Administrative Records Mask Racially Biased Policing

Dean Knox, Will Lowe and Jonathan Mummolo
Princeton University

January 28, 2021

\[1\text{We thank Michael Pomirchy for research assistance.}\]
How do we measure racial bias in policing?

Eric Garner, 2014
Racial bias in policing

- Causal question.
Racial bias in policing

➤ Causal question. Focus on traditional omitted variable bias.
Racial bias in policing

- Causal question. Focus on traditional omitted variable bias.
- Overlooked:
Racial bias in policing

- Causal question. Focus on traditional omitted variable bias.

- Overlooked:
 Sample selection bias due to post-treatment conditioning
Intuition for the problem

- Goal: estimate effect of civilian race on police use of force

Suppose perfect as-if experimental conditions: a set of police encounters (i.e. sightings) identical but for race of civilians.

Suppose racial bias leads police to stop white civilians if engaged in serious crime (e.g. bank robbery), stop black civilians regardless of behavior.

Now throw away all data on civilians police observe but do not stop (e.g. the NYPD "Stop, Question and Frisk" (SQF) database).

We've just ruined our experiment!

Comparing white bank robbers to black civilians committing no crime.

If we then found no disparity in rates of force against black/white civilians, that should be alarming!

Current literature reads this result as "no evidence of racial bias in the use of force"
Intuition for the problem

- Goal: estimate effect of civilian race on police use of force

- Suppose perfect as-if experimental conditions: a set of police encounters (i.e. sightings) identical but for race of civilians

 Suppose racial bias leads police to stop white civilians if engaged in serious crime (e.g. bank robbery), stop black civilians regardless of behavior.

Now throw away all data on civilians police observe but do not stop (e.g. the NYPD “Stop, Question and Frisk” (SQF) database).

We've just ruined our experiment!

Comparing white bank robbers to black civilians committing no crime. If we then found no disparity in rates of force against black/white civilians, that should be alarming!

Current literature reads this result as “no evidence of racial bias in the use of force”
Intuition for the problem

- Goal: estimate effect of civilian race on police use of force

- Suppose perfect as-if experimental conditions: a set of police encounters (i.e. sightings) identical but for race of civilians

- Suppose racial bias leads police to stop white civilians if engaged in serious crime (e.g. bank robbery), stop black civilians regardless of behavior

- Now throw away all data on civilians police observe but do not stop (e.g. the NYPD “Stop, Question and Frisk” (SQF) database).

 We’ve just ruined our experiment!

 Comparing white bank robbers to black civilians committing no crime.

 If we then found no disparity in rates of force against black/white civilians, that should be alarming!

 Current literature reads this result as “no evidence of racial bias in the use of force”
Intuition for the problem

- Goal: estimate effect of civilian race on police use of force
- Suppose perfect as-if experimental conditions: a set of police encounters (i.e. sightings) identical but for race of civilians
- Suppose racial bias leads police to stop white civilians if engaged in serious crime (e.g. bank robbery), stop black civilians regardless of behavior
- Now throw away all data on civilians police observe but do not stop (e.g. the NYPD “Stop, Question and Frisk” (SQF) database).
Intuition for the problem

► Goal: estimate effect of civilian race on police use of force

► Suppose perfect as-if experimental conditions: a set of police encounters (i.e. sightings) identical but for race of civilians

► Suppose racial bias leads police to stop white civilians if engaged in serious crime (e.g. bank robbery), stop black civilians regardless of behavior

► Now throw away all data on civilians police observe but do not stop (e.g. the NYPD “Stop, Question and Frisk” (SQF) database). We've just ruined our experiment!
Intuition for the problem

- Goal: estimate effect of civilian race on police use of force
- Suppose perfect as-if experimental conditions: a set of police encounters (i.e. sightings) identical but for race of civilians
- Suppose racial bias leads police to stop white civilians if engaged in serious crime (e.g. bank robbery), stop black civilians regardless of behavior
- Now throw away all data on civilians police observe but do not stop (e.g. the NYPD “Stop, Question and Frisk” (SQF) database). We’ve just ruined our experiment!
- Comparing white bank robbers to black civilians committing no crime.
Intuition for the problem

- Goal: estimate effect of civilian race on police use of force

- Suppose perfect as-if experimental conditions: a set of police encounters (i.e. sightings) identical but for race of civilians

- Suppose racial bias leads police to stop white civilians if engaged in serious crime (e.g. bank robbery), stop black civilians regardless of behavior

- Now throw away all data on civilians police observe but do not stop (e.g. the NYPD “Stop, Question and Frisk” (SQF) database). We've just ruined our experiment!

- Comparing white bank robbers to black civilians committing no crime. If we then found no disparity in rates of force against black/white civilians, that should be alarming!
Intuition for the problem

- Goal: estimate effect of civilian race on police use of force

- Suppose perfect as-if experimental conditions: a set of police encounters (i.e. sightings) identical but for race of civilians

- Suppose racial bias leads police to stop white civilians if engaged in serious crime (e.g. bank robbery), stop black civilians regardless of behavior

- Now throw away all data on civilians police observe but do not stop (e.g. the NYPD “Stop, Question and Frisk” (SQF) database). We've just ruined our experiment!

- Comparing white bank robbers to black civilians committing no crime. If we then found no disparity in rates of force against black/white civilians, that should be alarming!

- Current literature reads this result as “no evidence of racial bias in the use of force”
Estimating racial bias with police data

1. Racial bias likely affects who police choose to investigate → which encounters appear in police data
Estimating racial bias with police data

1. Racial bias likely affects who police choose to investigate → which encounters appear in police data

2. Police administrative data are inherently post-treatment
Estimating racial bias with police data

1. Racial bias likely affects who police choose to investigate → which encounters appear in police data

2. Police administrative data are inherently post-treatment

3. Results statistically biased; bias often can’t be “controlled away”
Estimating racial bias with police data

1. Racial bias likely affects who police choose to investigate → which encounters appear in police data

2. Police administrative data are inherently post-treatment

3. Results statistically biased; bias often can’t be “controlled away”

4. Bias has a precise form, can derive informative bounds on the true causal effect of civilian race on police behavior
Estimating racial bias with police data

1. Racial bias likely affects who police choose to investigate → which encounters appear in police data

2. Police administrative data are inherently post-treatment

3. Results statistically biased; bias often can’t be “controlled away”

4. Bias has a precise form, can derive informative bounds on the true causal effect of civilian race on police behavior

5. Prior work ignoring this feature substantially underestimates racial bias in use of force (Fryer, 2019)
Estimating racial bias with police data

1. Racial bias likely affects who police choose to investigate → which encounters appear in police data

2. Police administrative data are inherently post-treatment

3. Results statistically biased; bias often can’t be “controlled away”

4. Bias has a precise form, can derive informative bounds on the true causal effect of civilian race on police behavior

5. Prior work ignoring this feature substantially underestimates racial bias in use of force (Fryer, 2019)

6. New research designs to avoid this pitfall
Defining the Statistical Problem
A causal mediation framework

- Unit of analysis: police-civilian encounters:
 - "Encounter" = sighting of individual by police officer
 - Counterfactual: substitution of individual of differing race into police-civilian encounter, holding circumstance and civilian behavior fixed
 - Treatment (civilian is racial minority) \(D \in \{0, 1\} \)
 - Outcome (use of force) \(Y_i \in \{0, 1\} \)
 - Mediator (being stopped by police) \(M_i \in \{0, 1\} \)
 - Racial bias in police stops \((D_i \rightarrow M_i) \) (e.g. Gelman, Fagan & Kiss 2007; Glaser 2014; Lerman & Weaver 2014; Goel, Rao & Shroff 2016)
A causal mediation framework

- Unit of analysis: police-civilian encounters:
 - “Encounter” = sighting of individual by police officer

- Counterfactual: substitution of individual of differing race into police-civilian encounter, holding circumstance and civilian behavior fixed
- Treatment (civilian is racial minority) $D_i \in \{0, 1\}$
- Outcome (use of force) $Y_i \in \{0, 1\}$
- Mediator (being stopped by police) $M_i \in \{0, 1\}$
- Racial bias in police stops ($D_i \rightarrow M_i$) (e.g. Gelman, Fagan & Kiss 2007; Glaser 2014; Lerman & Weaver 2014; Goel, Rao & Shroff 2016)
A causal mediation framework

- Unit of analysis: police-civilian *encounters*:
 - “Encounter” = sighting of individual by police officer
 - Counterfactual: substitution of individual of differing race into police-civilian encounter, holding circumstance and civilian behavior fixed

