Damaging democracy? Security provision and turnout in Afghan elections†

Luke N. Condra1 | Michael Callen2 | Radha K. Iyengar3 | James D. Long4 | Jacob N. Shapiro5

1Graduate School of Public & International Affairs, University of Pittsburgh, Pittsburgh, Pennsylvania
2Rady School of Management, UCSD, La Jolla, California
3RAND Corporation, Arlington, Virginia
4Department of Political Science, University of Washington, Seattle, Washington
5Department of Politics, Princeton University, Princeton, New Jersey

Correspondence
Luke N. Condra, Graduate School of Public & International Affairs, University of Pittsburgh, Pittsburgh, PA.
Email: lcondra@pitt.edu

Funding information
Air Force Office of Scientific Research, Grant/Award Number: FA9550-09-1-0314; Harvard Academy for International and Area Studies, Harvard University

Abstract
In emerging democracies, elections are encouraged as a route to democratization. However, not only does violence often threaten these elections, but citizens often view as corrupt the security forces deployed to combat violence. We examine the effects of such security provision. In Afghanistan's 2010 parliamentary election, polling centers with similar histories of pre-election violence unintentionally received different deployments of the Afghan National Police, enabling identification of police's effects on turnout. Using data from the universe of polling sites and various household surveys, data usually unavailable in conflict settings, we estimate increases in police presence decreased voter turnout by an average of 30%. Our results adjudicate between competing theoretical mechanisms through which security forces could affect turnout, and show behavior is not driven by voter anticipation of election-day violence. This highlights a pitfall for building government legitimacy via elections in weakly institutionalized and conflict-affected states.

1 | INTRODUCTION

In modern democracies, elections serve as the fundamental mechanism to aggregate citizen preferences and delegate power to representatives (Cox, 1997; Przeworski, Stokes, & Manin, 1999). In conflict-prone and transitioning societies, citizen participation in elections is widely understood to strengthen emergent democratic institutions and solidify regime legitimacy (Norris, 2014). Governments and international donors have therefore invested heavily in ensuring that elections can be safely held,
including assigning police to safeguard polling stations (Doyle & Sambanis, 2006; Fortna, 2008) and carrying out broader security sector reforms (Berg, 2014; Perito, 2009; Sedra, 2006). Despite such efforts, election cycles in these settings are often associated with an increased probability of conflict (Hafner-Burton, Hyde, & Jablonski, 2014). In some countries, insurgents strategically use pre-election violence to intimidate the population and prevent citizens from turning out to support the government (Berrebi & Klor, 2006). For instance, although the governments of Colombia, Nigeria, and Thailand increased security measures to protect recent polls, insurgents still attacked critical election infrastructure. While security provision plays a vital role in legitimizing the state and its monopolization of violence (Fukuyama, 2004; Levi, 1988), whether (and how) intensifying police presence during elections helps to secure voting, and thus increase participation, remains unclear.

Applying theoretical insights from counterinsurgency theory and the economics of crime literature produces ambiguous predictions. Evidence from modern conflicts suggests that increasing a country’s security force presence can deter insurgent attacks (Corps, 2006; Friedman, 2011) and should thus increase turnout by reducing the threat of insurgent violence. This logic is similar to that driving arguments asserting that increased policing deters crime (Becker, 1968; Levitt, 1997). However, deploying additional forces may present armed rebels with additional targets, leading them to inflict more violence in the short-term (Kydd & Walter, 2006). An increase in the number of police around polling centers could thus *decrease* turnout if citizens perceive voting to be more dangerous. Under both of these theories, police deployments *indirectly* affect turnout based on whether they deter or attract insurgent electoral violence, which in turn shapes citizens’ cost–benefit calculations.

This paper explores an alternative dynamic inherent in the political economy of corruption that more directly links police presence with turnout in fragile states. We argue that changes in policing can *directly* shape citizens’ decisions about whether to vote based on how they perceive those security officials. Ideally, a country’s police force serves as a positive and trustworthy symbol of the state’s coercive authority. But security forces in many developing countries are poorly trained and even predatory, and citizens believe them to be corrupt (Olken & Pande, 2012). If people view the police as venal or are fearful of their interactions with them, many individuals will choose not to vote if it requires interacting with officers. In fragile democratizing states, deploying additional corrupt police may therefore reduce turnout and undermine government efforts to build regime legitimacy *even if* a heightened police presence deters rebel violence.

To examine whether and how policing shapes citizens’ electoral behavior, we study voter turnout in Afghanistan’s 2010 parliamentary (*Wolesi Jirga*) election. This election provides a unique opportunity to study the impact of policing on turnout for three reasons. First, the election was threatened by considerable violence prior to and on election day (Callen & Long, 2015). Second, there was tremendous variation in policing levels around polling centers. While each polling center entrance had an officer assigned to thwart attacks, additional security force deployments varied drastically. Thus, some voters might have only seen one officer at a polling station, while others might have had to pass through multiple checkpoints on their way to vote. Third, this election provides unusually rich data, including: internal government records of planned police deployments; precise event-level records of violence before, during, and after the election; certified voter turnout numbers; and survey data from potential voters before the election on why they did or did not plan to vote, and after the election on why they actually did so or not, alongside their perceptions of the police and government.

Our empirical approach leverages an artifact of the Afghan government’s security force assignment process to isolate the effects of police deployments. Estimating the effects of increased policing on election day violence and turnout necessarily faces inferential problems if the government deployed more police to areas where it anticipated more violence, or if a confounding factor correlated with anticipated violence also drove turnout. In our setting, police were assigned to polling centers based
on the historical level of insurgent violence in the area. Yet this process was managed by officials at multiple institutions operating without clear lines of authority, who all had other pressing policy issues competing for their attention. These management challenges, combined with force limitations, often resulted in polling centers with similar histories of violence in the same district being assigned different levels of deployment.

Conditional on past insurgent violence in the area of the polling center, the assignment of additional police appears orthogonal to anticipated election day violence. This means that once we control for expected violence in a more detailed and systematic way than planning officials did, variation in the assignment of security force levels to polling centers within the same district should be “as-if random.” This approach allows us to estimate the exogenous impact of police on actual election violence and turnout. Our empirical strategy allows us to systematically examine the potential first-order effects of security force deployment on rebel violence and public sentiment, as well as their second-order effects on levels of voter participation. The credibility of this strategy is strengthened by our first-hand observation of the police deployment planning process, as well as multiple interviews of relevant officials (described below).

After controlling for the history of violence in an area, we find that polling centers that were assigned extra police did not experience a statistically significant change in insurgent violence, on average, but they did experience a marked decrease (of about 30%, on average) in turnout relative to similar polling centers assigned fewer security forces. These results are robust to accounting for multiple threats to identification, including measures of electoral competitiveness, ethnic demography, electoral fraud, spatial spillovers, and other characteristics of polling centers that are potentially correlated with police presence. While variation in the number of security forces assigned to protect various polling centers no doubt affected the Taliban's strategic calculations about the feasibility of carrying out violent election attacks, increased security did not consistently produce first-order decreases in violence; it did, however, affect second-order processes related to citizens' decisions about whether to vote.

Next, we explore why extra policing might have decreased voter turnout. In postelection surveys, citizens who live near polling centers designated to receive higher policing levels were no more likely to cite a fear of violence on election day as a reason for not having voted than those who live near centers designated to receive fewer police. This accords with the hypothesis that deployments did not have a statistically significant effect on violence. Measures of trust in the state, however, dropped significantly from pre-election to postelection surveys in places assigned to receive higher policing levels, as one would expect if individuals in those areas had more negative interactions with security forces on election day. These findings cast doubt on the possibility that police deployments affected turnout by making voters fear insurgent violence, but they are consistent with the claim that extra policing had the unintended effect of deterring turnout because voters did not want to interact with a corrupt police force. These results concur with qualitative information about voting in this election specifically and with views of the Afghan security forces generally.

We make several contributions. First, our research addresses a core challenge confronting emerging democracies characterized by conflict and corruption: how do government efforts to deter and combat insurgent violence affect political participation and governance? Fragile states invest heavily in the occupational and technical training of the army and police to inspire public confidence in their ability to defeat insurgents. Yet we show that the effectiveness of deploying more police to encourage

1For example, two polling centers 0.25 km apart in Sarkani district (Kunar Province) had the exact same history of violence in terms of insurgent attacks, but the polling center at a clinic received a High Security Deployment designation while the center at a nearby school was assigned a Low Security Deployment designation.
voting—and thereby enhance regime legitimacy—depends not only on whether such policies effectively deter insurgent violence, but also on how citizens’ perceptions of the security forces affects their decisions about whether to vote. Where police are perceived to be corrupt and predatory, increasing security deployments may be detrimental to democratization.

Second, we contribute to two burgeoning empirical literatures. The first evaluates the impact of counterinsurgency efforts on rebel activity (Berman, Felter, Shapiro, & Troland, 2013; Biddle, Friedman, & Shapiro, 2012), echoing economic studies of the effects of policing on crime (Draca, Machin, & Witt, 2011; Levitt, 1997). The second literature comprises a host of studies that seek to identify the effects of election violence on voters’ attitudes and behavior after terrorist and insurgent attacks (Berrebi & Klor, 2008; Condra, Long, Shaver, & Wright, 2018; Getmansky & Zeitzoff, 2014). Both literatures face the challenge of accounting in some way for insurgents’ strategic adjustment in response to anticipated changes in force levels and locations. Our research design is similar to other studies that exploit plausibly random sources of variation in insurgent (Wright, 2018) or counterinsurgent (Lyall, 2009) strategies to assess the effectiveness of counterinsurgency policies. In our study, security force deployments were assigned primarily by using the history of violence around polling centers to estimate levels of election-day violence. But the fact that polling centers with similar histories of violence in the same district received different numbers of security personnel, and that these assignments were not publicized before the election, means that insurgents would not have been able to anticipate and strategically adjust for the planned deployments. However, voters had sufficient time to see the enhanced police presence in their localities, and for deployment levels to affect their decisions about whether to turn out to vote. To strengthen confidence in our results, we clearly specify our identification assumptions and test the robustness of our results against a series of threats to inference.

