Motivation

- **Aim:** Bridge the gap between
 - Macro/monetary research
 - Finance research

- **Financial sector helps to**
 - overcome financing frictions and
 - channels resources
 - creates money

... but

- Credit crunch due to adverse feedback loops & liquidity spirals
 - Non-linear dynamics

- **New insights to monetary and international economics**
- Price stability
 - Monetary policy

- Financial stability
 - Macroprudential policy

- Fiscal debt sustainability
 - Fiscal policy

- Short-term interest
- Policy rule (terms structure)

- Reserve requirements
- Capital/liquidity requirements
- Collateral policy
 - Margins/haircuts
- Capital controls
Methodology

- **Verbal Reasoning** (qualitative)
 - Fisher, Keynes, ...

Macro
- Growth theory
 - Dynamic (cts. time)
 - Deterministic
- Introduce stochastic
 - Discrete time
 - Brock-Mirman, Stokey-Lucas
 - DSGE models
- Cts. time macro with financial frictions

Finance
- Portfolio theory
 - Static
 - Stochastic
- Introduce dynamics
 - Continuous time
 - Options Black Scholes
 - Term structure CIR
 - Agency theory Sannikov
Pre-crisis Macro

- Price/wage rigidities

- Expectations of
 - cash flow
 - “the” short-term interest rate

\[\Delta \text{price} = f(\Delta E[\text{future cash flows}], \Delta \text{risk premia}) \]

- Expectation hypothesis
- Credit spread = expected default

Euler equation
- Substitution effects

Post-crisis Macro & Finance

- Financial frictions

- Endogenous risk/volatility
 e.g. runs, sudden stops, ...

- Risk premia time varying

- Term risk premia
- Credit risk premia

- Wealth redistribution
- Income/wealth effect
Heterogeneous Agents & Frictions

- Lending-borrowing/insuring since agents are different
 - Poor-rich
 - Productive
 - Less patient
 - Less risk averse
 - More optimistic
 - Rich-poor
 - Less productive
 - More patient
 - More risk averse
 - More pessimistic

- Friction \(\rightarrow p_s \text{MRS}_s \) different even after transactions

- Wealth distribution matters! (net worth of subgroups)
- Financial sector is not a veil
Types of Distortions

- Belief distortions
 - Match “belief surveys” \((BGS)\)

- Incomplete markets
 - “natural” leverage constraint \((BruSan)\)
 - Costly state verification \((BGG)\)

- + Leverage constraints
 - (no “liquidity creation”)
 - Exogenous limit \((Bewley/Ayagari)\)

- Collateral constraints
 - Next period’s price \((KM)\)
 \[Rb_t \leq q_{t+1}k_t \]
 - Next periods volatility \((VaR, JG)\)
 - Current price

- Search Friction \((DGP)\)
Course on continuous time macro

1. Introduction: Liquidity, Run-up, Crisis-Amplification, Recovery

Real Macro-Finance Models with Heterogeneous Agents

2. A Simple Model

3. General Solution Technique

4. International Macro-Finance Model with Sudden Stops/Runs

Money Models

5. A Simple Money Model

6. General Solution Technique

7. The I Theory of Money

8. Welfare Analysis & Optimal Policy
 - Monetary and Macroprudential Policy

9. International Financial Architecture*

10. Robust Computational Methods – Comparing Nonlinear Models

11. Calibration and Empirical Implications
Overview: Financial Crises

- Run-up phase
 - Distorted Beliefs
 - Concentration of Risk
 - Maturity Shortening

- Crash phase
 - Fire-sales
 - Paradox of Prudence
 - Spillovers

- Recovery phase
 - Persistence vs. Resilience
 - Dynamic Amplification
 - Volatility Dynamics/Volatility Paradox
The 2 Components of Systemic Risk

1. Systemic risk build-up during (credit) bubble ... and materializes in a crisis
 - “Volatility Paradox” contemp. measures inappropriate
 - Vulnerability focus instead of timing focus

2. Spillovers/contagion
 - Direct contractual: domino effect – network
 - Indirect: price effect (fire-sale externalities) credit crunch, liquidity spirals