- Treatment (civilian is racial minority) $D_i \in \{0, 1\}$
- Outcome (use of force) $Y_i \in \{0, 1\}$
- Mediator (being stopped by police) $M_i \in \{0, 1\}$

Racial bias in police stops ($D_i \rightarrow M_i$) (e.g. Gelman, Fagan & Kiss 2007; Glaser 2014; Lerman & Weaver 2014; Goel, Rao & Shroff 2016)
A causal mediation framework

- Unit of analysis: police-civilian encounters:
 - “Encounter” = sighting of individual by police officer
 - Counterfactual: substitution of individual of differing race into police-civilian encounter, holding circumstance and civilian behavior fixed
 - Treatment (civilian is racial minority) $D_i \in \{0,1\}$

(e.g. Gelman, Fagan & Kiss 2007; Glaser 2014; Lerman & Weaver 2014; Goel, Rao & Shroff 2016)
A causal mediation framework

- Unit of analysis: police-civilian encounters:
 - “Encounter” = sighting of individual by police officer
 - Counterfactual: substitution of individual of differing race into police-civilian encounter, holding circumstance and civilian behavior fixed

- Treatment (civilian is racial minority) $D_i \in \{0,1\}$

- Outcome (use of force) $Y_i \in \{0,1\}$
A causal mediation framework

- Unit of analysis: police-civilian encounters:
 - “Encounter” = sighting of individual by police officer
 - Counterfactual: substitution of individual of differing race into police-civilian encounter, holding circumstance and civilian behavior fixed

- Treatment (civilian is racial minority) $D_i \in \{0,1\}$

- Outcome (use of force) $Y_i \in \{0,1\}$

- Mediator (being stopped by police) $M_i \in \{0,1\}$
A causal mediation framework

- Unit of analysis: police-civilian encounters:
 - “Encounter” = sighting of individual by police officer
 - Counterfactual: substitution of individual of differing race into police-civilian encounter, holding circumstance and civilian behavior fixed

- Treatment (civilian is racial minority) $D_i \in \{0,1\}$

- Outcome (use of force) $Y_i \in \{0,1\}$

- Mediator (being stopped by police) $M_i \in \{0,1\}$

- Racial bias in police stops ($D_i \rightarrow M_i$)
 (e.g. Gelman, Fagan & Kiss 2007; Glaser 2014; Lerman & Weaver 2014; Goel, Rao & Shroff 2016)
Existing theory of race and police-civilian encounters

D → Y
(race) (force)
Existing theory of race and police-civilian encounters

V

D (race) → Y (force)
Existing theory of race and police-civilian encounters

Diagram:

V

D -> V <- Y
(race) (force)
A more complete theory

D (race) → M (stop) → Y (force)

V
A more complete theory

D (race) → W → M (stop) → U → Y (force)
Potential outcomes with mediation

Normally we consider $Y(d) \in \{ Y(1), Y(0) \}$; potential force given race (treatment)
Potential outcomes with mediation

Normally we consider $Y(d) \in \{ Y(1), Y(0) \}$; potential force given race (treatment)

Instead consider $Y(d, M(d))$
Potential outcomes with mediation

Normally we consider $Y(d) \in \{Y(1), Y(0)\}$; potential force given race (treatment)

Instead consider $Y(d, M(d))$

$Y(1, 1) =$ potential use of force if minority civilian stopped
Potential outcomes with mediation

Normally we consider $Y(d) \in \{Y(1), Y(0)\}$; potential force given race (treatment)

Instead consider $Y(d, M(d))$

- $Y(1, 1) =$ potential use of force if minority civilian stopped
- $Y(1, 0) =$ potential use of force if minority civilian *not* stopped
Potential outcomes with mediation

Normally we consider $Y(d) \in \{ Y(1), Y(0) \}$; potential force given race (treatment).

Instead consider $Y(d, M(d))$

- $Y(1, 1) =$ potential use of force if minority civilian stopped
- $Y(1, 0) =$ potential use of force if minority civilian *not* stopped
- $Y(0, 1) =$ potential use of force if white civilian stopped
Potential outcomes with mediation

Normally we consider $Y(d) \in \{ Y(1), Y(0) \}$; potential force given race (treatment)

Instead consider $Y(d, M(d))$

$Y(1, 1) =$ potential use of force if minority civilian stopped
$Y(1, 0) =$ potential use of force if minority civilian \textit{not} stopped
$Y(0, 1) =$ potential use of force if white civilian stopped
$Y(0, 0) =$ potential use of force if white civilian \textit{not} stopped
Formalizing the Missing Data Problem
Solution: principal stratification

If $D \rightarrow M$, four types of police-civilian encounters:

<table>
<thead>
<tr>
<th>$M_i(0) = 1$</th>
<th>$M_i(0) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_i(1) = 1$</td>
<td></td>
</tr>
<tr>
<td>$M_i(1) = 0$</td>
<td></td>
</tr>
</tbody>
</table>
If $D \rightarrow M$, four types of police-civilian encounters:

<table>
<thead>
<tr>
<th></th>
<th>$M_i(0) = 1$</th>
<th>$M_i(0) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_i(1) = 1$</td>
<td>“always stop” (serious crime)</td>
<td></td>
</tr>
<tr>
<td>$M_i(1) = 0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If $D \rightarrow M$, four types of police-civilian encounters:

<table>
<thead>
<tr>
<th>$M_i(0)$</th>
<th>$M_i(0) = 1$</th>
<th>$M_i(0) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_i(1) = 1$</td>
<td>“always stop” (serious crime)</td>
<td></td>
</tr>
<tr>
<td>$M_i(1) = 0$</td>
<td></td>
<td>“never stop” (inconspicuous)</td>
</tr>
</tbody>
</table>
If $D \rightarrow M$, four types of police-civilian encounters:

- $M_i(1) = 1$
<table>
<thead>
<tr>
<th>$M_i(0) = 1$</th>
<th>$M_i(0) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>“always stop” (serious crime)</td>
<td>stop if black (jaywalking)</td>
</tr>
</tbody>
</table>

- $M_i(1) = 0$
 | “never stop” (inconspicuous) |
If $D \rightarrow M$, four types of police-civilian encounters:

<table>
<thead>
<tr>
<th>$M_i(1) = 1$</th>
<th>$M_i(0) = 1$</th>
<th>$M_i(0) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>"always stop" (serious crime)</td>
<td>stop if black (jaywalking)</td>
<td></td>
</tr>
<tr>
<td>$M_i(1) = 0$</td>
<td>stop if white ?</td>
<td>"never stop" (inconspicuous)</td>
</tr>
</tbody>
</table>
Types of police-civilian encounters

If $D \rightarrow M$, four types of police-civilian encounters:

<table>
<thead>
<tr>
<th>$M_i(1)$</th>
<th>$M_i(0) = 1$</th>
<th>$M_i(0) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_i(1) = 1$</td>
<td>“always stop” (serious crime)</td>
<td>stop if black (jaywalking)</td>
</tr>
<tr>
<td>$M_i(1) = 0$</td>
<td>stop if white ?</td>
<td>“never stop” (inconspicuous)</td>
</tr>
</tbody>
</table>

What do we get to see in police data?
Types of police-civilian encounters

If $D \rightarrow M$, four types of police-civilian encounters:

<table>
<thead>
<tr>
<th>$M_i(1)$</th>
<th>$M_i(0) = 1$</th>
<th>$M_i(0) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_i(1) = 1$</td>
<td>“always stop” (serious crime)</td>
<td>stop if black (jaywalking)</td>
</tr>
<tr>
<td>$M_i(1) = 0$</td>
<td>stop if white ?</td>
<td>“never stop” (inconspicuous)</td>
</tr>
</tbody>
</table>

For black civilians …
If $D \rightarrow M$, four types of police-civilian encounters:

<table>
<thead>
<tr>
<th></th>
<th>$M_i(0) = 1$</th>
<th>$M_i(0) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_i(1) = 1$</td>
<td>“always stop” (serious crime)</td>
<td>stop if black (jaywalking)</td>
</tr>
<tr>
<td>$M_i(1) = 0$</td>
<td>stop if white ?</td>
<td>“never stop” (inconspicuous)</td>
</tr>
</tbody>
</table>

For white civilians . . .
Encounters (sightings) belong to one of four principal strata