Last, we examine an important case that is broadly applicable to other developing democracies where non-state violent actors credibly threaten to disrupt elections. The 2010 parliamentary elections were an important test of the Afghan government’s ability to independently establish and manage electoral institutions to gain citizen compliance. It therefore worked to secure election infrastructure by allocating more of its limited security resources to areas it believed to be most vulnerable to violent election-day attacks. Other inchoate regimes in postconflict countries with the potential for election-day violence similarly alter their deployments of security forces to protect voters, including stationing police officers at polling stations in East Timor, Sierra Leone, Egypt, Yemen, Colombia, Iraq, Uganda, and Kenya. Yet we find that in Afghanistan, extra policing did not substantively increase or decrease insurgent violence, but did negatively affect turnout through the perceived corruption of officers. Many developing countries that have moved toward democracy over the last 25 years suffer similar patterns of corruption in the security ranks (Chayes, 2015). But an increased police presence on election day is unlikely to result in a peaceful election with increased voter turnout if exposure to corruption delegitimizes the state and makes citizens reticent to vote (Seligson, 2002).

2 POLICING, VIOLENCE, AND ELECTIONS IN EMERGING DEMOCRACIES

In transitioning societies, elections serve as important indications of citizens’ compliance with the regime (Lindberg, 2006; Norris, 2014), but citizens in developing democracies must overcome numerous obstacles to voting (Ferree, Jung, Dowd, & Gibson, 2018), including threats to their physical safety (Collier & Vicente, 2012). Fragile states, in particular, frequently face violence aimed at disrupting elections (Collier, 2009). While election violence sometimes arises
from incumbents or parties who threaten the opposing side’s voters (Wilkinson, 2004), it may also result from non-state insurgent actors who strategically use attacks to prevent turnout and undermine support for the government (Berrebi & Klor, 2006). Since voting and security are both critical considerations for state-building, governments must decide how to allocate forces to safeguard elections.

2.1 | Prior approaches

Prior approaches from counterinsurgency theory and studies on the economics of crime suggest that security force augmentation could increase voter turnout by deterring violence and protecting voters. Classical counterinsurgency doctrine (Galula, 1964; Kitson, 1971; Thompson, 1966)\(^2\) rests on the assumption that increasing the levels and strategic position of troops will deter rebel violence and help fragile governments build state capacity, strengthen legitimacy, and win “hearts and minds” (Berman, Shapiro, & Felter, 2011; Sedra, 2017, p. 187). In both Iraq and Afghanistan, the United States and its coalition partners implemented troop “surges” in response to rising sectarian violence and antigovernment rebellion (Feaver, 2008; Rashid, 2012), and there is evidence that these increases in troop levels played an important role in supporting counterinsurgency goals (Berman et al., 2013; Biddle et al., 2012). The belief in a surge deterrence effect follows canonical theories in the economics of crime literature which hold that increasing the presence of law enforcement deters and reduces crime (Di Tella & Schargrodsky, 2004; Draca et al., 2011; Levitt, 1997) by raising the probability of the detection and punishment of illegal actions (Becker, 1968; Levitt & Miles, 2006). Applied to elections, counterinsurgency principles would guide governments to increase deployments in order to deter insurgent-inspired violence and thereby boost turnout.

Governments in countries emerging from, or still engaged in, violent conflict often rely on a security presence to support elections (Binkerhoff, 2007). U.S. President Barack Obama ordered such an increase to enhance election security and public support for the Afghan government (Rashid, 2012, p. 88). The Kenyan government deployed 95,000 officers to safeguard roughly 20,000 polling locations in 2013 (Ombati, 2017), but added election security in Coast Province, where the irredentist Mombasa Republican Council group had attacked voting registration centers before the election and would eventually hit two police convoys on the morning of the election (Smith, 2013). In 2017, Kenya further increased its election-day deployment to 150,000 officers nationwide in part due to fears of growing threats from al-Shabaab. In 2011, the Ugandan government increased the number of polling stations and the police assigned to them in previously rebel-held areas of the North that were voting for the first time in a national election, but that continued to face threats from the Lord’s Resistance Army.

While fragile states conduct elections in part to strengthen institutions and deploy police to secure those elections, added police may depress turnout if citizens anticipate that the heightened security presence signals a greater likelihood of insurgent violence on election day. Augmented force levels may increase short-term insurgent violence in many conflict settings. Security forces may act as attractive targets for insurgents seeking to demonstrate their strength and resolve, and to bargain for political concessions (Kydd & Walter, 2006). Insurgents attack in election periods and against election targets to undermine the authority and legitimacy of the government (Condra, Long, Shaver, & Wright, 2018), including rebel attacks against candidates, polling stations, and voters in Colombia (Moloney, 2006), Kenya (Smith, 2013), Iraq (AP, 2014), Somalia (Reuters, 2016), Thailand (Fifield, 2016), and India (Rahman, 2009). For example, in Iraqi elections, “insurgents are aiming to shatter

\(^2\)For tactical application of these principles, see UK Army (2009) and U.S. Marine Corps (2006).
[Prime Minister Nouri al-](Maliki's) legitimacy and sow more chaos among the different political groups” and signal that “Iraq is not stable or secure, and is still in their hands” (quoted in Abbas, 2009). Indeed, debates over the troop “surge” in Iraq (Feaver, 2008), designed to decrease sectarian fighting over the long term, highlighted the risk that it could spark a short-term rise in violence. For these reasons, linking force levels to electoral participation via a deterrence mechanism produces ambiguous empirical predictions.

2.2 | Our approach

To determine whether and how policing increases electoral participation in fragile states, we identify a separate mechanism drawn from the political economy of corruption literature that also directly links election security force deployment with electoral participation. As the most visible embodiment of the state's coercive power, a police officer ideally serves as a symbol of authority who fosters order and protects the population (Serchuk, 2006). As the police often provide the most routine interaction citizens have with the state on a regular basis (Soss & Weaver, 2017), the nature of these interactions affects their confidence in the state security apparatus as well as their perceptions of broader government legitimacy (Lerman & Weaver, 2014; Nagin & Telep, 2017), especially where non-state actors threaten violence against civilians. Understanding the effects of police presence on elections requires us to study how citizens’ perceptions of police affect their electoral behavior.

Principally, we argue that the levels of trust and legitimacy citizens attribute to the police will subsequently motivate their political behavior (Tyler, 2006), specifically their willingness to signal compliance with the democratic regime by voting. When citizens believe that the police are acting in service of the public good, police deployments should increase citizens’ political engagement. Counterinsurgency strategies are most successful when security patrols are conducted within the community to establish trust, build rapport, and send a strong signal that the government supports citizens (Lyall & Wilson III, 2009). Accordingly, Afghan and U.S. officials tasked police with gathering information about insurgents through positive interactions with civilians (Malkasian, 2013, pp. 155, 213) in order to capture Taliban fighters and thwart their attacks. Therefore, a “surge” of forces not only attempts to make life safe for citizens in conflict environments, it also helps to build goodwill and redounds to positive perceptions of other institutions. If building up the strength of any one institution—like the police—reinforces other institutions—such as elections—an increase in policing may help increase turnout by improving overall perceptions of the state.

Yet security forces in many developing countries are predatory, poorly trained, and seen as corrupt by citizens (Olken & Pande, 2012; Sedra, 2017). Particularly in weak states struggling against political violence, citizens are regularly forced to pay bribes to the police (Fried, Lagunes, & Venkataramani, 2010). In countries as diverse as Uganda, Vietnam, the Philippines, Kenya, El Salvador, Pakistan, and Venezuela (among many others), the police are deemed the most corrupt of all public institutions (Hardoon & Heinrich, 2013). Police abuse causes citizens to hold negative views of the government and to decrease their participation in other institutions and processes in public life (Nagin & Telep, 2017), as exposure to corruption delegitimizes the state and makes citizens reticent to express compliance (Seligson, 2002).

Perceptions of the police as ineffective, corrupt, or predatory could plausibly have either a positive or negative effect on electoral turnout. On the one hand, citizens may punish corrupt politicians at the polls (Finan & Ferraz, 2008). There is some evidence of this in emerging European democracies (Kostadinova, 2009), and it is at least suggested in multiple fragile states where, despite perceived
rampant corruption in the administrative state, election turnout is equal to or higher than in the least corrupt countries in the world.\(^3\)

On the other hand, and as we argue, perceived corruption is more likely to reduce turnout where police are used to protect elections. If the police are not viewed positively—because people are fearful of their interactions with them or view them as untrustworthy—their presence during elections is unlikely to inspire confidence in voters. Previous studies have shown that increasing citizens' knowledge of political corruption can lead them to disengage from politics and decrease turnout (Chong, De La O, Karlan, & Wantchekon, 2015; Stockemer, LaMontagne, & Scruggs, 2013). Individuals are less likely to vote if they believe the regime is corrupt because police erode political efficacy,\(^4\) which affects citizens' capacity for collective action and desire to participate (Dimitrova-Grajzl, Simon, & Fischer, 2010). If citizens believe the security forces are corrupt, they are less likely to view the state as legitimate (Seligson, 2002), as has been shown in Afghanistan (Torabi & Delesgues, 2007). This reduces their desire to signal compliance by participating in elections overseen by these agents.

Therefore, if increased policing dissuades citizens from voting because they wish to avoid interacting with security officials who they see as corrupt and predatory, augmenting force levels during elections is unlikely to encourage voter turnout where the police are corrupt generally even if their presence deters violence. We therefore hypothesize that, conditional on levels of violence, additional police will decrease turnout because citizens' increased interactions with corrupt and predatory state agents discourage further engagement with them. Therefore, determining whether police deployments to protect elections assist the government's use of democratic institutions to enhance legitimacy and gain citizen compliance requires evaluating whether more police deter violence, as well as how citizens view those police and what they represent.

3 | SETTING

Elections have played an important role in efforts to democratize, legitimize, and strengthen the Afghan state since the overthrow of the Taliban by the United States, Coalition, and Afghan resistance forces in 2001. The new Afghan government sought to legitimize its fledgling democratic institutions by holding the first presidential elections in 2004 (which Hamid Karzai won), followed by the first parliamentary (Wolesi Jirga) elections in 2005. Karzai was re-elected in 2009, followed by parliamentary elections in 2010 and a presidential race in 2014. Election violence has been a core concern for policy-makers and voters in Afghanistan. Insurgent attacks against state targets during election campaigns and on election day are orders of magnitude higher than in non-election periods (Condra et al., 2018), and violent spikes depress turnout. In the 2014 election, Condra et al. (2018) estimate that every election-day early morning direct fire attack reduced district-level turnout by 9%–14%, and a pre-election improvised explosive device deployed on a road decreased the total number of ballots cast at connected polling centers by an average of 7,400 votes.\(^5\) Furthermore, the authors show that

\(^3\)For example, Sudan ranked 172 of 178 in Transparency International's (TI) 2010 Corruption Perceptions Index, and turnout in that election is estimated at 72% (IDEA, 2016). Similarly, even in the face of extreme insurgent violence, turnout in Iraq's most recent election (which consistently ranks near the bottom of TI's index) was above 60% (IDEA, 2016). In Venezuela, 58 of 167 in TI's 2015 index, turnout was estimated at over 73% (IDEA, 2016).

