>
<td></td>
<td></td>
<td>0.057</td>
<td>0.064</td>
<td>−0.004</td>
<td>0.121</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.148)</td>
<td>(0.150)</td>
<td>(0.189)</td>
<td>(0.141)</td>
<td>(0.160)</td>
</tr>
<tr>
<td>φ_i^X</td>
<td></td>
<td></td>
<td></td>
<td>0.326**</td>
<td>0.316*</td>
<td>0.565***</td>
<td>0.358**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.165)</td>
<td>(0.162)</td>
<td>(0.197)</td>
<td>(0.180)</td>
</tr>
<tr>
<td>log L_i</td>
<td>0.092***</td>
<td>0.084***</td>
<td>0.082***</td>
<td>0.055***</td>
<td>0.061***</td>
<td>0.053***</td>
<td>0.054***</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.016)</td>
<td>(0.015)</td>
<td>(0.013)</td>
<td>(0.018)</td>
<td>(0.012)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>S_{ik}</td>
<td>−0.028</td>
<td>−0.022</td>
<td>−0.024</td>
<td>−0.021</td>
<td>−0.020</td>
<td>−0.012</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.030)</td>
<td>(0.030)</td>
<td>(0.029)</td>
<td>(0.026)</td>
<td>(0.017)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>out-FDI$_i$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.125***</td>
<td>0.089**</td>
<td>0.115***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.041)</td>
<td>(0.045)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>in-FDI$_i$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.016</td>
<td>0.051</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.039)</td>
<td>(0.047)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>\bar{t}_{-ikt}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.174***</td>
<td>0.037**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.027)</td>
<td>(0.018)</td>
</tr>
<tr>
<td># obs.</td>
<td>741,565</td>
<td>734,012</td>
<td>734,012</td>
<td>734,012</td>
<td>676,966</td>
<td>676,937</td>
<td>656,389</td>
</tr>
<tr>
<td>R^2_{adj}</td>
<td>0.290</td>
<td>0.575</td>
<td>0.577</td>
<td>0.582</td>
<td>0.327</td>
<td>0.391</td>
<td>—</td>
</tr>
</tbody>
</table>

Fixed Effects:
- year: ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
- destination: ✓ ✓ ✓ ✓ ✓ ✓ ✓
- industry (HS4): ✓ ✓ ✓ ✓ ✓ ✓ ✓
- industry×destination: ✓ ✓ ✓ ✓ ✓ ✓ ✓
Currency Choice: Imports

<table>
<thead>
<tr>
<th>Dep. var.: ι^M_{ijkt}</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ_i</td>
<td>0.106*</td>
<td>0.104**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.050)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ_i^E</td>
<td>0.007</td>
<td>0.002</td>
<td>0.013</td>
<td>−0.008</td>
<td>0.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.060)</td>
<td>(0.086)</td>
<td>(0.070)</td>
<td>(0.074)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ_i^X</td>
<td>0.273***</td>
<td>0.267***</td>
<td>0.377***</td>
<td>0.322***</td>
<td>0.351***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.095)</td>
<td>(0.098)</td>
<td>(0.115)</td>
<td>(0.105)</td>
<td>(0.121)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log L_i$</td>
<td>−0.006</td>
<td>−0.008</td>
<td>−0.011**</td>
<td>−0.007</td>
<td>−0.005</td>
<td>−0.006</td>
<td>−0.003</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.006)</td>
<td>(0.010)</td>
<td>(0.013)</td>
<td>(0.011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S^M_{ijk}</td>
<td>−0.053*</td>
<td>−0.154***</td>
<td>−0.152***</td>
<td>−0.149***</td>
<td>−0.089**</td>
<td>−0.104***</td>
<td>−0.101***</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>out-FDI$_i$</td>
<td>0.001</td>
<td>0.001</td>
<td>0.003</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.046)</td>
<td>(0.039)</td>
<td>(0.041)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in-FDI$_i$</td>
<td>−0.027</td>
<td>−0.029</td>
<td>−0.027</td>
<td>−0.025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.045)</td>
<td>(0.038)</td>
<td>(0.040)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\overline{\bar{\iota}}^M_{ijkt}$</td>
<td></td>
<td></td>
<td>0.151***</td>
<td>0.042**</td>
<td>0.791***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.023)</td>
<td>(0.019)</td>
<td>(0.219)</td>
<td></td>
<td></td>
</tr>
<tr>
<td># obs.</td>
<td>270,477</td>
<td>267,009</td>
<td>267,009</td>
<td>267,009</td>
<td>235,062</td>
<td>235,022</td>
<td>223,991</td>
</tr>
<tr>
<td>R^2_{adj}</td>
<td>0.261</td>
<td>0.456</td>
<td>0.458</td>
<td>0.459</td>
<td>0.275</td>
<td>0.340</td>
<td>—</td>
</tr>
</tbody>
</table>