<table>
<thead>
<tr>
<th></th>
<th>always-stop</th>
<th>anti-black racial-stop</th>
<th>anti-white racial-stop</th>
<th>never-stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_i(1)$</td>
<td>$M_i(0)$</td>
<td>$M_i(1)$</td>
<td>$M_i(0)$</td>
<td>$M_i(1)$</td>
</tr>
<tr>
<td>$= 1$</td>
<td>$= 1$</td>
<td>$= 1$</td>
<td>$= 0$</td>
<td>$= 0$</td>
</tr>
<tr>
<td>$M_i(1)$</td>
<td></td>
<td>$= 1$</td>
<td>$= 0$</td>
<td>$= 0$</td>
</tr>
<tr>
<td>$M_i(0)$</td>
<td></td>
<td></td>
<td>$= 1$</td>
<td>$= 0$</td>
</tr>
</tbody>
</table>
Within each, civilian is treated (black) or not (white)

<table>
<thead>
<tr>
<th>Condition</th>
<th>$M_i(1) = M_i(0) = 1$</th>
<th>$M_i(1) = 1, M_i(0) = 0$</th>
<th>$M_i(1) = 0, M_i(0) = 1$</th>
<th>$M_i(1) = 0, M_i(0) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>always-stop</td>
<td>$D_i = 0$</td>
<td>$D_i = 0$</td>
<td>$D_i = 0$</td>
<td>$D_i = 0$</td>
</tr>
<tr>
<td>anti-black racial-stop</td>
<td>$D_i = 1$</td>
<td>$D_i = 1$</td>
<td>$D_i = 1$</td>
<td>$D_i = 1$</td>
</tr>
<tr>
<td>anti-white racial-stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>never-stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Four potential outcomes we may need to estimate

<table>
<thead>
<tr>
<th>always-stop</th>
<th>anti-black racial-stop</th>
<th>anti-white racial-stop</th>
<th>never-stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_i(1) = M_i(0) = 1$</td>
<td>$M_i(1) = 1, M_i(0) = 0$</td>
<td>$M_i(1) = 0, M_i(0) = 1$</td>
<td>$M_i(1) = 0, M_i(0) = 0$</td>
</tr>
<tr>
<td>$D_i = 0$</td>
<td>$D_i = 0$</td>
<td>$D_i = 0$</td>
<td>$D_i = 0$</td>
</tr>
<tr>
<td>$D_i = 1$</td>
<td>$D_i = 1$</td>
<td>$D_i = 1$</td>
<td>$D_i = 1$</td>
</tr>
<tr>
<td>$Y_i(1, 1)$</td>
<td>$Y_i(1, 1)$</td>
<td>$Y_i(1, 1)$</td>
<td>$Y_i(1, 1)$</td>
</tr>
<tr>
<td>$Y_i(1, 0)$</td>
<td>$Y_i(1, 0)$</td>
<td>$Y_i(1, 0)$</td>
<td>$Y_i(1, 0)$</td>
</tr>
<tr>
<td>$Y_i(0, 1)$</td>
<td>$Y_i(0, 1)$</td>
<td>$Y_i(0, 1)$</td>
<td>$Y_i(0, 1)$</td>
</tr>
<tr>
<td>$Y_i(0, 0)$</td>
<td>$Y_i(0, 0)$</td>
<td>$Y_i(0, 0)$</td>
<td>$Y_i(0, 0)$</td>
</tr>
</tbody>
</table>
Very few potential outcomes appear in police data

<table>
<thead>
<tr>
<th>always-stop</th>
<th>anti-black racial-stop</th>
<th>anti-white racial-stop</th>
<th>never-stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_i(1) = M_i(0) = 1$</td>
<td>$M_i(1) = 1, M_i(0) = 0$</td>
<td>$M_i(1) = 0, M_i(0) = 1$</td>
<td>$M_i(1) = 0, M_i(0) = 0$</td>
</tr>
<tr>
<td>$D_i = 0$</td>
<td>$D_i = 1$</td>
<td>$D_i = 0$</td>
<td>$D_i = 1$</td>
</tr>
<tr>
<td>$Y_i(1, 1)$</td>
<td>$Y_i(1, 1)$</td>
<td>$Y_i(1, 1)$</td>
<td>$Y_i(1, 1)$</td>
</tr>
<tr>
<td>$Y_i(1, 0)$</td>
<td>$Y_i(1, 0)$</td>
<td>$Y_i(1, 0)$</td>
<td>$Y_i(1, 0)$</td>
</tr>
<tr>
<td>$Y_i(0, 1)$</td>
<td>$Y_i(0, 1)$</td>
<td>$Y_i(0, 1)$</td>
<td>$Y_i(0, 1)$</td>
</tr>
<tr>
<td>$Y_i(0, 0)$</td>
<td>$Y_i(0, 0)$</td>
<td>$Y_i(0, 0)$</td>
<td>$Y_i(0, 0)$</td>
</tr>
</tbody>
</table>
Causal Quantities of Interest
Which causal effect?

- Prior work does not name specific causal estimands

Average Treatment Effect (ATE) in the population

Effect among those who interact with police (ATE$_M=1$)

Effect among minorities who interact with police (ATT$_M=1$)
Which causal effect?

- Prior work does not name specific causal estimands
- Without naming an estimand, we can’t consider identifying assumptions or evaluate validity of an analysis
Which causal effect?

- Prior work does not name specific causal estimands
- Without naming an estimand, we can’t consider identifying assumptions or evaluate validity of an analysis
- There are many causal effects:
Which causal effect?

- Prior work does not name specific causal estimands
- Without naming an estimand, we can’t consider identifying assumptions or evaluate validity of an analysis
- There are many causal effects:
 - Average Treatment Effect (ATE) in the population
Which causal effect?

- Prior work does not name specific causal estimands
- Without naming an estimand, we can’t consider identifying assumptions or evaluate validity of an analysis
- There are many causal effects:
 - Average Treatment Effect (ATE) in the population
 - Effect among those who interact with police ($ATE_{M=1}$)
Which causal effect?

- Prior work does not name specific causal estimands
- Without naming an estimand, we can’t consider identifying assumptions or evaluate validity of an analysis
- There are many causal effects:
 - Average Treatment Effect (ATE) in the population
 - Effect among those who interact with police ($ATE_{M=1}$)
 - Effect among minorities who interact with police ($ATT_{M=1}$)
Causal estimands

\[TE = E[Y_i(1, M_i(1))] - E[Y_i(0, M_i(0))] \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>Stratum</th>
<th>(D_i)</th>
<th>(M_i)</th>
<th>(M_i(0))</th>
<th>(M_i(1))</th>
<th>(Y_i(1, 1))</th>
<th>(Y_i(1, 0))</th>
<th>(Y_i(0, 1))</th>
<th>(Y_i(0, 0))</th>
<th>ATE</th>
<th>(ATE_{M=1})</th>
<th>(ATT_{M=1})</th>
<th>(CDE_{M=1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Always-Stop</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Always-Stop</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Racial Stop</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Never-Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Average Treatment Effect

\[ATE = \mathbb{E}[Y_i(1, M_i(1)) - Y_i(0, M_i(0))] \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>Stratum</th>
<th>(D_i)</th>
<th>(M_i)</th>
<th>(M_i(0))</th>
<th>(M_i(1))</th>
<th>(Y_i(1, 1))</th>
<th>(Y_i(1, 0))</th>
<th>(Y_i(0, 1))</th>
<th>(Y_i(0, 0))</th>
<th>ATE</th>
<th>(ATE_{M=1})</th>
<th>(ATT_{M=1})</th>
<th>(CDE_{M=1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Always-Stop</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Always-Stop</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Racial Stop</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Never-Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Average Treatment Effect Among the Stopped

\[\text{ATE}_{M=1} = \mathbb{E}[Y_i(1, M_i(1)) - Y_i(0, M_i(0)) | M_i = 1] \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>Stratum</th>
<th>(D_i)</th>
<th>(M_i)</th>
<th>(M_i(0))</th>
<th>(M_i(1))</th>
<th>(Y_i(1, 1))</th>
<th>(Y_i(1, 0))</th>
<th>(Y_i(0, 1))</th>
<th>(Y_i(0, 0))</th>
<th>(\text{ATE})</th>
<th>(\text{ATE}_{M=1})</th>
<th>(\text{ATT}_{M=1})</th>
<th>(\text{CDE}_{M=1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Always-Stop</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Always-Stop</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Racial Stop</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Never-Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Average Treatment Effect Among the Treated and Stopped

\[ATT_{M=1} = \mathbb{E}[Y_i(1, M_i(1)) - Y_i(0, M_i(0))|D_i = 1, M_i = 1] \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>Stratum</th>
<th>(D_i)</th>
<th>(M_i)</th>
<th>(M_i(0))</th>
<th>(M_i(1))</th>
<th>(Y_i(1, 1))</th>
<th>(Y_i(1, 0))</th>
<th>(Y_i(0, 1))</th>
<th>(Y_i(0, 0))</th>
<th>(ATE)</th>
<th>(ATE_{M=1})</th>
<th>(ATT_{M=1})</th>
<th>(CDE_{M=1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Always-Stop</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Always-Stop</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Racial Stop</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Never-Stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Can anything causal be estimated with these data?