\(^4\)Political efficacy is defined as “the feeling that individual political action does have, or can have, an impact upon the political process, i.e., the sense that it is worthwhile to perform one's civic duties” (Campbell, Gurin, & Miller, 1954, p. 187).

\(^5\)About 6.6 million ballots were cast in the first round of the 2014 election (NDI, 2014).
public opinion surveys indicate that exposure to this violence increased citizens’ dissatisfaction with the election process.

This history of insurgent violence and its effects help explain why Afghan government officials viewed robust turnout as critically important to enhancing public perceptions of government legitimacy. Preventing electoral violence was of paramount concern to officials in charge of security for the 2010 race. Insurgent violence was on the rise, and officials worried that the election would experience more attacks than the 2009 polls (Bergen, 2010). As Hincks (2018) explains, “[The Taliban] wants to make the state look weak, and what better way of doing so than making it clear that the state is unable to protect its own people?” The Taliban's guerrilla-style attacks around elections do not seek to gain territory, but rather to “humiliate the government where it is most visible” (Fisher, 2018). Officials from the Independent Election Commission (IEC) expressed fears that security would need to be sufficiently increased to allow voting to occur (Filkins & Wafa, 2010). The Afghan government thus worked closely with several key actors, including the Afghan National Security Forces and the International Security Assistance Force (ISAF), to begin security coordination efforts for 2010 much earlier than they had for 2009. In what was an “unprecedented” effort to secure this election (Nakamura & Londono, 2010), the government began training hundreds of thousands of new security personnel to deploy for the election; the training was focused on combating insurgent violence rather than civil policing methods. This government planning process included a risk assessment of all potential polling stations in order to determine which required additional security (NDI, 2011).

Ultimately, 52,000 ANP officers and 63,000 ANA officers were assigned near polling centers on election day in 2010 (DI, 2011). Afghan voters could not have voted without seeing and interacting with at least one police officer at polling station entrances, since citizens (including poll workers) were subjected to body searches before entering to make sure that no one was armed (Condra, 2014c; Nakamura & Londono, 2010). In a low-deployment area, a voter would see at least one officer at the entrance. Areas with higher deployments had more than one officer at the entrance, or additional police outside the walls of, or in alleys and roads leading into, polling centers.

While the government's security deployment largely focused on deterring insurgent violence, the Afghan Ministry of Interior (MOI) also sought to encourage public trust in the police ahead of the surge (Iyengar, 2010). Indeed, the ANP’s reputation as corrupt and predatory severely damaged public trust in the institution. As Perito (2009, p. 5) describes, long delays in salary payments for police motivated them to engage in “petty corruption that undermined public confidence.” The police force is 90% illiterate, and attrition and desertion rates are high; they have a long history of engaging in a wide range of criminal activity (Felbab-Brown, 2013; Rashid, 2008).

There is also considerable evidence that the police mistreat civilians (Giustozzi & Isaqzadeh, 2012). A 2010 survey focusing on police malfeasance revealed that recruits were forbidden to carry guns when they were off duty after reports that they were using them to rob civilians. Police frequently bribe civilians: “[W]hen [Afghan citizens] interact with the police, it is often to pay bribes or illegal

6For example, officials from the National Police Command Center (NPCC) reached out to senior and influential civilian intermediaries in Lashkar Ga district (Helmand Province) to broker deals with the Taliban. In exchange for insurgents allowing citizens to turn out at the polls, the government promised increased development aid through Provincial Reconstruction Teams and the Ministry of Rural Rehabilitation and Development (Condra, 2014c).

7To accelerate force deployment, Afghan National Army (ANA) training was shortened in 2010 from 12 to 6 weeks (Sedra, 2017, p. 173). After the responsibility for training Afghan National Police (ANP) recruits shifted from the U.S. State Department to the U.S. military in 2010, “the training course for the police predominantly comprised paramilitary tactics, with less than a week dedicated to instruction on civil police duties, including the constitution, the conduct of criminal proceedings and human rights” (Sedra, 2017, p. 186).
taxes” (Sedra, 2017, p. 179); 25% of UN survey respondents reported having paid at least one bribe to police in the previous year (UNODC, 2010; surely an undercount), and the police and the justice system were perceived to be the two most corrupt sectors in 2006 (Torabi & Delesgues, 2007). Police reportedly have also engaged in rape, torture, and extrajudicial executions of civilians (Giustozzi, 2008): “In 2010, nearly 200 policemen were accused of murder and just over 4,600 were involved in crimes in 3,026 separate cases sent to the Attorney General in Kabul” (Sedra, 2017, pp. 179–180).

Data from several public opinion surveys (described in more detail below) ahead of the 2010 election demonstrate that citizens perceived the police as predatory and abusive. Pashtuns, the largest ethnic group, have a particularly challenging relationship with the ANP, which is commonly thought to be dominated by Tajiks and Uzbeks. Of 19,579 respondents in the two Afghan National Quarterly Assessment Report (ANQAR) waves of quarterly surveys immediately before the election, 31% of Pashtuns reported seeing the police engage in corrupt acts, compared to only 17% of Tajiks and 9% of Uzbeks (Table 1, Panel B). These are not simply reflections of the geographic dispersion of corruption and ethnicity. Pashtun respondents are significantly more likely than others to report having seen corruption even when adding province fixed effects to a range of regression models in the ANQAR data. A different survey of residents in Kandahar Province (which is overwhelmingly populated by Pashtuns) (Table 1, Panel A) revealed that 73% of respondents disagreed a little or a lot with the statement, “ANP officers treat members of the local community with respect”; similarly, 74% disagreed with the statement, “ANP officers are well-respected by local people.” A full 62% of Kandahar respondents agreed with the statement, “ANP officers in my

<table>
<thead>
<tr>
<th>Variables</th>
<th>Observations</th>
<th>Mean (% agree)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Kandahar survey (August–October 2010)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANP officers in my area illiterate</td>
<td>369</td>
<td>0.724</td>
<td>0.448</td>
</tr>
<tr>
<td>ANP officers treat members of the local community with respect</td>
<td>369</td>
<td>0.274</td>
<td>0.446</td>
</tr>
<tr>
<td>ANP officers are well-respected by local people</td>
<td>369</td>
<td>0.263</td>
<td>0.441</td>
</tr>
<tr>
<td>ANP officers in my area sometimes beat people up</td>
<td>369</td>
<td>0.623</td>
<td>0.485</td>
</tr>
<tr>
<td>Most ANP officers are corrupt</td>
<td>369</td>
<td>0.637</td>
<td>0.482</td>
</tr>
<tr>
<td>ANP officers put the interests of their community before their own interests</td>
<td>369</td>
<td>0.298</td>
<td>0.458</td>
</tr>
<tr>
<td>Panel B: ANQAR survey (March and May/June 2010)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seen/experienced the police engage in corrupt acts (Pashtun respondents)</td>
<td>10,507</td>
<td>0.322</td>
<td>0.467</td>
</tr>
<tr>
<td>Seen/experienced the police engage in corrupt acts (Tajik respondents)</td>
<td>5,039</td>
<td>0.172</td>
<td>0.378</td>
</tr>
<tr>
<td>Seen/experienced the police engage in corrupt acts (Uzbek respondents)</td>
<td>1,204</td>
<td>0.0880</td>
<td>0.283</td>
</tr>
</tbody>
</table>
area sometimes beat people up.” In addition, 64% agreed, either a little or completely, with the statement, “most ANP officers are corrupt.” To the statement, “ANP officers put the interests of their community before their own interests,” 70% disagreed. In sum, there is considerable and systematic evidence that many Afghan civilians perceive the police as corrupt and predatory.8

4 | DATA AND ESTIMATION STRATEGY

4.1 | Data

We examine how policing affects electoral quality by determining whether Afghan policing deployments reduced violence and increased turnout in the 2010 election. We use data from seven sources: (a) levels of policing assigned to polling centers, which constitutes the intervention of interest, (b) certified voter turnout data from the IEC, our primary dependent variable, (c) insurgent violence data collected by ISAF, (d) data from ISAF’s ANQAR surveys, (e) primary survey data that we collected from 5,000 individuals across 471 polling center catchment areas in 19 provinces across all regions before and after the election, (f) survey data of the 369 residents of Kandahar referenced above, and (g) data from the Asia Foundation’s 2010 nationwide survey of 6,348 respondents fielded before the election. We provide a brief description of the data sources here; the Supporting Information contains a more detailed discussion of our data sources (Supporting Information Table S1 provides summary statistics).

4.1.1 | Levels of policing

To select polling centers that warranted higher levels of police deployment, the Afghan MOI, in coordination with ISAF, developed a three-tier categorization. “Secure” polling centers received no additional police beyond their normal baseline level (i.e., Low Security Deployment). These centers had one police officer responsible for checking voters for weapons before they could enter to vote. “Medium insecurity” polling centers received an extra deployment of police (i.e., Medium Security Deployment), and “highly insecure” polling centers received even more additional police (i.e., High Security Deployment). For example, medium and highly insecure centers had additional security officers adjacent to the polling center at road or alley entrances to the voting area. Police were home (not deployed) during the Muslim holy month of Ramadan (August 11 to September 9), and were deployed to polling centers a few days to a week leading up to the election on September 18.

4.1.2 | Voter turnout

Turnout data comes from the IEC. It shows the total number of ballots cast at each polling center, which contains multiple polling stations (DI, 2011, p. 32).

4.1.3 | Insurgent violence

We use declassified incident reports submitted by ISAF and Afghanistan security forces that report combat occurring between ISAF units and insurgents, commonly known as “significant activity”

8The ANQAR and Kandahar survey data indicate that people are generally willing to report on corruption, but there are differences in rates across ethnicities, suggesting the need to consider location fixed effects to partial out these differences in the regression analyses that follow.
reports (SIGACTs). These reports provide the incident's date, time, and georeferenced location. We use the subset of that dataset from March to December 2010 (29,324 incidents covering roughly 6 months before the election and 3 months after). We create a count of incidents occurring within a 1 km radius of each polling center to isolate the impact of police in the immediate vicinity of the location they were deployed to protect. While the SIGACTs do not capture all conceivable violence that civilians experienced, we discuss in the Supporting Information why they are a valid and useful measure of threats to civilians who were deciding whether to turn out to vote.