Fixed Effects:
- year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
- country (source) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
- industry (HS4) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
- industry×country ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Currency Choice: Vehicle Currency

<table>
<thead>
<tr>
<th>Dep. var.: i^D_{ikt}</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_i</td>
<td>-0.204</td>
<td>-0.027</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.168)</td>
<td>(0.109)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ^E_i</td>
<td></td>
<td></td>
<td>-0.106</td>
<td>-0.108</td>
<td>-0.070</td>
<td>-0.127</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.134)</td>
<td>(0.135)</td>
<td>(0.121)</td>
<td>(0.161)</td>
</tr>
<tr>
<td>φ^X_i</td>
<td></td>
<td></td>
<td>0.457***</td>
<td></td>
<td>0.504***</td>
<td>0.729***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.156)</td>
<td></td>
<td>(0.146)</td>
<td>(0.216)</td>
</tr>
<tr>
<td>φ^D_i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.490***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.163)</td>
<td></td>
</tr>
<tr>
<td>$\log L_i$</td>
<td>-0.092***</td>
<td>-0.088***</td>
<td>-0.079***</td>
<td>-0.077***</td>
<td>-0.093***</td>
<td>-0.095***</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.010)</td>
<td>(0.010)</td>
<td>(0.010)</td>
<td>(0.017)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>S_{ik}</td>
<td>0.061*</td>
<td>0.049</td>
<td>0.012</td>
<td>0.009</td>
<td>0.012</td>
<td>0.113</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.051)</td>
<td>(0.044)</td>
<td>(0.044)</td>
<td>(0.044)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>out-FDI$_i$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.042)</td>
</tr>
<tr>
<td>in-FDI$_i$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.107*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.060)</td>
</tr>
<tr>
<td>τ^D_{ikt}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.516**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.697)</td>
</tr>
<tr>
<td># obs.</td>
<td>113,327</td>
<td>111,606</td>
<td>111,606</td>
<td>111,606</td>
<td>111,606</td>
<td>104,584</td>
</tr>
<tr>
<td>R^2_{adj}</td>
<td>0.650</td>
<td>0.878</td>
<td>0.882</td>
<td>0.882</td>
<td>0.883</td>
<td>—</td>
</tr>
</tbody>
</table>

Fixed Effects:

- year ✓ ✓ ✓ ✓ ✓ ✓ ✓
- destination ✓ ✓ ✓ ✓
- industry (HS4) ✓ ✓ ✓ ✓ ✓
- industry×destination ✓ ✓ ✓ ✓ ✓
Currency of Exports and Firm Size

(a) All destinations (ex-EU)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of firms</td>
<td>1,948</td>
<td>299</td>
<td>246</td>
<td>115</td>
<td>60</td>
<td>36</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>Share in total exports</td>
<td>6%</td>
<td>7%</td>
<td>11%</td>
<td>10%</td>
<td>7%</td>
<td>10%</td>
<td>13%</td>
<td>35%</td>
</tr>
<tr>
<td>Share in total imports</td>
<td>5%</td>
<td>3%</td>
<td>8%</td>
<td>9%</td>
<td>7%</td>
<td>10%</td>
<td>8%</td>
<td>50%</td>
</tr>
</tbody>
</table>

(b) Excluding US and dollar pegs
Currency of Imports and Firm Size

(a) All source countries (ex-EU)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of firms</td>
<td>1,948</td>
<td>299</td>
<td>246</td>
<td>115</td>
<td>60</td>
<td>36</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>Share in total exports</td>
<td>6%</td>
<td>7%</td>
<td>11%</td>
<td>10%</td>
<td>7%</td>
<td>10%</td>
<td>13%</td>
<td>35%</td>
</tr>
<tr>
<td>Share in total imports</td>
<td>5%</td>
<td>3%</td>
<td>8%</td>
<td>9%</td>
<td>7%</td>
<td>10%</td>
<td>8%</td>
<td>50%</td>
</tr>
</tbody>
</table>
EMPIRICAL RESULTS II:
EXCHANGE RATE PASS-THROUGH
ERPT — conventional spec.

\[\Delta p_{ikt}^* = [\alpha + \beta \varphi_i + \gamma S_{ik} + \delta \iota_{ikt}] \Delta e_{kt} + \text{F.E./controls} + \epsilon_{ikt} \]