- To estimate causal quantities, need additional assumptions
Can anything causal be estimated with these data?

- To estimate causal quantities, need additional assumptions
- Goal: minimal, non-parametric, plausible
Assumptions
Assumption 1: Mandatory reporting

\[Y_i(d, 0) = 0 \]

- If encounter not in the data, no force was applied
Assumption 1: Mandatory reporting

\[Y_i(d, 0) = 0 \]

- If encounter not in the data, no force was applied
- Highly plausible for lethal/severe force
Assumption 1: Mandatory reporting

\[Y_i(d, 0) = 0 \]

- If encounter not in the data, no force was applied
- Highly plausible for lethal/severe force
- Increasingly plausible for sub-lethal force given civilian oversight boards, cell phone cameras
Assumption 1: Mandatory reporting

<table>
<thead>
<tr>
<th>always-stop</th>
<th>anti-black racial-stop</th>
<th>anti-white racial-stop</th>
<th>never-stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_i(1) = M_i(0) = 1$</td>
<td>$M_i(1) = 1, M_i(0) = 0$</td>
<td>$M_i(1) = 0, M_i(0) = 1$</td>
<td>$M_i(1) = 0, M_i(0) = 0$</td>
</tr>
<tr>
<td>$D_i = 0$</td>
<td>$D_i = 0$</td>
<td>$D_i = 0$</td>
<td>$D_i = 0$</td>
</tr>
<tr>
<td>$D_i = 1$</td>
<td>$D_i = 1$</td>
<td>$D_i = 1$</td>
<td>$D_i = 1$</td>
</tr>
<tr>
<td>$Y_i(1, 1)$</td>
<td>$Y_i(1, 1)$</td>
<td>$Y_i(1, 1)$</td>
<td>$Y_i(1, 1)$</td>
</tr>
<tr>
<td>$Y_i(1, 0)$</td>
<td>$Y_i(1, 0)$</td>
<td>$Y_i(1, 0)$</td>
<td>$Y_i(1, 0)$</td>
</tr>
<tr>
<td>$Y_i(0, 1)$</td>
<td>$Y_i(0, 1)$</td>
<td>$Y_i(0, 1)$</td>
<td>$Y_i(0, 1)$</td>
</tr>
<tr>
<td>$Y_i(0, 0)$</td>
<td>$Y_i(0, 0)$</td>
<td>$Y_i(0, 0)$</td>
<td>$Y_i(0, 0)$</td>
</tr>
</tbody>
</table>
Assumption 1: Mandatory reporting

Always-stop

\[
\begin{align*}
M_i(1) &= M_i(0) = 1 \\
D_i &= 0 \quad D_i = 1 \\
Y_i(1,1) &= Y_i(1,1) \\
Y_i(0,1) &= Y_i(0,1)
\end{align*}
\]

Anti-black racial-stop

\[
\begin{align*}
M_i(1) &= 1, M_i(0) = 0 \\
D_i &= 0 \quad D_i = 1 \\
Y_i(1,1) &= Y_i(1,1) \\
Y_i(0,1) &= Y_i(0,1)
\end{align*}
\]

Anti-white racial-stop

\[
\begin{align*}
M_i(1) &= 0, M_i(0) = 1 \\
D_i &= 0 \quad D_i = 1 \\
Y_i(1,1) &= Y_i(1,1) \\
Y_i(0,1) &= Y_i(0,1)
\end{align*}
\]

Never-stop

\[
\begin{align*}
M_i(1) &= 0, M_i(0) = 0 \\
D_i &= 0 \quad D_i = 1 \\
Y_i(1,1) &= Y_i(1,1) \\
Y_i(0,1) &= Y_i(0,1)
\end{align*}
\]
Assumption 2: Mediator monotonicity

\[M_i(1) \geq M_i(0) \]

- No anti-white bias in stopping
Assumption 2: Mediator monotonicity

<table>
<thead>
<tr>
<th>Condition</th>
<th>$M_i(1)$</th>
<th>$M_i(0)$</th>
<th>D_i</th>
<th>$Y_i(1,1)$</th>
<th>$Y_i(0,1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always-stop</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anti-black racial-stop</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anti-white racial-stop</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Never-stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Assumption 2: Mediator monotonicity

<table>
<thead>
<tr>
<th>always-stop</th>
<th>anti-black racial-stop</th>
<th>never-stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_i(1) = M_i(0) = 1$</td>
<td>$M_i(1) = 1, M_i(0) = 0$</td>
<td>$M_i(1) = 0, M_i(0) = 0$</td>
</tr>
<tr>
<td>$D_i = 0$</td>
<td>$D_i = 0$</td>
<td>$D_i = 0$</td>
</tr>
<tr>
<td>$Y_i(1, 1)$</td>
<td>$Y_i(1, 1)$</td>
<td>$Y_i(1, 1)$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$Y_i(0, 1)$</td>
<td>$Y_i(0, 1)$</td>
<td>$Y_i(0, 1)$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Assumption 3: Relative non-severity of racial stops

\[
E[Y_i(d, m) | D_i = d', M_i(1) = 1, M_i(0) = 1] \geq E[Y_i(d, m) | D_i = d', M_i(1) = 1, M_i(0) = 0]
\]

- Level of force applied in always-stop encounters (serious crimes) \(\geq \) level applied in racial stop encounters on average
Assumption 3: Relative non-severity of racial stops

<table>
<thead>
<tr>
<th>always-stop</th>
<th>anti-black racial-stop</th>
<th>never-stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_i(1) = M_i(0) = 1$</td>
<td>$M_i(1) = 1, M_i(0) = 0$</td>
<td>$M_i(1) = 0, M_i(0) = 0$</td>
</tr>
<tr>
<td>$D_i = 0$</td>
<td>$D_i = 0$</td>
<td>$D_i = 0$</td>
</tr>
<tr>
<td>$D_i = 1$</td>
<td>$D_i = 1$</td>
<td>$D_i = 1$</td>
</tr>
<tr>
<td>$Y_i(1, 1)$</td>
<td>$Y_i(1, 1)$</td>
<td>$Y_i(1, 1)$</td>
</tr>
<tr>
<td>$Y_i(0, 1)$</td>
<td>$Y_i(0, 1)$</td>
<td>$Y_i(0, 1)$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Assumption 3: Relative non-severity of racial stops

always-stop
\[M_i(1) = M_i(0) = 1 \]
\[D_i = 0 \quad D_i = 1 \]
\[Y_i(1, 1) \quad Y_i(1, 1) \]
\[0 \quad 0 \]
\[Y_i(0, 1) \quad Y_i(0, 1) \]
\[0 \quad 0 \]

anti-black racial-stop
\[M_i(1) = 1, M_i(0) = 0 \]
\[D_i = 0 \quad D_i = 1 \]
\[Y_i(1, 1) \quad Y_i(1, 1) \]
\[0 \quad 0 \]
\[Y_i(0, 1) \quad Y_i(0, 1) \]
\[0 \quad 0 \]

never-stop
\[M_i(1) = 0, M_i(0) = 0 \]
\[D_i = 0 \quad D_i = 1 \]
\[Y_i(1, 1) \quad Y_i(1, 1) \]
\[0 \quad 0 \]
\[Y_i(0, 1) \quad Y_i(0, 1) \]
\[0 \quad 0 \]
Assumption 4: Treatment ignorability

\[M_i(d) \perp \perp D_i \]
\[Y_i(d, M(d)) \perp \perp D_i | M_i(0) = m', M_i(1) = m'' \]

- No omitted variables with respect to mediator or outcome
Assumption 4: Treatment ignorability

\[M_i(d) \perp\!\!\!\!\!\!\perp D_i \]
\[Y_i(d, M(d)) \perp\!\!\!\!\!\!\perp D_i | M_i(0) = m', M_i(1) = m'' \]

- No omitted variables with respect to mediator or outcome
- More plausible in recent years (data on lat/lon, time, officer and suspect features, etc.)
Assumption 4: Treatment Ignorability

always-stop

\[M_i(1) = M_i(0) = 1 \]
\[
\begin{array}{cc}
D_i = 0 & D_i = 1 \\
Y_i(1,1) & Y_i(1,1) \\
0 & 0 \\
Y_i(0,1) & Y_i(0,1) \\
0 & 0 \\
\end{array}
\geq
\begin{array}{cc}
D_i = 0 & D_i = 1 \\
Y_i(1,1) & Y_i(1,1) \\
0 & 0 \\
Y_i(0,1) & Y_i(0,1) \\
0 & 0 \\
\end{array}
\]

anti-black racial-stop

\[M_i(1) = 1, M_i(0) = 0 \]

never-stop

\[M_i(1) = 0, M_i(0) = 0 \]
\[
\begin{array}{cc}
D_i = 0 & D_i = 1 \\
Y_i(1,1) & Y_i(1,1) \\
0 & 0 \\
Y_i(0,1) & Y_i(0,1) \\
0 & 0 \\
\end{array}
\]
Assumption 4: Treatment Ignorability

always-stop
$M_i(1) = M_i(0) = 1$

anti-black racial-stop
$M_i(1) = 1, M_i(0) = 0$

never-stop
$M_i(1) = 0, M_i(0) = 0$

$Y_i(1, 1)$
0
$Y_i(0, 1)$
0
$Y_i(1, 1)$
0
$Y_i(0, 1)$
0
Given assumptions 1-4, can we recover a causal quantity?