4.1.4 | Surveys

We use three different survey datasets related to Afghans’ opinions about the police to test our main hypothesis, including measures of local civilians’ perceptions of potential violence emanating from voting (separately from the objective SIGACTs measure) and views of the police, including the likely harm and corruption they produce.10

4.2 | Identification strategy

To estimate the effect of police force levels on insurgent violence and turnout, we rely on our knowledge of the Afghan government's plans to protect voting in the 2010 election via police deployment across polling centers and a plausibly exogenous source of variation in deployment increases, which we now explicate.

Based in part on the authors’ own interactions with the officials responsible for securing elections, we know the government and ISAF expressed significant concerns about the threat that insurgents posed to the election.11 Officials recognized that violence not only threatened democracy by depressing turnout, but also demonstrated the weakness of the Afghan state and lent credibility to the Taliban’s claim that the government lacked legitimacy (Condra et al., 2018). Thus, to boost turnout, the government focused on deploying security forces to deter violence.

Polling centers were classified as requiring low, medium, or high security deployments based largely on past levels of insurgent violence around the polling center (Iyengar, 2010).12 Officials had a general sense of the broad trends in insurgent violence within districts, but only considered the dynamics at individual centers in the most prominent cases. Members of the NPCC, ISAF, and MOI met at least monthly in early 2010 to review daily attacks across the country to determine the categorization of polling centers, according to a former MOI official who attended these meetings (Condra, 2014c).

9We examine violence within 1 km of polling centers in accordance with the Afghan government mandate of a force laydown of 1 km around polling centers. Author [Long] obtained this information while serving as an accredited observer of the 2010 election and was briefed by the IEC about security provisions multiple times. Interviews with officials involved in the deployment planning process confirm this (Condra, 2014a,b,c), as do independent election reports (FEFA, 2011, p. 46).

10The Supporting Information describes the sampling procedures, survey questions and implementation more fully.

11Iyengar provided independent objective assessments of research efforts for the ISAF commander and attended weekly meetings at the MOI with ministry officials and ISAF regional commanders responsible for deciding how to deploy police. Iyengar did not serve in an advisory capacity to ISAF or the Afghan government, so should be considered a passive observer with detailed knowledge of the process the government used to develop its deployment schedule.

12Multiple officials, across different organizations involved during and after the planning process articulated this decision rule to us (Condra, 2014a,b,c; Iyengar, 2010), which concurs with documentation of the process published after the election (FEFA, 2011; DI, 2011).
To systematically gauge how the government's levels of anticipated insurgent violence around polling areas affected the force deployments, we aggregate all insurgent attacks that occurred within a 1 km radius of a polling center in the 5 months leading up to the election. Using this much more detailed assessment, we show that the officials' categorization process, which relied on their (less detailed) sense of violence, resulted in sites located in areas with similar histories of violence, road access, and even population characteristics receiving different force levels. Indeed, once district traits are taken into account, the local history of violence around a polling center—either trends or levels—does almost nothing to explain its security status (Table 2).\(^{13}\) Thus, citizens could not decide ex ante whether to vote based on where police were likely to be deployed, because that assignment was conditionally random.

Therefore, a detailed examination of the assignment process—which involved personal participation, interviews of officials, and statistical analysis of the data—leads us to believe that, conditional on past insurgent violence in the area around the polling center, assignment of police deployment level was orthogonal to anticipated violence on election day. Controlling for levels of expected violence in a more detailed and systematic way than planning officials did reveals that

\(^{13}\)Broadening the geographic area (to 2 or 5 km buffers) that might have been relevant for anticipating election-day violence does not affect these results.

Table 2 Assignment of police deployment classification and violence

<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recent violence and cubic polynomial in past violence nearby</td>
<td>Adding Province FE</td>
<td>Adding District FE</td>
<td>Dropping last 4-weeks of violence District FE</td>
</tr>
<tr>
<td>SIGACTs (1-week lag)</td>
<td>0.031 (0.072)</td>
<td>0.058 (0.074)</td>
<td>0.067 (0.089)</td>
<td></td>
</tr>
<tr>
<td>SIGACTs (2-week lag)</td>
<td>0.039 (0.065)</td>
<td>−0.001 (0.067)</td>
<td>−0.004 (0.086)</td>
<td></td>
</tr>
<tr>
<td>SIGACTs (3-week lag)</td>
<td>−0.063 (0.058)</td>
<td>−0.080 (0.062)</td>
<td>−0.007 (0.071)</td>
<td></td>
</tr>
<tr>
<td>SIGACTs (4-week lag)</td>
<td>0.137** (0.059)</td>
<td>0.111* (0.061)</td>
<td>−0.169* (0.086)</td>
<td></td>
</tr>
<tr>
<td>Total violence previous 5 months</td>
<td>0.128 (0.275)</td>
<td>−0.019 (0.323)</td>
<td>−0.558* (0.335)</td>
<td>−0.626*** (0.239)</td>
</tr>
<tr>
<td>Total violence squared</td>
<td>−0.203 (0.155)</td>
<td>−0.128 (0.181)</td>
<td>0.267 (0.183)</td>
<td>0.215 (0.146)</td>
</tr>
<tr>
<td>Total violence cubed</td>
<td>0.018 (0.019)</td>
<td>0.013 (0.022)</td>
<td>−0.019 (0.023)</td>
<td>−0.021 (0.019)</td>
</tr>
<tr>
<td>Constant</td>
<td>1.308*** (0.029)</td>
<td>1.316*** (0.027)</td>
<td>1.333*** (0.007)</td>
<td>1.331*** (0.007)</td>
</tr>
<tr>
<td>Observations</td>
<td>1,823</td>
<td>1,823</td>
<td>1,823</td>
<td>1,823</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.004</td>
<td>0.068</td>
<td>0.316</td>
<td>0.314</td>
</tr>
</tbody>
</table>

Notes. Dependent variable is polling center security deployment category (1 = Low, 2 = Medium, 3 = High). Robust standard errors clustered at the district level in parentheses.

***\(p < 0.01\), **\(p < 0.05\), *\(p < 0.1\)
variation in the assignment of additional police to polling centers within the same district was ‘as if random,’ which allows us to estimate the causal impact of police on turnout. While the official records on the assignment process are insufficient to definitively demonstrate the conditional independence of assignment to different categories of security force deployment, our interviews and analysis provide no reason to think that the assignment was correlated with unobservable factors that would also influence turnout. Still, because of this ambiguity, we conduct a bounding exercise to quantify how large the selection on unobservables would have to be to account for our results (Supporting Information Table S7).

4.3 Estimating the effect of the augmented police presence on insurgent violence and turnout

Our main analysis of the effect of enhanced police deployments on election violence and turnout is limited to a subsample of the 5,524 total polling centers. Our subsample includes polling centers that meet three criteria. First, to avoid including polling centers where electoral fraud is suspected to have occurred, we omit all 1,324 centers that reported turnout in excess of an average of 590 votes across the polling sites within that center. Polling sites within each center were designed to have no more than 600 ballots cast, so any polling center whose sites’ average is close to that level is suspicious; the IEC used this threshold to nullify results (DI, 2011, p. 33). Second, we exclude all 1,502 non-fraudulent polling centers located in districts that do not have at least one polling center with a medium or high security provision classification, since we require within-district variation in security classifications for our estimation. Finally, in regressions that control for turnout in 2009, centers that were operational in 2010 but not in 2009 drop out of the model. After this pruning, we analyze 1,823 of 2,031 polling centers that have MOI security classification designations in 2010. Within that sample, the breakdown of security classification is 1,448 Low Security Deployment (79%), 181 medium (10%), and 194 high (11%).

In our full model we estimate the following using Ordinary Least Squares:

\[
P_{i} = \beta_{1}(V_{t-1})_{i} + \beta_{2}(V_{t-2})_{i} + \beta_{3}(V_{t-3})_{i} + \beta_{4}(V_{t-4})_{i} + \gamma_{1}(\text{Pre}_{i}) + \gamma_{2}(\text{Pre}_{i}^{2}) + \gamma_{3}(\text{Pre}_{i}^{3}) + d_{i} + \mu_{i}(1)
\]

where, Police\(_{i}\) is the security classification assigned to the polling center (low, medium, or high), \(V_{t-k,i}\) are four lags of insurgent violence (1–4 weeks prior to the election), and \(\text{Pre}_{i}\) is the average weekly violence in the earlier part of the 2010 fighting season (weeks \(t-5\) to \(t-22\), April through July), and \(d_{i}\) is a district fixed effect (or province in some specifications). We report robust standard errors clustered at the district level because that is the geographic level at which the ANP and Taliban operational command structures are typically organized.

If previous levels of violence predicted security force classification, we would expect to see this reflected in the results of Table 2. The lags of violence and cubic polynomial of the fighting season average levels of violence generally do not predict the assigned level of security force deployment very well (column 1), explaining less than 1% of the variance in security classifications. In column 2, we add province fixed effects to the model, which improves the model fit marginally, bringing the \(r^{2}\) up to 0.07. Adding district fixed effects in column 3 increases the explained variance to 32%. In the final

\(^{14}\)Below, we address whether including fraudulent polling centers in the sample affects the results. Callen and Long (2015) discuss the mechanics of rigging in 2010 and why 590 votes or more per station is a likely fraud indicator.
model (column 4), we exclude the weekly lags of violence and the cubic polynomial in average previous violence remains jointly significant.15 Supporting Information Table S4 replicates Table 2 but also includes polling centers that exhibited evidence of fraud (based on the definition above) and those that were open in 2010 but not in 2009. This does not change the results, providing further evidence that police deployment was not correlated with electoral fraud.

The evidence shows that past violence within 1 km of polling centers explains little of the variation in security force deployments. This is not surprising, partly because assignments were based on district- and higher-level data on violence, while we rely on much more local variation in violence levels for our data. Since the assignment strategy resulted in polling centers (in the same district) with similar histories of violence receiving different deployment assignments, we estimate the effect of policing on violence and turnout, controlling for the previous history of violence at each polling center.