<table>
<thead>
<tr>
<th>Dep. var.: Δp_{ikt}^*</th>
<th>All countries</th>
<th>OECD (5)</th>
<th>US only (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δe_{kt}</td>
<td>1.111***</td>
<td>1.075***</td>
<td>1.075***</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.029)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>$\Delta e_{kt} \cdot \varphi_i$</td>
<td>-0.272***</td>
<td>-0.173**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.087)</td>
<td>(0.077)</td>
<td></td>
</tr>
<tr>
<td>$\Delta e_{kt} \cdot \varphi_i^E$</td>
<td></td>
<td></td>
<td>-0.418</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.354)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.269)</td>
</tr>
<tr>
<td>$\Delta e_{kt} \cdot \varphi_i^X$</td>
<td></td>
<td></td>
<td>-0.416***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.147)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.221)</td>
</tr>
<tr>
<td>$\Delta e_{kt} \cdot S_{ik}$</td>
<td></td>
<td></td>
<td>-0.146*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.082)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.067)</td>
</tr>
<tr>
<td>$\Delta e_{kt} \cdot \log L_i$</td>
<td></td>
<td></td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.012)</td>
</tr>
<tr>
<td>$\Delta e_{kt} \cdot \iota_{ikt}$</td>
<td></td>
<td></td>
<td>-0.207***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.038)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.082)</td>
</tr>
</tbody>
</table>

obs. | 262,043 | 262,043 | 262,043 | 221,702 | 88,144 | 21,635

$R^2_{adj.}$ | 0.056 | 0.057 | 0.057 | 0.078 | 0.019 | 0.020

Fixed Effects:
- year ✓ ✓ ✓ ✓ ✓ ✓
- industry × destination ✓ ✓ ✓ ✓ ✓ ✓
- industry × destination × year ✓
\[\Delta p_{ikt}^* = [\alpha + \beta \varphi_i + \gamma S_{ik} + \delta \iota_{ik}] \Delta e_{kt} + [\beta^D \varphi_i + \gamma^D S_{ik} + \delta^D \iota^D_{ik}] \Delta e^D_{kt} + \text{F.E.} + \epsilon_{ikt} \]

<table>
<thead>
<tr>
<th>Dep. var.: (\Delta p_{ikt}^*)</th>
<th>USD/Pegs</th>
<th>Non-pegged</th>
<th>All countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta e_{kt})</td>
<td>1.130***</td>
<td>1.064***</td>
<td>1.011***</td>
</tr>
<tr>
<td></td>
<td>(0.075)</td>
<td>(0.032)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>(\Delta e_{kt} \cdot \varphi_i)</td>
<td>-0.514***</td>
<td>-0.058</td>
<td>-0.392***</td>
</tr>
<tr>
<td></td>
<td>(0.136)</td>
<td>(0.090)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>(\Delta e^D_{kt} \cdot \varphi_i)</td>
<td></td>
<td>0.414***</td>
<td>0.435***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.086)</td>
<td>(0.076)</td>
</tr>
<tr>
<td>(\Delta e_{kt} \cdot S_{ik})</td>
<td>-0.101*</td>
<td>-0.049</td>
<td>-0.047</td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.032)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>(\Delta e^D_{kt} \cdot S_{ik})</td>
<td></td>
<td>0.023</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.042)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>(\Delta e_{kt} \cdot \iota_{ik})</td>
<td>-0.358***</td>
<td>-0.133***</td>
<td>-0.342***</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.042)</td>
<td>(0.036)</td>
</tr>
<tr>
<td>(\Delta e^D_{kt} \cdot \iota^D_{ik})</td>
<td></td>
<td>0.306***</td>
<td>0.321***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.051)</td>
<td>(0.042)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># obs.</th>
<th>99,025</th>
<th>163,018</th>
<th>150,659</th>
<th>240,440</th>
<th>200,888</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R^2 \text{adj.})</td>
<td>0.016</td>
<td>0.074</td>
<td>0.078</td>
<td>0.062</td>
<td>0.086</td>
</tr>
</tbody>
</table>

Fixed Effects:
- year ✓ ✓ ✓ ✓ ✓
- industry\(\times \)destination ✓ ✓ ✓ ✓ ✓
- industry\(\times \)destination\(\times \)year ✓ ✓ ✓ ✓ ✓
\[\Delta q_{ikt}^* = -\theta \cdot \Delta p_{ikt}^* + \text{fixed effects} + \epsilon_{ikt} \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta p_{ikt}^*)</td>
<td>-0.446***</td>
<td>-1.098**</td>
<td>-1.255**</td>
<td>-1.709*</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td>(0.524)</td>
<td>(0.549)</td>
<td>(0.880)</td>
</tr>
<tr>
<td># obs.</td>
<td>240,188</td>
<td>200,595</td>
<td>200,595</td>
<td>221,564</td>
</tr>
<tr>
<td>First stage</td>
<td>(4) in Table 7</td>
<td>(5) in Table 7</td>
<td>(5) in Table 7</td>
<td>(4) in Table 6</td>
</tr>
<tr>
<td>Over-ID J-test (\chi^2)</td>
<td>15.62 [0.02]</td>
<td>13.90 [0.02]</td>
<td>6.35 [0.10]</td>
<td>0.30 [0.58]</td>
</tr>
<tr>
<td>Weak IV F-test</td>
<td>1,403.8</td>
<td>10.6</td>
<td>14.9</td>
<td>7.0</td>
</tr>
<tr>
<td>Fixed Effects:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>firm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>industry \times \text{destination} & year</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>industry \times \text{destination} \times \text{year}</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p-value
Quantities