Consider the naïve estimator:

\[\hat{\Delta} = \hat{E}[Y_i|D_i = 1, M_i = 1] - \hat{E}[Y_i|D_i = 0, M_i = 1] \]
Given assumptions 1-4, can we recover a causal quantity?

- Consider the naïve estimator:

\[
\hat{\Delta} = \hat{\mathbb{E}}[Y_i|D_i = 1, M_i = 1] - \hat{\mathbb{E}}[Y_i|D_i = 0, M_i = 1]
\]

- Target the \(ATE_{M=1}\) and \(ATT_{M=1}\)
Bias in the naïve estimator for $ATE_{M=1}$

Under Assumptions 1-4:

$$
\mathbb{E}[\hat{\Delta}] - ATE_{M=1} = (\mathbb{E}[Y_i(1, 1) - Y_i(0, 1)|M_i(1) = 1, M_i(0) = 1] \\
- \mathbb{E}[Y_i(1, 1) - Y_i(0, 0)|M_i(1) = 1, M_i(0) = 0] \\
\times \Pr(M_i(0) = 0|D_i = 1, M_i = 1)\Pr(D_i = 1|M_i = 1) \\
- (\mathbb{E}[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 1] \\
- \mathbb{E}[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 0] \\
\times \Pr(M_i(0) = 0|D_i = 1, M_i = 1))$$
Bias in the naïve estimator for $ATE_{M=1}$

Under Assumptions 1-4:

$$\mathbb{E}[\hat{\Delta}] - ATE_{M=1}$$

$$= \left(\mathbb{E}[Y_i(1, 1) - Y_i(0, 1)|M_i(1) = 1, M_i(0) = 1] - \mathbb{E}[Y_i(1, 1) - Y_i(0, 0)|M_i(1) = 1, M_i(0) = 0] \right) \Pr(M_i(0) = 0|D_i = 1, M_i = 1)\Pr(D_i = 1|M_i = 1)$$

$$- \left(\mathbb{E}[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 1] - \mathbb{E}[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 0] \right) \Pr(M_i(0) = 0|D_i = 1, M_i = 1)$$
Bias in the naïve estimator for $ATE_{M=1}$

Under Assumptions 1-4:

$$
\mathbb{E}[\hat{\Delta}] - ATE_{M=1} \\
= (\mathbb{E}[Y_i(1, 1) - Y_i(0, 1)|M_i(1) = 1, M_i(0) = 1] \\
- \mathbb{E}[Y_i(1, 1) - Y_i(0, 0)|M_i(1) = 1, M_i(0) = 0] \\
\times \Pr(M_i(0) = 0|D_i = 1, M_i = 1)\Pr(D_i = 1|M_i = 1) \\
- (\mathbb{E}[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 1] \\
- \mathbb{E}[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 0] \\
\times \Pr(M_i(0) = 0|D_i = 1, M_i = 1)$$
Bias in the naïve estimator for $ATE_{M=1}$

Under Assumptions 1-4:

\[
\mathbb{E}[\hat{\Delta}] - ATE_{M=1} = (\mathbb{E}[Y_i(1, 1) - Y_i(0, 1)|M_i(1) = 1, M_i(0) = 1] \\
- \mathbb{E}[Y_i(1, 1) - Y_i(0, 0)|M_i(1) = 1, M_i(0) = 0] \\
\text{Pr}(M_i(0) = 0|D_i = 1, M_i = 1)\text{Pr}(D_i = 1|M_i = 1) \\
- (\mathbb{E}[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 1] \\
- \mathbb{E}[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 0] \\
\text{Pr}(M_i(0) = 0|D_i = 1, M_i = 1))
\]

Biased even without omitted variables.
Bias in the naïve estimator for $ATE_{M=1}$

Under Assumptions 1-4:

$$
\mathbb{E}[\hat{\Delta}] - ATE_{M=1}
= (\mathbb{E}[Y_i(1, 1) - Y_i(0, 1)|M_i(1) = 1, M_i(0) = 1]
- \mathbb{E}[Y_i(1, 1) - Y_i(0, 0)|M_i(1) = 1, M_i(0) = 0]
\cdot \Pr(M_i(0) = 0|D_i = 1, M_i = 1)\Pr(D_i = 1|M_i = 1)
- (\mathbb{E}[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 1]
- \mathbb{E}[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 0]
\cdot \Pr(M_i(0) = 0|D_i = 1, M_i = 1)
$$

Biased even without omitted variables. Bias is always nonpositive.
Bias in the naïve estimator for $ATE_{M=1}$

Under Assumptions 1-4:

$$E[\hat{\Delta}] - ATE_{M=1}$$

$$= \left(E[Y_i(1, 1) - Y_i(0, 1)|M_i(1) = 1, M_i(0) = 1]
- E[Y_i(1, 1) - Y_i(0, 0)|M_i(1) = 1, M_i(0) = 0] \right) \Pr(M_i(0) = 0|D_i = 1, M_i = 1)\Pr(D_i = 1|M_i = 1)$$

$$- \left(E[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 1]
- E[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 0] \right) \Pr(M_i(0) = 0|D_i = 1, M_i = 1)$$

Bias remains unless there are no racial stops.
Bias in the naïve estimator for $ATE_{M=1}$

Under Assumptions 1-4:

$$
\mathbb{E}[\hat{\Delta}] - ATE_{M=1}
= (\mathbb{E}[Y_i(1, 1) - Y_i(0, 1)|M_i(1) = 1, M_i(0) = 1]
- \mathbb{E}[Y_i(1, 1) - Y_i(0, 0)|M_i(1) = 1, M_i(0) = 0]
\quad \Pr(M_i(0) = 0|D_i = 1, M_i = 1)\Pr(D_i = 1|M_i = 1)
- (\mathbb{E}[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 1]
- \mathbb{E}[Y_i(1, 1)|M_i(1) = 1, M_i(0) = 0]
\quad \Pr(M_i(0) = 0|D_i = 1, M_i = 1))
$$

Biased even if goal is to estimate effect among the stopped.
Bias in the naïve estimator for $\text{ATT}_{M=1}$

What about $\text{ATT}_{M=1}$, the total effect among stopped black civilians?
Bias in the naïve estimator for $\text{ATT}_{M=1}$

What about $\text{ATT}_{M=1}$, the total effect among stopped black civilians?

$$
\mathbb{E}[\hat{\Delta}] - \text{ATT}_{M=1}
= -\mathbb{E}[Y_i(0, 1)| M_i(1) = 1, M_i(0) = 1] \Pr(M_i(0) = 0 | M_i(1) = 1)
$$
Bias in the naïve estimator for $ATT_{M=1}$

What about $ATT_{M=1}$, the total effect among stopped black civilians?

$$\mathbb{E}[\hat{\Delta}] - ATT_{M=1} = -\mathbb{E}[Y_i(0, 1)|M_i(1) = 1, M_i(0) = 1]\Pr(M_i(0) = 0|M_i(1) = 1)$$

Again, bias remains unless there are no racial stops
Bias in the naïve estimator for $ATT_{M=1}$

What about $ATT_{M=1}$, the total effect among stopped black civilians?

$$\mathbb{E}[\hat{\Delta}] - ATT_{M=1}$$

$$= -\mathbb{E}[Y_i(0, 1)|M_i(1) = 1, M_i(0) = 1]\Pr(M_i(0) = 0|M_i(1) = 1)$$

Again, bias remains unless there are no racial stops, or no use of force against whites
Bias in the naïve estimator for $ATT_{M=1}$

What about $ATT_{M=1}$, the total effect among stopped black civilians?

$$E[\hat{\Delta}] - ATT_{M=1} = -E[Y_i(0, 1)|M_i(1) = 1, M_i(0) = 1]Pr(M_i(0) = 0|M_i(1) = 1)$$

Again, bias remains unless there are no racial stops, or no use of force against whites (empirically falsified).
What have we learned?