Before doing so, we note two possible objections to our strategy and how we address them. First, while officials may have publicly and privately stated that security force deployment levels were assigned according to the area’s history of violence, they could have used some other (unknown to us) basis, perhaps in order to accomplish political objectives. In the Supporting Information, we analyze a set of factors that could plausibly affect both police deployment and turnout, rendering our main results spurious. The results of these tests of competing explanations support our main results and substantiate our claim of exogenous variation in assignments of security force levels.

Second, despite our best and repeated efforts, we have been unable to secure data on the number of police deployed to individual polling centers or the precise degree to which forces in the field adhered to the deployment schedule. While our interviews with multiple officials with first-hand knowledge of the deployment schedule and process suggest that the security deployment categorization scheme was followed (Condra, 2014a,c), we cannot empirically verify with full certainty that provincial-level officials followed polling center protocols. We therefore argue that our estimates of police deployments can be interpreted as intention-to-treat estimates, which take into account the fact that researchers cannot easily verify perfect compliance with assignment protocols (in our case, deployment; Dunning, 2012), a standard challenge in research that employs experimental or quasi-experimental designs in the field (e.g., Hyde, 2007). In the Supporting Information we show that our estimates are robust to controlling for other potential confounds. Following Altonji, Elder, and Taber (2005) and Nunn and Wantchekon (2011), we estimate how strong bias from unobservables would have to be (relative to selection on observables) to explain away the estimated effects of security force deployment we find (Supporting Information Table S7). The magnitude of the estimated effect on turnout in our analysis makes it unlikely that such unobserved factors could overwhelm those effects.

5 | MAIN RESULTS

5.1 | Effect of enhanced police presence on election-day violence

Deploying additional police on election day could decrease violence if deterrence was successful, or increase violence if it was not and extra deployments acted as targets for insurgent violence. For all regressions in Table 3 that estimate the effect of security deployment on violence, we measure police deployments in two ways: first as a binary variable that takes a value of “1” if the polling center was designated to receive additional police; and second, we include dummy variables for polling centers

15F tests for joint significance on violence lags show that we can reject the null hypothesis that the lags are jointly zero in these specifications.
<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Election week vs. week before</td>
<td>−0.009 (0.035)</td>
<td>0.019 (0.037)</td>
<td>0.019 (0.037)</td>
<td>0.006 (0.012)</td>
<td>0.029 (0.025)</td>
<td>0.014 (0.013)</td>
<td>0.021 (0.019)</td>
<td></td>
</tr>
<tr>
<td>Election week vs. 4-week pre-election average</td>
<td>0.006 (0.056)</td>
<td>0.050 (0.057)</td>
<td>−0.008 (0.041)</td>
<td>−0.013 (0.013)</td>
<td>0.009 (0.012)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High security</td>
<td>−0.021 (0.040)</td>
<td>−0.046 (0.131)</td>
<td>−0.063 (0.130)</td>
<td>−0.062 (0.131)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGACTs (2-week lag)</td>
<td>0.045 (0.184)</td>
<td>0.046 (0.185)</td>
<td>0.045 (0.184)</td>
<td>0.046 (0.185)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGACTs (3-week lag)</td>
<td>−0.047 (0.130)</td>
<td>−0.046 (0.131)</td>
<td>−0.047 (0.130)</td>
<td>−0.046 (0.131)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGACTs (4-week lag)</td>
<td>−0.063 (0.130)</td>
<td>−0.062 (0.131)</td>
<td>−0.063 (0.130)</td>
<td>−0.062 (0.131)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGACTs (5-week lag)</td>
<td>0.343 (0.209)</td>
<td>0.343 (0.210)</td>
<td>0.251 (0.195)</td>
<td>0.250 (0.195)</td>
<td>−0.045 (0.074)</td>
<td>−0.046 (0.074)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGACTs (6-week lag)</td>
<td>−0.035 (0.208)</td>
<td>−0.034 (0.208)</td>
<td>−0.035 (0.208)</td>
<td>−0.034 (0.208)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGACTs (7-week lag)</td>
<td>0.131 (0.158)</td>
<td>0.132 (0.158)</td>
<td>0.131 (0.158)</td>
<td>0.132 (0.158)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGACTs (8-week lag)</td>
<td>−0.156 (0.176)</td>
<td>−0.156 (0.177)</td>
<td>−0.156 (0.176)</td>
<td>−0.156 (0.177)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total violence previous 5 months</td>
<td>0.538 (0.678)</td>
<td>0.534 (0.680)</td>
<td>0.646 (0.601)</td>
<td>0.642 (0.605)</td>
<td>−0.365 (0.248)</td>
<td>−0.367 (0.251)</td>
<td>−0.639*** (0.197)</td>
<td>−0.640*** (0.197)</td>
</tr>
</tbody>
</table>

(Continues)
<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total violence squared</td>
<td>0.252 (0.492)</td>
<td>0.254 (0.492)</td>
<td>0.028 (0.392)</td>
<td>0.029 (0.392)</td>
<td>0.229* (0.133)</td>
<td>0.230* (0.132)</td>
<td>−0.065 (0.118)</td>
<td>−0.065 (0.118)</td>
</tr>
<tr>
<td>Total violence cubed</td>
<td>−0.070 (0.065)</td>
<td>−0.070 (0.065)</td>
<td>−0.054 (0.052)</td>
<td>−0.054 (0.052)</td>
<td>−0.041** (0.017)</td>
<td>−0.041** (0.017)</td>
<td>0.008 (0.016)</td>
<td>0.008 (0.016)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.062*** (0.017)</td>
<td>0.062*** (0.017)</td>
<td>0.050*** (0.018)</td>
<td>0.050*** (0.018)</td>
<td>−0.005 (0.006)</td>
<td>−0.005 (0.007)</td>
<td>0.006 (0.008)</td>
<td>0.006 (0.008)</td>
</tr>
<tr>
<td>Observations</td>
<td>1,823</td>
<td>1,823</td>
<td>1,823</td>
<td>1,823</td>
<td>1,823</td>
<td>1,823</td>
<td>1,823</td>
<td>1,823</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.503</td>
<td>0.503</td>
<td>0.510</td>
<td>0.510</td>
<td>0.645</td>
<td>0.646</td>
<td>0.790</td>
<td>0.790</td>
</tr>
</tbody>
</table>

Notes. All regressions include district fixed effects. Robust standard errors clustered at the district level in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.
that received “medium” or “high” security provision classifications. We estimate these specifications using OLS:

\[
\Delta V_i = \alpha_1(M_i) + \alpha_2(H_i) + \beta_1(V_{t-1})_i + \beta_2(V_{t-2})_i + \beta_3(V_{t-3})_i + \beta_4(V_{t-4})_i + \gamma_1(\overline{V}_{pre_i}) + \gamma_2(\overline{V}_{pre_i}^2) + \gamma_3(\overline{V}_{pre_i}) + \delta_i + \mu_i,
\]

where \(M_i \) and \(H_i \) are dummy variables for whether a polling center was assigned a medium or high security provision classification, \(V_{t-k} \) are lags of weekly violence prior to the last period of the difference, and the \(\overline{V}_{pre_i} \) are prior fighting season violence, as before.

Across the specifications in Table 3, \(\Delta V_i \) denotes a series of differences in violence within 1 km of the polling center: election week vs. the week prior to the election (columns 1–2), election week vs. the average violence in the 4 weeks before the election (columns 3–4), the average violence during the 4 weeks after the election vs. the average violence during the 4 weeks prior to the election (columns 5–6), and the average violence during the 8 weeks after the election vs. the average violence during the 8 weeks prior to the election (columns 7–8). All models include district fixed effects and robust standard errors clustered by district.

The results show that a polling center’s security status does not have a strong discernible effect on the change in violence experienced at polling centers before or during/after the election. Conditional on accounting for the level of historical violence in a district (again, as the best measure officials had of anticipated violence on election day), within-district increases in police deployments neither systematically increased nor decreased the level of election-day violence. Given our identifying assumptions, this means that increased police deployments—by either deterring or attracting insurgent violence—are unlikely to account for any observed changes in turnout.

5.2 | Effect of enhanced police presence on turnout

Next, we assess the effect of deploying extra police on turnout at polling centers by estimating a series of regressions including:

\[
T_{2010} = \alpha_1(M_i) + \alpha_2(H_i) + \beta_1(V_{t-1})_i + \beta_2(V_{t-2})_i + \beta_3(V_{t-3})_i + \beta_4(V_{t-4})_i + \gamma_1(\overline{V}_{pre_i}) + \gamma_2(\overline{V}_{pre_i}^2) + \gamma_3(\overline{V}_{pre_i}) + \delta X_i + \delta_i + \mu_i,
\]

where raw turnout in 2010 is a function of the same covariates as those in the violence regressions. \(X_i \) is a vector of controls, which varies across models. Here, we present the results of models that control for the factors we believe are the most likely confounds.\(^{16}\) The first control is turnout in 2009. Second, we include the log of the absolute value of the difference in vote share between Karzai and Abdullah in the 2009 election, which we use as a measure of electoral competitiveness. We reason that turnout might increase for more competitive elections, since citizens will see their vote as more valuable. Third, we test for possible spatial spillovers by including (a) a dummy variable if a polling center within 1 km was also assigned medium/high deployment, and (b) a count of the total number of polling centers within 1 km.

