Definition of Systemic risk

- Systemic risk build-up during (credit) bubble ... and materializes in a crisis
 - “Volatility Paradox” → contemp. measures inappropriate
- Spillovers/contagion – externalities
 - Direct contractual: domino effect (interconnectedness)
 - Indirect: price effect (fire-sale externalities)
 - credit crunch, liquidity spirals

- Adverse GE response → amplification, persistence
Imbalances and Amplification

- Trigger versus amplification
 - Trigger varies from crisis to crisis and difficult to nail down
 - Amplification effects are similar from crisis to crisis

- Amplification and indirect spillover effects are due to liquidity problems
 - Depends on endogenous response
 - Depends on expectations/beliefs
 - There is hope: “driven by constraints” (rather than maximization)
 - Focus on endogenous response indicator \rightarrow LMI

- General equilibrium phenomenon
 - Risk managers have partial equilibrium perspective
 - Split task

- Shadow banking vs. regulated sector

position data needed for direct spillover effects
Data collection (macro-prudential)

1. Partial equilibrium response to (orthogonal) stress factors
 - In value \(\Delta \text{Value} \)
 - In liquidity mismatch index \(\Delta \text{LMI} \)

 - Collect long-run panel data set!

2. General equilibrium effects
 - Amplification, persistence

 - ... reaction function

 - financial industry

 - macro-prudential regulators
General equilibrium

- **Direct** responses to 5%, 10%, 15%,... drop in factor to
 - ΔValue
 - ΔLiquidity Mismatch Index
- **Predict response**
 - hold out - “fire” sell assets - credit crunch
- **Derive likely indirect** equilibrium response to
 - this stress factor
 - other factors

Find out whether plans were mutually consistent!
(if not → tail risk)
Liquidity Mismatch Index (LMI)

<table>
<thead>
<tr>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market liquidity</td>
<td>Funding liquidity</td>
</tr>
<tr>
<td>- Can only sell assets at fire-sale prices</td>
<td>- Can’t roll over short term debt</td>
</tr>
<tr>
<td>Ease with which one can raise money by selling the asset</td>
<td>Ease with which one can raise money by borrowing using the asset as collateral</td>
</tr>
</tbody>
</table>

Maturity mismatch

Brunnermeier, Gorton, Krishnamurthy
Liquidity Mismatch Index (LMI)

Market liquidity
- Can only sell assets at fire-sale prices

Ease with which one can raise money by selling the asset

Funding liquidity
- Can’t roll over short term debt
- Margin-funding is recalled

Ease with which one can raise money by borrowing using the asset as collateral

Liquidity Mismatch Index = liquidity of assets minus liquidity promised through liabilities

Brunnermeier, Gorton, Krishnamurthy
Liquidity Mismatch Index (LMI)

<table>
<thead>
<tr>
<th>Market liquidity</th>
<th>Funding liquidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treasuries/cash: (\lambda = 1)</td>
<td>Overnight debt: (\lambda = 1)</td>
</tr>
<tr>
<td>Overnight repo: (\lambda = .99)</td>
<td>Long-term debt: (\lambda = .50)</td>
</tr>
<tr>
<td>Agency MBS: (\lambda = .95)</td>
<td>Equity: (\lambda = .10)</td>
</tr>
<tr>
<td>Private-label MBS: (\lambda = .90)</td>
<td></td>
</tr>
</tbody>
</table>

Liquidity Mismatch Index = liquidity of assets \text{ minus } liquidity promised through liabilities

Basel 3: Net Stable Funding Ratio, Liquidity Coverage Ratios implicitly assign some \(\lambda \) weights
Liquidity Risk

- $\{\lambda^\omega\}$ for different macro states ω
- Firm (or sector) liquidity risk:
 - the vector $\{\text{LMI}^\omega\}$ - LMI for each state ω
- $\{\text{LMI}^\omega\}$ is the liquidity risk taken by the firm
 - Portfolio decision at date 0 is over assets/liabilities
 - Asset/liability choices + realization of uncertainty result in $\{\text{LMI}^\omega\}$
- Δ^{LMI} along different risk factors

Brunnermeier, Gorton, Krishnamurthy
Example 1: Liquidity Mismatch

- *LMI places a larger weight on repo debt than Agency MBS*
- *This bank’s LMI* < 0

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>$50 1-Year Loan</td>
<td>$20 Equity</td>
</tr>
<tr>
<td>$50 Agency-MBS</td>
<td>$50 Repo debt</td>
</tr>
<tr>
<td></td>
<td>$30 5-Year debt</td>
</tr>
</tbody>
</table>