Under assumptions 1-4, which are implicit in prior work, the naïve estimator:

- is biased for the ATE
- is biased for the ATT
- unless we assume no racial stops
- even with a perfect set of pre-treatment control variables

Can we estimate racial bias with police administrative data?
What have we learned?

Under assumptions 1-4, which are implicit in prior work, the naïve estimator:

▶ is biased for the $ATE_{M=1}$
What have we learned?

Under assumptions 1-4, which are implicit in prior work, the naïve estimator:

▶ is biased for the $ATE_{M=1}$
▶ is biased for the $ATT_{M=1}$

Can we estimate racial bias with police administrative data?
What have we learned?

Under assumptions 1-4, which are implicit in prior work, the naïve estimator:

- is biased for the $ATE_{M=1}$
- is biased for the $ATT_{M=1}$
- unless we assume no racial stops

Can we estimate racial bias with police administrative data?
What have we learned?

Under assumptions 1-4, which are implicit in prior work, the naïve estimator:

▶ is biased for the $ATE_{M=1}$
▶ is biased for the $ATT_{M=1}$
▶ unless we assume no racial stops
▶ even with a perfect set of pre-treatment control variables
What have we learned?

Under assumptions 1-4, which are implicit in prior work, the naïve estimator:

▶ is biased for the $ATE_{M=1}$
▶ is biased for the $ATT_{M=1}$
▶ unless we assume no racial stops
▶ even with a perfect set of pre-treatment control variables

Can we estimate racial bias with police administrative data?
Using precise form of bias, we can construct nonparametric sharp bounds on true effects.
Bounding the true $ATE_{M=1}$
Bounding the true $ATE_{M=1}$

1. $\rho = Pr(M|D_i=1, M_i(0)=0)$: share of minority stops due to race (unknown)
2. $\theta = E[Y(1,1)|D_i=1, M_i(1)=1, M_i(0)=0]$, violence rate among racially stopped minorities

If we knew the joint distribution $Pr(Y(1,1), M_i(0)=0|D_i=1, M_i(1)=1, M_i(0)=0) = Pr(A, B)$, we could then back out $\theta = P(A|B)$, the conditional probability

$\theta = P(A|B) = \frac{Pr(A, B)}{Pr(B)} = \frac{Pr(A, B)}{Pr(B)}$
Bounding the true $ATE_{M=1}$

- Bias can be re-written in terms of all things that can be directly estimated from data except two:

 1. $\rho = \Pr(M_i(0) = 0|D_i = 1, M_i = 1)$: share of minority stops due to race
Bounding the true $ATE_{M=1}$

- Bias can be re-written in terms of all things that can be directly estimated from data except two:

 1. $\rho = \Pr(M_i(0) = 0|D_i = 1, M_i = 1)$: share of minority stops due to race (unknown)
Bounding the true $ATE_{M=1}$

- Bias can be re-written in terms of all things that can be directly estimated from data except two:

 1. $\rho = \Pr(M_i(0) = 0|D_i = 1, M_i = 1)$: share of minority stops due to race (unknown)

 2. $\theta = \mathbb{E}[Y(1, 1)|D_i = 1, M_i(1) = 1, M_i(0) = 0]$, violence rate among racially stopped minorities

If we knew the joint distribution $\Pr(Y(1, 1), M_i(0) = 0|D_i = 1, M_i(1) = 1, M_i(0) = 0) = \Pr(A, B)$, we could then back out $\theta = \Pr(A|B) = \frac{\Pr(A, B)}{\Pr(B)}$.
Bounding the true $\text{ATE}_{M=1}$

- Bias can be re-written in terms of all things that can be directly estimated from data except two:

 1. $\rho = \Pr(M_i(0) = 0 | D_i = 1, M_i = 1)$: share of minority stops due to race (unknown)

 2. $\theta = \mathbb{E}[Y(1, 1) | D_i = 1, M_i(1) = 1, M_i(0) = 0]$, violence rate among racially stopped minorities

- If we knew the joint distribution $\Pr(Y(1, 1), M_i(0) = 0 | D_i = 1, M_i(1) = 1) = \Pr(A, B)$, we could then back out $\theta = P(A|B)$, the conditional probability
Bounding the true $ATE_{M=1}$

- Bias can be re-written in terms of all things that can be directly estimated from data except two:

1. $\rho = \Pr(M_i(0) = 0 | D_i = 1, M_i = 1)$: share of minority stops due to race (unknown)

2. $\theta = \mathbb{E}[Y(1, 1) | D_i = 1, M_i(1) = 1, M_i(0) = 0]$, violence rate among racially stopped minorities

- If we knew the joint distribution $\Pr(Y(1, 1), M_i(0) = 0 | D_i = 1, M_i(1) = 1) = \Pr(A, B)$, we could then back out $\theta = P(A|B)$, the conditional probability

$$\theta = P(A|B) = \frac{\Pr(A,B)}{\Pr(B)} = \frac{\Pr(A,B)}{\rho}$$
Bounding the true $ATE_{M=1}$

- Bias can be re-written in terms of all things that can be directly estimated from data except two:

 1. $\rho = \Pr(M_i(0) = 0|D_i = 1, M_i = 1)$: share of minority stops due to race (unknown)

 2. $\theta = \mathbb{E}[Y(1, 1)|D_i = 1, M_i(1) = 1, M_i(0) = 0]$, violence rate among racially stopped minorities

- If we knew the joint distribution $\Pr(Y(1, 1), M_i(0) = 0|D_i = 1, M_i(1) = 1) = \Pr(A, B)$, we could then back out $\theta = P(A|B)$, the conditional probability

- $\theta = P(A|B) = \frac{\Pr(A,B)}{\Pr(B)} = \frac{\Pr(A,B)}{\rho}$

- We don’t, but we can place Fréchet bounds on $\Pr(A, B)$
Maurice Fréchet
Fréchet Inequalities

Given two marginal distributions $\Pr(A)$ and $\Pr(B)$, the joint distribution $\Pr(A, B)$ is bounded by:

$$\max\{0, Pr(A) + Pr(B) - 1\} \leq P(A, B) \leq \min\{Pr(A), Pr(B)\}$$
Fréchet Inequalities

Given two marginal distributions \(Pr(A) \) and \(Pr(B) \), the joint distribution \((A, B) \) is bounded by:

\[
\max\{0, Pr(A) + Pr(B) - 1\} \leq P(A, B) \leq \min\{Pr(A), Pr(B)\}
\]
Fréchet Inequalities

Given two marginal distributions $\Pr(A)$ and $\Pr(B)$, the joint distribution (A, B) is bounded by:

$$\max\{0, \Pr(A) + \Pr(B) - 1\} \leq P(A, B) \leq \min\{\Pr(A), \Pr(B)\}$$
Fréchet Inequalities

Given two marginal distributions $\Pr(A)$ and $\Pr(B)$, the joint distribution (A, B) is bounded by:

$$\max\{0, \Pr(A) + \Pr(B) - 1\} \leq P(A, B) \leq \min\{\Pr(A), \Pr(B)\}$$
Fréchet Inequalities

Given two marginal distributions $\Pr(A)$ and $\Pr(B)$, the joint distribution (A, B) is bounded by:

$$\max\{0, \Pr(A) + \Pr(B) - 1\} \leq P(A, B) \leq \min\{\Pr(A), \Pr(B)\}$$
Fréchet Inequalities

Given two marginal distributions \(\Pr(A) \) and \(\Pr(B) \), the joint distribution \((A, B) \) is bounded by:

\[
\max\{0, \Pr(A) + \Pr(B) - 1\} \leq P(A, B) \leq \min\{\Pr(A), \Pr(B)\}
\]
Deriving sharp bounds for true $ATE_{M=1}$

If we can bound $\Pr(A, B)$ we can also bound $\theta = \frac{\Pr(A, B)}{\rho}$ and plug the bounds back into the bias term.
Deriving sharp bounds for true $ATE_{M=1}$

- If we can bound $\Pr(A, B)$ we can also bound $\theta = \frac{\Pr(A,B)}{\rho}$ and plug the bounds back into the bias term.