Table 4A reports the results using the binary measure of police deployment classification, coding the least secure polling centers as 1 (i.e., combining high and medium deployment categories) and the

\(^{16}\)In the Supporting Information we develop the logic of these tests more fully and report the results of additional robustness checks.
TABLE 4

(A) Effect of police deployment classification (medium/high combined) on polling center-level turnout in 2010 election. (B) Effect of police deployment classification (medium/high separated) on polling center-level turnout in 2010 election

<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium/high security deployment</td>
<td>−33.36***</td>
<td>−33.59***</td>
<td>−33.85***</td>
<td>−25.60**</td>
<td>−35.98***</td>
<td>−29.84***</td>
<td>−30.00***</td>
<td>−30.36***</td>
<td>−27.19**</td>
<td>−32.22***</td>
</tr>
<tr>
<td></td>
<td>(11.93)</td>
<td>(12.03)</td>
<td>(12.15)</td>
<td>(11.96)</td>
<td>(12.79)</td>
<td>(10.79)</td>
<td>(10.91)</td>
<td>(11.05)</td>
<td>(11.17)</td>
<td>(11.70)</td>
</tr>
<tr>
<td>SIGACTs prediction</td>
<td>−2.70 (13.64)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−1.95 (14.58)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1-week lag)</td>
<td></td>
</tr>
<tr>
<td>SIGACTs (2-week lag)</td>
<td>4.10 (16.67)</td>
<td>−4.04 (17.08)</td>
<td>3.49 (16.98)</td>
<td></td>
<td></td>
<td></td>
<td>−8.61 (17.18)</td>
<td>−11.86 (16.96)</td>
<td>−2.74 (19.80)</td>
<td>−0.79 (20.26)</td>
</tr>
<tr>
<td>SIGACTs (3-week lag)</td>
<td>−9.50 (19.50)</td>
<td>−11.42 (18.34)</td>
<td>−1.55 (18.31)</td>
<td></td>
<td></td>
<td></td>
<td>−4.47 (18.07)</td>
<td>−4.85 (17.98)</td>
<td>3.66 (17.50)</td>
<td></td>
</tr>
<tr>
<td>Total violence previous 5 months</td>
<td>28.27 (83.18)</td>
<td>36.95 (82.20)</td>
<td>41.40 (80.06)</td>
<td></td>
<td></td>
<td></td>
<td>7.80 (74.88)</td>
<td>12.28 (74.96)</td>
<td>21.15 (74.08)</td>
<td></td>
</tr>
<tr>
<td>Total violence squared</td>
<td></td>
</tr>
<tr>
<td>Total violence cubed</td>
<td>−2.51 (6.083)</td>
<td>−1.27 (5.77)</td>
<td>−1.68 (6.00)</td>
<td></td>
<td></td>
<td></td>
<td>−3.93 (5.39)</td>
<td>−3.41 (5.36)</td>
<td>−3.08 (5.41)</td>
<td></td>
</tr>
<tr>
<td>Log(</td>
<td>Karzai VS − Abdullah VS</td>
<td>))</td>
<td>−23.24***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−6.816*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.43)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3.95)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC treated within 1 km (=1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.92 (23.94)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.93 (21.41)</td>
</tr>
</tbody>
</table>

(Continues)
<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PCs within 1 km</td>
<td>–8.85**</td>
<td>0.36***</td>
<td>0.36***</td>
<td>0.36***</td>
<td>0.36***</td>
<td>–9.03***</td>
<td>(3.84)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Turnout in 2009</td>
<td>0.36***</td>
<td>0.36***</td>
<td>0.36***</td>
<td>0.36***</td>
<td>0.36***</td>
<td>0.36***</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Constant</td>
<td>335.38***</td>
<td>335.85***</td>
<td>336.21***</td>
<td>203.31***</td>
<td>342.99***</td>
<td>248.09***</td>
<td>(2.45)</td>
<td>(3.48)</td>
<td>(4.01)</td>
<td>(25.27)</td>
</tr>
<tr>
<td>Medium security deployment</td>
<td>–45.28***</td>
<td>–45.64***</td>
<td>–46.26***</td>
<td>–34.10*</td>
<td>–48.46***</td>
<td>–39.88**</td>
<td>(16.70)</td>
<td>(16.84)</td>
<td>(16.99)</td>
<td>(17.60)</td>
</tr>
<tr>
<td>High security deployment</td>
<td>–23.19 (14.23)</td>
<td>–23.37 (14.38)</td>
<td>–23.35 (14.48)</td>
<td>–18.54 (13.89)</td>
<td>–24.54* (14.82)</td>
<td>–21.26* (12.80)</td>
<td>0.491</td>
<td>0.496</td>
<td>0.494</td>
<td></td>
</tr>
<tr>
<td>SIGACTs prediction</td>
<td>–3.15 (13.68)</td>
<td>–2.32 (14.55)</td>
<td>(B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGACTs (1-week lag)</td>
<td>–9.00 (17.76)</td>
<td>–0.43 (18.83)</td>
<td>–7.79 (17.66)</td>
<td>–2.59 (19.76)</td>
<td>–0.69 (20.22)</td>
<td>–1.41 (19.40)</td>
<td>(16.58)</td>
<td>(16.99)</td>
<td>(17.60)</td>
<td>(17.49)</td>
</tr>
<tr>
<td>SIGACTs (2-week lag)</td>
<td>2.64 (16.58)</td>
<td>–4.93 (17.00)</td>
<td>2.05 (16.89)</td>
<td>–9.88 (17.02)</td>
<td>–12.85 (16.82)</td>
<td>–10.47 (17.07)</td>
<td>(19.84)</td>
<td>(18.40)</td>
<td>(18.44)</td>
<td>(18.20)</td>
</tr>
<tr>
<td>SIGACTs (3-week lag)</td>
<td>–9.94 (19.60)</td>
<td>–11.71 (18.40)</td>
<td>–1.99 (18.44)</td>
<td>–4.86 (18.15)</td>
<td>–5.16 (18.05)</td>
<td>3.25 (17.60)</td>
<td>(23.25)</td>
<td>(24.34)</td>
<td>(22.70)</td>
<td></td>
</tr>
<tr>
<td>SIGACTs (4-week lag)</td>
<td>–13.49 (23.25)</td>
<td>–16.42 (24.34)</td>
<td>–14.06 (22.70)</td>
<td>–11.22 (25.08)</td>
<td>–14.09 (25.77)</td>
<td>–11.77 (24.51)</td>
<td>31.26 (85.45)</td>
<td>38.85 (83.94)</td>
<td>44.50 (82.38)</td>
<td></td>
</tr>
<tr>
<td>Total violence previous 5 months</td>
<td>31.26 (85.45)</td>
<td>38.85 (83.94)</td>
<td>44.50 (82.38)</td>
<td>10.46 (76.83)</td>
<td>14.36 (76.66)</td>
<td>23.94 (76.03)</td>
<td>(Continues)</td>
<td>(Continues)</td>
<td>(Continues)</td>
<td>(Continues)</td>
</tr>
<tr>
<td>Total violence squared</td>
<td>9.03 (52.70)</td>
<td>3.27 (51.28)</td>
<td>0.88 (51.79)</td>
<td>23.22 (48.54)</td>
<td>21.29 (48.45)</td>
<td>14.90 (48.50)</td>
<td>(Continues)</td>
<td>(Continues)</td>
<td>(Continues)</td>
<td>(Continues)</td>
</tr>
<tr>
<td>Variables</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Total violence cubed</td>
<td>−2.40 (6.15)</td>
<td>−1.20 (5.82)</td>
<td>−1.55 (6.06)</td>
<td>−3.82 (5.44)</td>
<td>−3.33 (5.40)</td>
<td>−2.96 (5.46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(</td>
<td>Karzai VS − Abdullah VS</td>
<td>−23.16*** (4.44)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC treated within 1 km (=1)</td>
<td>2.69 (24.04)</td>
<td>1.04 (21.72)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PCs within 1 km</td>
<td>−8.87** (3.83)</td>
<td>−9.05*** (3.46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnout in 2009</td>
<td>0.36*** (0.05)</td>
<td>0.36*** (0.05)</td>
<td>0.36*** (0.05)</td>
<td>0.33*** (0.05)</td>
<td>0.36*** (0.05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>335.48*** (2.45)</td>
<td>336.03*** (3.47)</td>
<td>336.35*** (4.01)</td>
<td>203.86*** (25.37)</td>
<td>343.21*** (5.03)</td>
<td>248.29*** (13.00)</td>
<td>248.71*** (12.70)</td>
<td>249.58*** (12.55)</td>
<td>216.79*** (24.38)</td>
<td>256.49*** (12.85)</td>
</tr>
<tr>
<td>(N)</td>
<td>1,823</td>
<td>1,823</td>
<td>1,823</td>
<td>1,817</td>
<td>1,823</td>
<td>1,823</td>
<td>1,823</td>
<td>1,823</td>
<td>1,817</td>
<td>1,823</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.429</td>
<td>0.429</td>
<td>0.432</td>
<td>0.458</td>
<td>0.435</td>
<td>0.490</td>
<td>0.490</td>
<td>0.491</td>
<td>0.497</td>
<td>0.495</td>
</tr>
</tbody>
</table>

Notes. All models include district fixed effects. "PC treated within 1 km" is a dummy variable that equals 1 if any polling center (PC) within a 1 km radius received treatment; "Total PCs within 1 km" is a variable equal to the number of PCs within a 1 km radius. Robust standard errors clustered at the district level in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.
most secure as 0 (i.e., low deployment). Table 4B reports the results of models that include dummy variables for the medium and high security classifications, with the most secure classification (low deployment) as the omitted category.

In column 1 of both tables, we report the most basic regression of turnout on the binary security deployment classification variable (combined medium/high), including a district fixed effect. Column 2 adds a control for predicted levels of violence at polling centers, generated from a linear regression of election-day violence on four (week) lags of violence, violence in the previous 5 months, and the squared and cubic levels of violence over that period. Column 3 has controls for previous levels of violence in the area. In column 4, we include a measure of electoral competitiveness. Column 5 includes variables designed to account for the possibility that there may have been spatial externalities in the assignment of police deployment classification. The models estimated in columns 6–10 have the same specification as their respective counterparts in columns 1–5, except that they include a control for turnout in 2009.17

Both tables show that having a higher security classification (medium or high) has an estimated negative effect on raw turnout. Across specifications (columns 1–5), polling centers that were assigned more police (i.e., medium or high) experienced a statistically and substantively significant 30% decrease in turnout relative to the previous election. This relationship holds when we control for electoral competitiveness (columns 4 and 9), spatial spillovers (columns 5 and 10), and 2009 turnout (columns 6–10).

The null result on violence predicting the assigned level of security force deployment is unaffected when we include fraudulent polling centers (those that engaged in ballot stuffing to inflate vote totals) in the analysis (Supporting Information Table S4). The main results on turnout are consistent with a police presence being either positively or negatively associated with fraudulent polling stations, depending on whether they facilitated or hindered political operatives’ altering of results. Supporting Information Tables S5A,B replicate Tables 4A,B, respectively, but include fraudulent polling centers and those that were not open in 2009. The null results in columns 1–5 of Supporting Information Table S5A,B—which include all polling centers—suggest that any bias due to fraud is in the opposite direction of our results (dropping clearly fraudulent polling centers weakens the result). Including fraudulent polling stations that were also open in 2009 and controlling for 2009 turnout (columns 6–10 of both tables) produces results that are statistically similar to the restricted sample in Tables 4A–B but substantively smaller, again suggesting any bias due to fraud is in the opposite direction of our main result. Supporting Information Table S5B indicates that the effects on turnout are larger in medium than high security deployment polling centers, which is also consistent with a correlation between higher levels of police deployment and greater electoral corruption (i.e., higher turnout). Again, this is biased against the main result. Overall, the evidence suggests that fraud systematically coordinated with security force deployments is lending a positive bias to estimates of the effect of deployments on turnout, so the negative conditional correlation we observe in Tables 4A–B should produce even more confidence in the causal nature of the estimated effects.