3. Persistence/Slow recovery
The 2 Components of Systemic Risk

1. Systemic risk build-up during (credit) bubble ... and materializes in a crisis \(-\text{time-series}\)
 - "Volatility Paradox" \(\rightarrow\) contemp. measures inappropriate
 - Vulnerability-focus instead of timing-focus
Run-up 1: Bubbles due to Beliefs “Distortions”

- **Extrapolative Expectations**
 - Representativeness heuristic
 - Overestimate of productivity after good shock
 - Bubbles/overinvestment driven by *level of beliefs* a la Miller (1977)
 - AS: Surveys consistent with each other, mutual fund flows
 - Local thinking “neglect of tail risk” ≈ VaR

- **Heterogeneous beliefs**: optimists and pessimists
 - + limited commitment ⇒ Leverage cycle
 - “Marginal buyer” vary with shocks

- Surveys elicit “consensus beliefs” ≠ marginal buyer’s beliefs

- **Switching** heterogeneous beliefs ⇒ Speculation
 (Resale option a la Harrison-Kreps/Scheinkman-Xiong):
 - optimist/pessimist “switching” + short-sale constraint
 - ⇒ Bubbles, volatility, and transaction volume
Run-up 2: Concentration of Risk

- Financial frictions models:
 - “Experts” hold most of aggregate risk in good times
 - Low volatility, but risk builds up in background
 - Credit cycle: (BGG/KM/BruSan)

- Leverage cycle: (JG/BruPed) extreme leverage in cts. time limit
Run-up 3: Maturity Mismatch

- Brunnermeier-Oehmke: Maturity “rat race”
 - Incentive to dilute creditors
- Diamond-Dybvig: Demand for liquidity
- Calomiris-Kahn: Discipline for banker
Run-up 3: Maturity Mismatch

- Brunnermeier-Oehmke: Maturity “rat race”
 - Incentive to dilute creditors
- Diamond-Dybvig: Demand for liquidity
- Calomiris-Kahn: Discipline for banker

Run-up 4: Build-up of Interlinkages

- Kopytov (2018)
Run-up 5: Build-up Strategic Complementarity

- **In payoffs**
 - externalities
 \[
 \frac{\partial u^i}{\partial x^{-i}}
 \]
 - If others sell, I suffer a negative shock
 - Pecuniary externalities
 - Incomplete markets setting
 - Price affects collateral constraint
 - Normative theory (welfare implications)

- **In response**
 - strategic substitutes/complements
 \[
 \frac{\partial \partial u^i}{\partial x^i} \frac{\partial x^i}{\partial x^{-i}}
 \]
 - If others sell, it is more profitable for me to also sell
 - Descriptive/positive theory
Run-up 5: Build-up Strategic Complementarity

- A “strategic-substitute-externality”

 (*we Germans like long words 😊*)

- Externality: individual ignores that his action leads to a build-up of strategic complementarities
 - With potential large price swings/fire sales

- Pecuniary externality: e.g. fire-sale externality
Externality: negative

\[i\text{'s best response} \]

\[\text{negative externality} \]
Externality: positive

\[i \text{'s best response} \]

\[\text{others' average actions} \]

Positive externality
Strategic substitutability

If others respond less, (price goes down) You respond more (buy more)

"Respond like a maverick"
Strategic Complementarity

If others respond less, (price goes down)
You respond less (buy less)
Externalities vs. Strategic Complementarities

- Externalities (payoff spillovers) $\frac{\partial u^i}{\partial x^{-i}}$ and

- Strategic Complementarity/Substitutability $\frac{\partial^2 u^i}{\partial x^i \partial x^{-i}} = \frac{\partial}{\partial x^i} \frac{\partial u^i}{\partial x^{-i}} = \frac{\partial}{\partial x^{-i}} \frac{\partial u^i}{\partial x^i}$

 - can be independent of each other

 - ...but note: if $\frac{\partial u^i}{\partial x^{-i}} = 0$, then $\frac{\partial^2 u^i}{\partial x^i \partial x^{-i}} = 0$

- Connection:
 - Due to strategic complementarities x^{-i} changes a lot
 - Which causes large externality (spillover)
Shock prior to run-up of imbalances

Strategic substitutability

If others respond less, (price goes down)
You respond more (buy more)

Shock absorber
Shock prior to run-up of imbalances

Shock by 10, but equilibrium declines only by 9

i’s best response

others’ average actions
Run up of imbalances

Strategic complementarities

If others were to respond less, (price goes down) you also respond less (buy less/sell)

Shock amplifier

Only off equilibrium changes (price is still high, but ...)