- If $ATE_{M=1} = \mathbb{E}[\hat{\Delta}] + bias$, then subbing in Fréchet bounds for θ into the bias term \Rightarrow

$$\mathbb{E}[\hat{\Delta}] + bias_{LB} \leq ATE_{M=1} \leq \mathbb{E}[\hat{\Delta}] + bias_{UB}$$
Sharp nonparametric bounds

Given ρ, bounds for the true $ATE_{M=1}$ are given by:

$$\mathbb{E}[\hat{\Delta}] + \rho \mathbb{E}[Y_i|D_i = 0, M_i = 1] \left(1 - \Pr(D_i = 0|M_i = 1)\right) \leq ATE_{M=1} \leq \mathbb{E}[\hat{\Delta}] + \rho \frac{\mathbb{E}[Y_i|D_i = 1, M_i = 1]}{1 - \rho} \left(\mathbb{E}[Y_i|D_i = 1, M_i = 1] - K\right) \Pr(D_i = 0|M_i = 1) + \rho \mathbb{E}[Y_i|D_i = 0, M_i = 1] \left(1 - \Pr(D_i = 0|M_i = 1)\right).$$

where

$$K = \max \left\{0, 1 + \frac{1}{\rho} \mathbb{E}[Y_i|D_i = 1, M_i = 1] - \frac{1}{\rho}\right\}.$$
Sharp nonparametric bounds

Given ρ, bounds for the true $ATE_{M=1}$ are given by:

$$E[\hat{\Delta}] + \rho E[Y_i|D_i = 0, M_i = 1] (1 - Pr(D_i = 0|M_i = 1)) \leq ATE_{M=1} \leq E[\hat{\Delta}] + \rho \frac{1}{1-\rho} (E[Y_i|D_i = 1, M_i = 1] - K) Pr(D_i = 0|M_i = 1) + \rho E[Y_i|D_i = 0, M_i = 1] (1 - Pr(D_i = 0|M_i = 1)).$$

where

$$K = \max \left\{ 0, 1 + \frac{1}{\rho} E[Y_i|D_i = 1, M_i = 1] - \frac{1}{\rho} \right\}.$$

The $ATT_{M=1}$ must similarly satisfy:

$$ATT_{M=1} = E[\hat{\Delta}] + \rho E[Y_i|D_i = 0, M_i = 1]$$
Does this matter in practice?
Does this matter in practice?

Replication and Extension: Fryer (2019)
Fryer (2019)

- Police-civilian interactions (e.g. Stop and Frisk, arrest records, summaries of shootings)
Fryer (2019)

- Police-civilian interactions (e.g. Stop and Frisk, arrest records, summaries of shootings)
- Logistic regressions of force measures on race dummies, controls for circumstance, suspect features, officer features

Conclusions:
- Some racial bias in sub-lethal force
- No bias in lethal force
- Problem: No data on those police observe but do not stop
Fryer (2019)

- Police-civilian interactions (e.g. Stop and Frisk, arrest records, summaries of shootings)

- Logistic regressions of force measures on race dummies, controls for circumstance, suspect features, officer features

- Conclusions:
 - Some racial bias in sub-lethal force
Fryer (2019)

- Police-civilian interactions (e.g. Stop and Frisk, arrest records, summaries of shootings)

- Logistic regressions of force measures on race dummies, controls for circumstance, suspect features, officer features

- Conclusions:
 - Some racial bias in sub-lethal force
 - No bias in lethal force
Fryer (2019)

- Police-civilian interactions (e.g. Stop and Frisk, arrest records, summaries of shootings)

- Logistic regressions of force measures on race dummies, controls for circumstance, suspect features, officer features

- Conclusions:
 - Some racial bias in sub-lethal force
 - No bias in lethal force

- Problem: No data on those police observe but do not stop
encounter recounted by police. A second type of bias is that officers may be more likely to charge black suspects with crimes such as resisting arrest or attempted assault on a public safety officer rather than misdemeanors, relative to whites, for identical behavior. This type of bias is an important limitation of Fryer (forthcoming) because it implies that the counterfactuals coded from arrest data may themselves contain bias. It is unclear how to estimate the extent of such bias or how to address it statistically.
Replication of Fryer (2019)

- Replicate two analyses of sub-lethal force using NYPD’s “Stop, Question and Frisk” (SQF) data (2003-2013), $N \approx 5$ million
Replication of Fryer (2019)

- Replicate two analyses of sub-lethal force using NYPD’s “Stop, Question and Frisk” (SQF) data (2003-2013), \(N \approx 5 \) million
- Stipulate to regression model (logit form, assume no omitted variables)
Replication of Fryer (2019)

- Replicate two analyses of sub-lethal force using NYPD’s “Stop, Question and Frisk” (SQF) data (2003-2013), $N \approx 5$ million
- Stipulate to regression model (logit form, assume no omitted variables)
 - Use of any force (at least laying hands on civilian; binary)
Replication of Fryer (2019)

- Replicate two analyses of sub-lethal force using NYPD’s “Stop, Question and Frisk” (SQF) data (2003-2013), $N \approx 5$ million
- Stipulate to regression model (logit form, assume no omitted variables)
 - Use of any force (at least laying hands on civilian; binary)
 - Force thresholds (e.g. at least handcuffs) with seven categories: laying hands; push to wall; handcuffs; draw weapon; push to ground; point weapon; baton/pepper spray
Bounds on race effects, black vs. white
Bounds on race effects, black vs. white
Bounds on race effects, black vs. white

Civilians subject to any racially discriminatory use of force (thousands)

Proportion of racially discriminatory stops

naïve TE × \#{stopped} TES × \#{stopped}
Bounds on race effects, black vs. white

Proportion of racially discriminatory stops

Civilians subject to any racially discriminatory use of force (thousands)

naive $T \times E \times S \times \#\{\text{stopped}\}$

naive $T \times E \times S \times \#\{\text{stopped minorities}\}$

naive $T \times E \times S \times \#\{\text{stopped}\}$
What is ρ?

What is the share of minority stops that would not have happened if civilians had been white?
What is ρ?

What is the share of minority stops that would not have happened if civilians had been white?

- Can be anywhere in $[0, 1)$. If $\rho = 0$, bias disappears.
What is ρ?

What is the share of minority stops that would not have happened if civilians had been white?

- Can be anywhere in $[0, 1)$. If $\rho = 0$, bias disappears.

- Two prior studies estimate this using data on “Stop, Question and Frisk” in NYC

- We use $\rho = 0.32$ to be conservative
What is ρ?

What is the share of minority stops that would not have happened if civilians had been white?

- Can be anywhere in $[0, 1)$. If $\rho = 0$, bias disappears.

- Two prior studies estimate this using data on “Stop, Question and Frisk” in NYC

- Gelman, Fagan & Kiss (2007) and Goel, Rao and Schroff (2016)
What is ρ?

What is the share of minority stops that would not have happened if civilians had been white?

▸ Can be anywhere in $[0, 1)$. If $\rho = 0$, bias disappears.

▸ Two prior studies estimate this using data on “Stop, Question and Frisk” in NYC

▸ Gelman, Fagan & Kiss (2007) and Goel, Rao and Schroff (2016)

▸ Studies take totally different approaches
What is ρ?

What is the share of minority stops that would not have happened if civilians had been white?

- Can be anywhere in $[0, 1)$. If $\rho = 0$, bias disappears.

- Two prior studies estimate this using data on “Stop, Question and Frisk” in NYC

- Gelman, Fagan & Kiss (2007) and Goel, Rao and Schroff (2016)

- Studies take totally different approaches

- Results imply ρ is at least .32 or .34, respectively
What is ρ?

What is the share of minority stops that would not have happened if civilians had been white?

- Can be anywhere in $[0, 1)$. If $\rho = 0$, bias disappears.