Taken together, these results are striking. Previous levels of violence do not predict the security deployment classification of polling centers, and after controlling for previous levels of violence, the majority of variation in these assignments is left unexplained. This allows us to identify the effect of extra police on turnout and violence. Extra police had an unintended and deleterious effect on turnout, but not apparently through a violence deterrence mechanism. We therefore next turn to explanations

17We do not use first differences in turnout across the two elections because this specification is more restrictive than one that has outcomes in the period of interest as the dependent variable (and includes previous levels as an additional control), since it allows for the coefficient to be different than −1.
that predict a decrease in turnout and compare our main results to the observable implications in relation to our main hypothesis.

6 | EXPLAINING A REDUCTION IN TURNOUT

6.1 | Police as targets?

Citizens could associate a heightened police presence with a higher probability of insurgent violence and stay home because of a perceived decrease in voter safety—even if, as we have shown, extra police did not increase levels of insurgent violence. Some qualitative accounts of Afghan elections suggest this possibility,\(^\text{18}\) although reports differ on whether the threat of violence actually deterred voters.\(^\text{19}\) The Asia Foundation's annual nationwide survey for 2010 fielded prior to the election found that the proportion of respondents who identified fear for their safety as the reason for the lack of freedom of expression in their area was lower in 2010 (25%) than in any previous year (Tariq, Ayoubi, & Haqbeen, 2011, p. 95). Similarly, “there appeared to be less violence than during the [2009] election…Afghan security officials dismissed the [2010] attacks as ‘insignificant’ and said they did not hamper voting, adding that 92 percent of polling stations were open Saturday” (AP, 2010). However, if an enhanced police presence signaled the likelihood of greater violence to citizens, this may have convinced them to stay home.

To more systematically test the implications of this possibility, we use primary survey data. Respondents who reported that they would not vote (baseline) or did not vote (endline) in the 2010 election were asked why. If the signaling mechanism was driving behavior, we would expect a greater percentage of citizens around polling centers that were designated medium or high security deployment to cite fear of election-day violence as the reason they stayed home, relative to the proportion of citizens around low-security centers who cited the same reason. We regress the number of respondents that cited “insecurity; I fear/feared attacks” on a binary variable indicating the polling center's security classification (medium/high vs. low security). As in the other models, we include violence over the previous 5 months, as well as the squared and cubed terms, as regressors (Table 5).

Being located near a medium-/high-security polling center is not associated with a higher likelihood of citing violence and insecurity as a reason for not voting (column 2). This is not to say that insecurity did not influence citizens’ decisions about whether to turn out: about 17% of citizens who did not vote cited this as the reason retrospectively (and 17% prospectively).\(^\text{20}\) But there is no difference in frequency across polling centers with different security deployment levels, and citizens gave

\(^{18}\)The Taliban warned of violence on and around election day in an effort to deter voting in 2009 and 2010 (Farmer, 2010; DI, 2011). According to some observers, “[m]ore of the people we interviewed and spoke with in 2010 seemed to be taking the threat of violence seriously than they did in 2009”, and “it was more the threat of violence in the days leading up to voting [in 2010] that reshaped individual choices than the actual instances of violence that did eventually occur [on election day]” (Coburn & Larson, 2014, pp. 168–169).

\(^{19}\)Other accounts suggest that the threat of violence was not an important determinant of local turnout. For example, while Coburn and Larson (2014, p. 169) point to the threat of violence as a factor in voting behavior, they also provide numerous first-hand accounts which demonstrate that “relatively few of the people we talked to appeared to actually decide not to vote based on this threat.”

\(^{20}\)These data were collected from a small subset of polling centers, but this figure is in line with that reported by the Asia Foundation's nationwide survey fielded prior to the election: of those who said that they were somewhat or very unlikely to vote in the upcoming election, 22% cited “insecurity” as the reason (Tariq et al., 2011, p. 114). This should lessen concerns that the polling centers included in our survey are dissimilar from the full set of polling centers along dimensions that would affect respondents’ level of fear of insecurity, and decisions about whether to turn out.
many other reasons for not voting, including a lack of interest, undesirable candidates, and not being eligible.

In column 1, we test whether variation in security deployment levels across polling centers is associated with more pre-election citations of violence as a reason for not planning to vote. There is no evidence of this either, though we note that because the baseline survey was fielded in August (before the security force laydown began) these citizens had not yet experienced variation in police deployment. Therefore, we cannot adequately test this implication of the mechanism in the pre-election phase. Still, the results in column 1 further assuage concerns about our identification strategy or the spuriousness of the results. If an unobserved factor is driving the assignment of security force deployment levels and correlates with citizens’ anticipation of violence, we would expect to observe variation across polling center categories in the number of people citing fear of violence as a reason they planned not to vote. We do not, and this lack of systematic evidence of a violence signaling mechanism is corroborated by both quantitative survey evidence from Afghanistan that previous violence exposure and actual attacks did not correlate with individuals’ self-reported turnout (Jung & Long, 2018), as well as qualitative assessments of scholars who observed the voting.

6.2 Corrupt police?

Next, we test our hypothesis that voters were more likely to avoid polling centers with higher levels of police deployment in order to avoid additional interactions with police who they perceived to be corrupt and predatory. Data from several sources suggest that Afghan citizens feared interacting with the police during the election not because such deployments signaled increased insecurity to civilians through anticipated swells in insurgent violence, but rather because of the police themselves. The Asia Foundation’s 2010 nationwide pre-election survey (Tariq et al., 2011) suggests that Afghans have a substantial fear of the police and of voting in national elections. Respondents were asked to give their level of fear (none, some, a lot) when voting in a national election and when encountering ANP officers (Supporting Information Table S10). Roughly 53% reported having some or a lot of fear of an encounter with the ANP, and 60% did so for voting; the union of those two represents 70% of the population. Fear of the police is therefore correlated with not desiring to vote. Among the group with no fear of voting (who might be the most likely to turn out), fully 44% reported some or a lot of fear of the ANP. Of those with some fear of voting (who might be the most sensitive to factors that

<table>
<thead>
<tr>
<th>Variables</th>
<th>Insecurity/fear of attacks (baseline)</th>
<th>Insecurity/fear of attacks (endline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium or high security deployment</td>
<td>0.022 (0.097)</td>
<td>−0.200 (0.129)</td>
</tr>
<tr>
<td>Total violence previous 5 months</td>
<td>−1.426 (3.043)</td>
<td>−0.251 (1.206)</td>
</tr>
<tr>
<td>Total violence squared</td>
<td>−3.273 (18.071)</td>
<td>−2.748 (7.495)</td>
</tr>
<tr>
<td>Total violence cubed</td>
<td>25.271 (28.089)</td>
<td>11.572 (11.724)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.120*** (0.039)</td>
<td>0.220*** (0.014)</td>
</tr>
<tr>
<td>Observations</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>R^2</td>
<td>0.208</td>
<td>0.278</td>
</tr>
</tbody>
</table>

Notes. All regressions include district fixed effects. Robust standard errors clustered at the district level in parentheses.
***$p < 0.01$, **$p < 0.05$, *$p < 0.1$.**
increase their fear of turning out), 63% had some or a lot of fear about the ANP. Of those expressing a lot of fear of voting (who might be expected to stay home), 78% reported some or a lot of fear of an ANP encounter.

Additional pre-election accounts of police behavior are instructive for understanding election day police–citizen interactions. As a NATO report from 2010 noted, “most Afghans had come to view the ANP as lawless armed men, rather than trusted law enforcement officials” (quoted in Sedra, 2017, p. 182). In the few months before the election, the government began deploying more soldiers and police and setup more checkpoints on roads: “Besides choking off Taliban routes into Kandahar, the checkpoints are designed to persuade Afghans that the arrival of U.S.-trained forces will end endemic police corruption” (Nissenbaum, 2010b). But U.S. officials noted that regular Afghan police stationed there setup their own checkpoints a few hundred yards away from the U.S.-monitored ones.21 On election day in Kabul, civilians complained that 800 soldiers kept people from voting at a high school that served as a polling center (Boone, 2010). Since the government deployed the ANA and ANP in concentric circles around polling centers to inspect vehicular and foot traffic, more police meant more interactions with police. Once citizens became aware of the heightened police presence in their area leading up to the election and on election day, their prior (even election-week) experience with the police’s corrupt and predatory behavior may therefore have led them to stay home to avoid potentially injurious interactions with police.

Responses from our pre- and postelection surveys demonstrate how police deployments affected variation in responses to questions designed to evaluate people’s views of the police and the government more generally (Table 6). As prominent scholars in the well-established procedural justice literature have noted, “[p]eople's reactions to authorities are shaped by their judgments about how fairly those authorities make decisions and how respectfully they treat the people over whom they exercise their authority” (Tyler, 2005, p. 326). If lower turnout in medium-/high-deployment areas is due to increasing perceptions of the police as corrupt and the state as illegitimate, police deployments that produce more interactions with citizens should negatively correlate with views of the government as a legitimate authority on many dimensions: whether the state is the appropriate authority for dispute resolution,22 the importance of paying taxes,23 and the performance of the central government (columns 3–5).24 But police deployment should be less likely to correlate with more general opinions about Afghanistan’s regime type and satisfaction with Afghan democracy (columns 1–2).25 Panel A regresses the pre-election (baseline) mean response value to these questions at the polling center level on security classification, as well as previous levels of violence. Panel B provides regression results from postelection responses as the dependent variable. In Panel C, we take the difference between postelection and pre-election responses as the dependent variable and regress that change on security classification and previous violence.

Focusing on the differenced results in Panel C, attitudes about democracy do not change much with security status (columns 1–2). Yet substantial negative movements occur in responses to three questions that suggest interactions with corrupt police. First, the percentage of respondents who would

21 As the commander of coalition forces in southern Afghanistan noted: “I suspect that the (Afghan National Police) are quietly trying to create another checkpoint around the corner so that their income isn’t too disrupted” (Nissenbaum, 2010b). In other parts of the country, police setup checkpoints expressly to “shake down” citizens (Nissenbaum, 2010a).