Brunnermeier, Gorton, Krishnamurthy
Example 1: Liquidity Mismatch

- The asset-side is less liquid (lower liquidity weight)
- LMI is more negative

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>$50 1-Year Loan</td>
<td>$20 Equity</td>
</tr>
<tr>
<td>$50 Agency-MBS</td>
<td>$50 Repo debt</td>
</tr>
<tr>
<td>$50 Private-Label-MBS</td>
<td>$30 5-Year debt</td>
</tr>
</tbody>
</table>

Brunnermeier, Gorton, Krishnamurthy
Example 2: Rehypothecation

- Dealer lends $90 to a hedge fund against $90 of MBS collateral in an overnight repo
- Dealer posts $90 of MBS collateral to money market fund and borrows $90 in an overnight repo

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10 Treasuries</td>
<td>$10 Equity</td>
</tr>
<tr>
<td>$90 Loan to Hedge Fund</td>
<td>$90 of Repo Debt</td>
</tr>
</tbody>
</table>

- \(LMI > 0 \) because of Treasury holdings
- **What if hedge fund loan was 10 days?** \(LMI \) falls...
Example 3: Credit Lines

- Bank with $20 of equity and $80 of debt
- The bank buys $100 of U.S. Treasuries
- Offers a credit line to a firm to access up to $100.
- $LMI < 0$ in state(s) $\omega \in \Omega$ where credit line is accessed.
Example 4: Derivatives

- Bank with $20 of equity and $80 of debt
- The bank buys $100 of U.S. Treasuries
- Writes protection on a diversified portfolio of 100 investment-grade U.S. corporates, each with a notional amount of $10; so there is a total notional of $1,000.
- $LMI < 0$ in state(s) $\omega \in \Omega$ where CDS causes a mark-to-market
Liquidity Pockets

- Sectorial LMI
 - Guess: Banking sector is net short liquidity
 - But, to whom, how much, etc.
 - LMI of shadow banking
 - Guess: Corporate, household sectors are long liquidity

- 2000 to 2008 build up
 - Guess: Aggregate liquidity rises (good), but LMI for financial sector is more negative (bad)

- Identify systemically important institutions
 - LMI<0 identifies “financial intermediary”
 - Lowest LMIs are the systemically important ones

- Liquidity chains
 - Asymmetric asset vs. liability λ
Liquidity Chains

- Baseline case: Symmetric weights \(\{\lambda\} \)
 - i.e. Asset weights \(\{\lambda\} \) match liability weights \(\{\lambda\} \)

- Consider asymmetric case:
 - Bank A owns $100 short-term repo issued by bank B:
 - Asset weight = 0.95
 - Bank B issues $100 short-term repo:
 - Liability weight = 1

- Measurement: liquidity chains (A owes to B owes to C...) causes a contraction in aggregate liquidity
Stress Testing

- Define $\Lambda = \{\lambda\}$
- Consider stress scenarios as specifying Λ^ω
 - Move all $\{\lambda\}$ in a percentage shift
 - Move all λs of MBS in a percentage shift
 - Move all λs of long-term assets in a percentage shift
- Measurement: Identify states of the world where imbalances are high
Liquidity Risk

- \{\text{LMI}^\omega\} is the *liquidity risk* taken by the firm
 - Portfolio decision at date 0 is over assets/liabilities
 - Asset/liability choices result in \{\text{LMI}^\omega\}

- Research: Given a time series of \{\text{LMI}^\omega\}, we can build empirical models of firm liquidity choices.
 - Analogy: We use the CEX to model household spending behavior and test asset pricing models.

Brunnermeier, Gorton, Krishnamurthy
Example 5: Spillovers

- Many identical banks: $20 equity, $80 debt
- Debt is $40 overnight repo, $50 of 5-year debt.
- Each bank owns $40 of private-MBS, $40 of repo loans (at 0% haircut) to other banks
- Liquidity management: Bank has liquidity to cover losses if MBS prices fall by 5%, but if they fall by more, the bank will not renew its repo loans/raise repo haircuts.

Issue: Liquidity management in general equilibrium
In addition, to liquidity, let use measure value (equity or enterprise value) of firm(s) in each state.

Data presents a history of “date 0”s in varying conditions.

- Each date is a portfolio choice, Δ, as a function of current firm value/liquidity and current state of economy.
- Panel data
- Estimate/model the portfolio choice of firms.
In sum...

- Risk Topography – 2 step approach
 - 100 factor exposure
 - Value
 - LMI response indicator
 - General equilibrium amplification
- Liquidity Mismatch replaces Maturity Mismatch
 - Also captures derivatives