- Two prior studies estimate this using data on “Stop, Question and Frisk” in NYC

- Gelman, Fagan & Kiss (2007) and Goel, Rao and Schroff (2016)

- Studies take totally different approaches

- Results imply ρ is at least .32 or .34, respectively

- We use $\rho = .32$ to be conservative
Bounds on race effects, black vs. white

Proportion of racially discriminatory stops

Civilians subject to any racially discriminatory use of force (thousands)

$\text{naïve \ TE} \times \ #\{\text{stopped}\}$

$\text{TEST} \times \ #\{\text{stopped minorities}\}$
Bounds on race effects, black vs. white

Civilians subject to any racially discriminatory use of force (thousands)

naive TE = \frac{\text{#{stopped}}}{\text{#{stopped minorities}}}

Proportion of racially discriminatory stops

Civilian stops

Proportion of racially discriminatory stops

0.00 0.25 0.50 0.75 1.00
<table>
<thead>
<tr>
<th>Minimum force</th>
<th>TEₜ for encounters with black civilians (vs. white)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No covariates</td>
</tr>
<tr>
<td></td>
<td>bounds</td>
</tr>
<tr>
<td>Use of hands</td>
<td>(112.66, 124.59)</td>
</tr>
<tr>
<td></td>
<td>(84.6, 151.84)</td>
</tr>
<tr>
<td>Push to wall</td>
<td>(24.15, 27.75)</td>
</tr>
<tr>
<td></td>
<td>(15.5, 37.35)</td>
</tr>
<tr>
<td>Use of handcuffs</td>
<td>(14.6, 16.92)</td>
</tr>
<tr>
<td></td>
<td>(9.45, 22.61)</td>
</tr>
<tr>
<td>Draw weapon</td>
<td>(4.52, 5.14)</td>
</tr>
<tr>
<td></td>
<td>(3.13, 6.67)</td>
</tr>
<tr>
<td>Push to ground</td>
<td>(4.04, 4.58)</td>
</tr>
<tr>
<td></td>
<td>(2.79, 5.97)</td>
</tr>
<tr>
<td>Point weapon</td>
<td>(1.49, 1.7)</td>
</tr>
<tr>
<td></td>
<td>(0.96, 2.29)</td>
</tr>
<tr>
<td>Baton or pepper spray</td>
<td>(0.17, 0.19)</td>
</tr>
<tr>
<td></td>
<td>(0.1, 0.26)</td>
</tr>
</tbody>
</table>
Bounds for force thresholds, black vs. white

<table>
<thead>
<tr>
<th>Minimum force</th>
<th>TEₜ for encounters with black civilians (vs. white)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No covariates</td>
</tr>
<tr>
<td></td>
<td>bounds</td>
</tr>
<tr>
<td>Use of hands</td>
<td>(112.66, 124.59)</td>
</tr>
<tr>
<td></td>
<td>(84.6, 151.84)</td>
</tr>
<tr>
<td>Push to wall</td>
<td>(24.15, 27.75)</td>
</tr>
<tr>
<td></td>
<td>(15.5, 37.35)</td>
</tr>
<tr>
<td>Use of handcuffs</td>
<td>(14.6, 16.92)</td>
</tr>
<tr>
<td></td>
<td>(9.45, 22.61)</td>
</tr>
<tr>
<td>Draw weapon</td>
<td>(4.52, 5.14)</td>
</tr>
<tr>
<td></td>
<td>(3.13, 6.67)</td>
</tr>
<tr>
<td>Push to ground</td>
<td>(4.04, 4.58)</td>
</tr>
<tr>
<td></td>
<td>(2.79, 5.97)</td>
</tr>
<tr>
<td>Point weapon</td>
<td>(1.49, 1.7)</td>
</tr>
<tr>
<td></td>
<td>(0.96, 2.29)</td>
</tr>
<tr>
<td>Baton or pepper spray</td>
<td>0.17, 0.19</td>
</tr>
<tr>
<td></td>
<td>(0.1, 0.26)</td>
</tr>
</tbody>
</table>
Bounds for force thresholds, black vs. white

<table>
<thead>
<tr>
<th>Minimum force</th>
<th>TE$_S$ for encounters with black civilians (vs. white)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No covariates</td>
</tr>
<tr>
<td></td>
<td>bounds</td>
</tr>
<tr>
<td>Use of hands</td>
<td>$(112.66, 124.59)$</td>
</tr>
<tr>
<td></td>
<td>$(84.6, 151.84)$</td>
</tr>
<tr>
<td>Push to wall</td>
<td>$(24.15, 27.75)$</td>
</tr>
<tr>
<td></td>
<td>$(15.5, 37.35)$</td>
</tr>
<tr>
<td>Use of handcuffs</td>
<td>$(14.6, 16.92)$</td>
</tr>
<tr>
<td></td>
<td>$(9.45, 22.61)$</td>
</tr>
<tr>
<td>Draw weapon</td>
<td>$(4.52, 5.14)$</td>
</tr>
<tr>
<td></td>
<td>$(3.13, 6.67)$</td>
</tr>
<tr>
<td>Push to ground</td>
<td>$(4.04, 4.58)$</td>
</tr>
<tr>
<td></td>
<td>$(2.79, 5.97)$</td>
</tr>
<tr>
<td>Point weapon</td>
<td>$(1.49, 1.7)$</td>
</tr>
<tr>
<td></td>
<td>$(0.96, 2.29)$</td>
</tr>
<tr>
<td>Baton or pepper spray</td>
<td>$(0.17, 0.19)$</td>
</tr>
<tr>
<td></td>
<td>$(0.1, 0.26)$</td>
</tr>
<tr>
<td>Minimum force</td>
<td>TEₜ for encounters with black civilians (vs. white)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>No covariates</td>
</tr>
<tr>
<td>Use of hands</td>
<td>(112.66, 124.59)</td>
</tr>
<tr>
<td></td>
<td>(84.6, 151.84)</td>
</tr>
<tr>
<td>Push to wall</td>
<td>(24.15, 27.75)</td>
</tr>
<tr>
<td></td>
<td>(15.5, 37.35)</td>
</tr>
<tr>
<td>Use of handcuffs</td>
<td>(14.6, 16.92)</td>
</tr>
<tr>
<td></td>
<td>(9.45, 22.61)</td>
</tr>
<tr>
<td>Draw weapon</td>
<td>(4.52, 5.14)</td>
</tr>
<tr>
<td></td>
<td>(3.13, 6.67)</td>
</tr>
<tr>
<td>Push to ground</td>
<td>(4.04, 4.58)</td>
</tr>
<tr>
<td></td>
<td>(2.79, 5.97)</td>
</tr>
<tr>
<td>Point weapon</td>
<td>(1.49, 1.7)</td>
</tr>
<tr>
<td></td>
<td>(0.96, 2.29)</td>
</tr>
<tr>
<td>Baton or pepper spray</td>
<td>(0.17, 0.19)</td>
</tr>
<tr>
<td></td>
<td>(0.1, 0.26)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How can we do better?

- Only partially identified.
How can we do better?

- Only partially identified. Can’t get the population ATE.
How can we do better?

- Only partially identified. Can’t get the population ATE.

- Only way to do better: improved research design
Option 1:

- Identify situations with race-blind contact with police (e.g. rules for DUI stops; traffic stops and night; traffic accidents?)
Option 2: Gather data on the non-stopped

- Need data on those police observe but do not stop
Option 2: Gather data on the non-stopped

- Need data on those police observe but do not stop

- Answer: traffic cameras.
Option 2: Gather data on the non-stopped

- Need data on those police observe but do not stop

- Answer: traffic cameras.
 Passive data collection on non-stop encounters.
Option 2: Gather data on the non-stopped

- Need data on those police observe but do not stop

- Answer: traffic cameras.
 Passive data collection on non-stop encounters.

- Link cars to DMV records, ticket/arrest data
Option 2: Gather data on the non-stopped

- Need data on those police observe but do not stop

- Answer: traffic cameras.
 Passive data collection on non-stop encounters.

- Link cars to DMV records, ticket/arrest data

- Still have to contend with omitted variables
Option 2: Gather data on the non-stopped

- Need data on those police observe but do not stop

- Answer: traffic cameras.
 Passive data collection on non-stop encounters.

- Link cars to DMV records, ticket/arrest data

- Still have to contend with omitted variables

- But, plausible to measure most (all?) observable covariates available to officer when making stop
Option 2: Gather data on the non-stopped

- Need data on those police observe but do not stop
 - Answer: traffic cameras. Passive data collection on non-stop encounters.
- Link cars to DMV records, ticket/arrest data
- Still have to contend with omitted variables
 - But, plausible to measure most (all?) observable covariates available to officer when making stop
- No need to condition on being stopped during analysis
Option 2: Gather data on the non-stopped

- Need data on those police observe but do not stop
- Answer: traffic cameras. Passive data collection on non-stop encounters.
- Link cars to DMV records, ticket/arrest data
- Still have to contend with omitted variables
- But, plausible to measure most (all?) observable covariates available to officer when making stop
- No need to condition on being stopped during analysis
- Post-treatment conditioning avoided by design
Police data mask racially biased policing

- Lots of new/big data on policing → raft of studies estimating racial bias
Police data mask racially biased policing

- Lots of new/big data on policing → raft of studies estimating racial bias

- At present, inadequate theory: insufficient attention to role of race throughout entire process risks severely understating racial violence
Police data mask racially biased policing

- Lots of new/big data on policing → raft of studies estimating racial bias

- At present, inadequate theory: insufficient attention to role of race *throughout entire process* risks severely understating racial violence

- Risk confusing/misleading the public and policymakers
Thanks!

Please send feedback to:

dcknox@princeton.edu
wlowe@princeton.edu
jmummolo@princeton.edu