22 “If you had a dispute with a neighbor, who would you trust to settle it?”

23 “How important is it to pay taxes?”

24 “Does the central government do an [excellent/good/just fair/poor] job?”

25 “In your opinion, is Afghanistan a democracy?”; “Overall, how satisfied are you with the way democracy works?”
<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is Afghanistan a democracy?</td>
<td>0.184*** (0.049)</td>
<td>−0.186 (0.129)</td>
<td>0.134 (0.082)</td>
<td>0.019 (0.039)</td>
<td>0.129 (0.156)</td>
</tr>
<tr>
<td>Satisfaction with Afghan democracy</td>
<td>−0.822 (2.337)</td>
<td>0.089 (0.994)</td>
<td>−1.233 (1.913)</td>
<td>−1.030 (1.216)</td>
<td>−2.080 (1.693)</td>
</tr>
<tr>
<td>Will you use courts or police to solve dispute?</td>
<td>18.254 (26.216)</td>
<td>−10.968 (11.847)</td>
<td>−24.238 (25.941)</td>
<td>−10.116 (23.061)</td>
<td>−17.586 (32.188)</td>
</tr>
<tr>
<td>How important is it to pay your taxes?</td>
<td>0.679*** (0.024)</td>
<td>0.872*** (0.010)</td>
<td>0.273*** (0.024)</td>
<td>0.515*** (0.012)</td>
<td>0.569*** (0.023)</td>
</tr>
<tr>
<td>Is the central government doing a good job?</td>
<td>130</td>
<td>121</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>R^2</td>
<td>0.217</td>
<td>0.223</td>
<td>0.189</td>
<td>0.372</td>
<td>0.318</td>
</tr>
</tbody>
</table>

Panel A: Pre-election responses

<table>
<thead>
<tr>
<th>Medium or high security deployment</th>
<th>0.104 (0.123)</th>
<th>0.082 (0.174)</th>
<th>−0.027 (0.047)</th>
<th>−0.126* (0.062)</th>
<th>−0.260*** (0.024)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total violence previous 5 months</td>
<td>1.641** (0.629)</td>
<td>−0.476 (0.999)</td>
<td>2.524** (0.928)</td>
<td>1.171 (1.101)</td>
<td>1.843** (0.620)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.431</td>
<td>0.243</td>
<td>0.343</td>
<td>0.188</td>
<td>0.320</td>
</tr>
</tbody>
</table>

Panel B: Post-election responses

<table>
<thead>
<tr>
<th>Medium or high security deployment</th>
<th>−0.079 (0.158)</th>
<th>0.274 (0.310)</th>
<th>−0.162*** (0.052)</th>
<th>−0.145 (0.100)</th>
<th>−0.389** (0.176)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total violence previous 5 months</td>
<td>2.463 (2.516)</td>
<td>−0.491 (1.837)</td>
<td>3.757 (2.136)</td>
<td>2.201 (1.748)</td>
<td>3.923* (2.140)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.682*** (0.008)</td>
<td>0.798*** (0.011)</td>
<td>0.198*** (0.010)</td>
<td>0.440*** (0.009)</td>
<td>0.449*** (0.013)</td>
</tr>
</tbody>
</table>

Panel C: Change in responses

<table>
<thead>
<tr>
<th>Medium or high security deployment</th>
<th>−6.586 (18.402)</th>
<th>1.421 (12.717)</th>
<th>−33.102*** (13.516)</th>
<th>−12.688 (11.631)</th>
<th>−30.310* (15.929)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total violence previous 5 months</td>
<td>−7.429 (31.589)</td>
<td>−6.253 (21.035)</td>
<td>56.338** (23.072)</td>
<td>26.662 (19.251)</td>
<td>54.633* (27.551)</td>
</tr>
</tbody>
</table>

(Continues)
trust either district officials or the police in a dispute decreased from before to after the election in areas designated to receive more police during the election (column 3). Second, respondents in areas receiving additional security forces become less likely to view paying taxes as important (column 4), though this is not a statistically strong result. Third, respondents’ rating of how well the central government is doing its job decreases (column 5). For most citizens, the police are the most visible embodiment of the central government (Soss & Weaver, 2017); their perceptions of central government performance are thus linked to the quality of their interactions with the police. These results are consistent with the theory based on the police as a symbol of legitimate government and law and order.26

Why would these potential interactions with more corrupt police drive down turnout in this case? We suggested above that the level of personal political efficacy might be particularly important for determining whether deploying additional corrupt security forces around elections increases or decreases turnout. Consistent with this argument, we note that political efficacy is low in Afghanistan, even compared to other countries struggling against corruption. According to a 2010 nationwide survey, only 12% of respondents felt that they could have a lot of influence over government decisions through political participation; 25% felt they had no influence at all. In some regions (the southeast, greater Kabul, Hazarajat) a full third of respondents said they had no ability to influence government decisions (Tariq, Ayoubi, & Haqbeen, 2010, pp. 96–97). To put these attitudes into perspective, consider the levels of political efficacy in other emerging democracies where corruption was a governance problem in this period (TI, 2010) and for which we have comparable data. The percentage of respondents reporting that their vote would have no influence on government policy was only 7.6% in Mexico (2006), 11.4% in Latvia (2010), 4.8% in the Philippines (2010), 6.3% in Peru (2011), and 10.6% in Thailand (2007) (The Comparative Study of Electoral Systems, 2015).

In interpreting the negative effect of police deployments on turnout in the 2010 election, our results support the argument that voters wanted to avoid interactions with police, who they see as corrupt and predatory. Exposure to the police negatively affected Afghans’ view of the police and government performance in providing two key public goods essential to state-building: justice and redistribution

26In Table 6, any natural bias resulting from an imbalance across security force deployment categories prior to deploying security forces (e.g., citizens around medium-/high-security polling centers are more likely to view Afghanistan as a democracy in our survey) would cause us to expect bias to increase turnout around polling centers that were to receive more police. The imbalance makes it more difficult to detect the size and sign of the effect of interest, which is consistent with our argument linking exposure to corrupt police with lower turnout. The fact that we observe lower turnout in these polling centers is a reason not to worry about any imbalance in the survey data.
Augmented police deployments might therefore reduce citizens’ expression of consent and desire to participate in practices that legitimize the government, such as voting.

7 | CONCLUSION

Optimism regarding the increase in transitions from authoritarianism to democracy worldwide since the 1970s has recently given way to grave concerns about democratic retrenchment (Diamond, 2008; Fukuyama, 2015). Although emerging democracies may hold elections, these polls mask deep-seated institutional and normative threats to the consolidation of democracy, including official corruption and insurgent violence. In this article, we explore the consequences of government efforts to secure elections from violence by deploying additional police. The study contributes to our understanding of when and how government responses to insurgent violence affect political representation and governance. We highlight factors that may produce contrasting effects on turnout. Our findings indicate that polling centers in Afghanistan designated to receive more police protection experienced roughly 30% less turnout on election day in the 2010 national election relative to polling centers in the same district designated to receive less police protection. The results are inconsistent with implications that more police signaled more violence and kept citizens away from the polls. They are instead consistent with citizens staying home in order to avoid interactions with corrupt security forces.

In the broader context of securing polities against violence and encouraging democratization, our results provide insights for ongoing debates among scholars and policy-makers on the conditions under which elections should be held in conflict environments. While early elections may increase the likelihood of violence (Brancati & Snyder, 2013), the international community consistently pushes countries emerging from or engaged in conflict to hold elections as a key benchmark for state-building (Bush, 2015; Hyde, 2011a). Donors provide substantial diplomatic and technical assistance to improve electoral processes (Hyde, 2011b; Kelley, 2012), including investments in security forces. But rushing to implement elections in countries with institutions ill equipped to handle a democratic transition may produce hybrid regimes (Fukuyama, 2014) and reignite violence (Mansfield & Snyder, 2005).

In this respect, our results may appear discouraging. If police perceived to be corrupt can depress voter turnout and damage key indicators of democracy, state-building efforts of governments and the international community are unlikely to succeed at strengthening legitimacy. The quantitative analysis presented here aligns qualitatively with the concerns of election observers, security officials, and the Afghan election commission that low turnout implies a lack of support for the government (Maroney, 2010; Rubin & Gall, 2010). However, our focus on the effects of security provision provides an important contribution by underscoring a condition under which elections are salutary: when the police are not corrupt. Thus, governments, activists, and the international community may want to first and more fully address corruption in the police before they plan for elections.

ACKNOWLEDGMENTS

The authors are grateful for the help and support provided by Democracy International, the International Security and Assistance Forces in Afghanistan, and Afghan Ministry of Interior. Eli Berman, James Dobbins, James Fearon, Clark Gibson, Stathis Kalyvas, Alex Kuo, Eddy Malesky, Gerard Padró i Miquel, Jon Pevehouse, Eric Schwab, Niloufer Siddiqui, Austin Wright, and participants at the International Relations Colloquium of the University of Wisconsin-Madison and the Order, Conflict, and Violence Workshop of Yale University provided helpful comments. Torben Behmer, Mohammad Isaqzadeh, Shahim Kabuli, and Manu Singh provided expert research assistance. We thank Andrew
Shaver and Austin Wright for sharing their data. We thank the editor and anonymous referees for their helpful suggestions. The Harvard Academy for International and Area Studies [Long] and The U.S. Department of Defense's Minerva Initiative (AFOSR Grant FA9550-09-1-0314) provided generous funding. The authors fully and solely designed and executed the study and any opinions, findings, conclusions are those of the authors alone and do not reflect views of the United States Department of Defense, Democracy International, or institutions with which the authors hold affiliation.

REFERENCES

Condra, L. N. (2014a, June 4). [Interview with Afghanistan Ministry of Interior official, Kabul, Afghanistan].

Condra, L. N. (2014b, June 7). [Interview with former Afghanistan Independent Elections Commission official, Kabul, Afghanistan].
Condra, L. N. (2014c, June 2). [Interview with former Afghanistan Ministry of Interior official, Kabul, Afghanistan].

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Condra LN, Callen M, Iyengar RK, Long JD, Shapiro JN. Damaging democracy? Security provision and turnout in Afghan elections†. *Econ Polit*. 2019;31:163–193. https://doi.org/10.1111/ecpo.12128