First stages and reduced form

<table>
<thead>
<tr>
<th>Dep. var.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δe_{kt}</td>
<td>Δp_{ikt}</td>
<td>Δq_{ikt}</td>
<td>Δp_{ikt}</td>
<td>Δq_{ikt}</td>
</tr>
<tr>
<td>$\Delta e_{kt} \cdot \varphi_i$</td>
<td>-0.350^{***} (0.081)</td>
<td>0.270 (0.429)</td>
<td>-0.284^{***} (0.106)</td>
<td>-0.023 (0.641)</td>
</tr>
<tr>
<td>$\Delta e_{kt}^D \cdot \varphi_i$</td>
<td>0.391^{***} (0.075)</td>
<td>0.426 (0.455)</td>
<td>0.319^{***} (0.112)</td>
<td>0.822 (0.675)</td>
</tr>
<tr>
<td>$\Delta e_{kt} \cdot S_{ik}$</td>
<td>-0.051 (0.036)</td>
<td>-0.006 (0.129)</td>
<td>-0.065 (0.074)</td>
<td>-0.141 (0.258)</td>
</tr>
<tr>
<td>$\Delta e_{kt}^D \cdot S_{ik}$</td>
<td>-0.010 (0.035)</td>
<td>-0.169 (0.139)</td>
<td>0.006 (0.068)</td>
<td>-0.317 (0.237)</td>
</tr>
<tr>
<td>$\Delta e_{kt} \cdot \iota_{ikt}$</td>
<td>-0.359^{***} (0.037)</td>
<td>0.466^{***} (0.121)</td>
<td>-0.259^{***} (0.050)</td>
<td>0.464^{***} (0.165)</td>
</tr>
<tr>
<td>$\Delta e_{kt}^D \cdot \iota_{ikt}^D$</td>
<td>0.324^{***} (0.041)</td>
<td>-0.253 (0.167)</td>
<td>0.234^{***} (0.050)</td>
<td>-0.201 (0.223)</td>
</tr>
</tbody>
</table>

obs. | 240,188 | 240,188 | 200,595 | 200,595 | 200,595 | 200,595 | 221,564 | 221,564

Fixed Effects:
- firm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
- destination ✓ ✓
- industry×destination ✓ ✓
- industry×destination×year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
EMPIRICAL RESULTS III: ERPT DYNAMICS
\[\Delta_h p^*_ikt = \left[\alpha_h + \beta_h \varphi_i + \delta_h \lambda_{ik} \right] \Delta_h e_{kt} + \left[\beta_h^D \varphi_i + \delta_h^D \lambda_{ik}^D \right] \Delta_h e_{kt}^D + F.E. + \epsilon^h_{ikt} \]

(a) Sticky-price determinants

- \(\alpha_h \) is the euro-destination ERPT for PCP firms,
- \(\alpha_h + \delta_h \) for the foreign-currency (LCP and DCP) firms,
- \(\delta_h^D \) is the additional dollar-destination ERPT of the DCP firms

(b) Flexible-price determinants

- \(\beta_h \) and \(\beta_h^D \) are ERPT per unit of the firm’s import intensity \(\varphi_i \)
Dynamic Effects of Price Stickiness

- \(\hat{\delta}(h) = \frac{1}{\delta} \frac{\delta}{1-\delta} (1-\delta^h) \) vs \(\delta^h \)
- Calibrated value: \(\delta = 0.88 \) to match \(\hat{\delta}(h) = -\delta_h \) at \(h = 12 \)
- \(\delta^{12} = 0.22 \) and \(\delta^{24} = 0.05 \)
SUMMARY
Conclusion

- Two dominant currencies: global US dollar and regional Euro
- Currency choice is shaped by firm-level characteristics, which determine desired ERPT
- Currency choice feeds back into the dynamics of ERPT, and still matters beyond annual horizon
- There are strategic complementarities in currency choice, which may lead to multiple equilibria and persistence
- Consistent with sticky-price model of currency choice
- Effects of a shift in currency use away from the US dollar
APPENDIX
Currency invoicing trends

Exports to Switzerland

Imports from Switzerland
PTM and LCP (DCP)

- Two reasons for low pass-through:
 1. LCP: price stickiness in local currency
 2. PTM and imported inputs (when prices adjust)

- PTM and LCP have common determinants

- PTM and LCP reinforce each other

Markup variability (market share)
Marginal cost sensitivity (import intensity)