\(i \)'s best response

others’ average actions
Run up of imbalances

Strategic complementarities

If others were to respond less, (price goes down) you also respond less (buy less/sell)

Shock amplifier

Only off equilibrium changes (price is still high, but ...)

Example: Traders lever up by paying out dividend (more constrained after negative shock)

Run-up

i’s best response

others’ average actions
Shock after run-up

Shock by 10
Leads to equilibrium effect of 30
2nd, 3rd round effects: Amplification

Initial fundamental shock/trigger is amplified
Amplification of Fundamental Shock

Multiplicity: without Fundamental Shock
2nd, 3rd round effects: Amplification Multiplicity

- i’s best response
- Run-up
- shock
- multiplicity
- jump
- amplification
- others’ average actions
2nd, 3rd round effects: Amplification

Multiplicity

i’s best response

Run-up

Amplification

Shock

Multiplicity

Jump

Others’ average actions
Multiplicity – Crisis vulnerability without shock

If others were to respond less, you also respond less.

Even stronger (slope >1)
Drop without fundamental shock

Only off equilibrium changes (price is still high, but ...)

Strategic complementarities

Run-up

i’s best response

others’ average actions
Overview: Financial Crises

- Run-up phase
 - Distorted Beliefs
 - Concentration of Risk
 - Maturity Shortening

- Crash phase
 - Traditional Bank Runs
 - Modern Banks and Liquidity Spirals
 - Fire-sales
 - Spillovers

- Recovery phase
 - Persistence vs. Resilience
 - Dynamic Amplification
 - Volatility Dynamics/Volatility Paradox
The 2 Components of Systemic Risk

1. Systemic risk build-up during (credit) bubble ... and materializes in a crisis
 - “Volatility Paradox" contemp. measures inappropriate
 - Vulnerability focus instead of timing focus

2. Spillovers/contagion
 - Direct contractual: domino effect – network
 - Indirect: price effect (fire-sale externalities) credit crunch, liquidity spirals

3. Persistence/Slow recovery

Diagram:
- Shock to capital
- Loss of net worth
- Precaution + tighter margins
- Fire sales
- Volatility price

Nonlinearity

Crisis management

Preventive
Traditional vs. modern banks

- Bank run a la Diamond-Dybvig
 - ... but inertia also due to demand deposit insurance

- Whole sale funding liq. risk like in Brunnermeier-Pedersen
 - Short-term
 - No inertia
 - Collateralized

- Fire-sales of tradable assets
- Risk shifting towards depositors (insurance)
Bank Runs

+ Silent bank run (via internet)
Example: Bank Run – Multiple Equilibria

- Best response of agents at $t = 1$ who learned that they are “late consumers”

If bank issues *extra equity* to purchase liquid asset
Traditional vs. modern banks

- **Bank run a la Diamond-Dybvig**
 - Demand deposit
 - FDIC insurance -- inertia
 - Illiquid loans

- **Whole sale funding liq. risk like in Brunnermeier-Pedersen**
 - Short-term
 - No inertia
 - Collateralized

- Fire-sales of tradable assets
- Risk shifting towards depositors (insurance)
Financial Frictions

- Incomplete markets
 - E.g. only debt contracts due to adverse selection

- Leverage constraints
 - Exogenous limit (Bewley/Ayagari)

- Collateral constraints
 - (Current price)
 - Next period’s price (KM)
 \[Rb_t \leq q_{t+1} k_t \]
 - Next periods volatility (VaR)

Debt limit can depend on prices/volatility
Liquidity Concepts

- Financial instability arises from the fragility of liquidity

Market liquidity
- Specificity of capital
- Price impact of capital sale

Funding liquidity
- Maturity structure of debt
 - Can’t roll over short term debt
- Sensitivity of margins
 - Margin-funding is recalled

Liquidity mismatch determines severity of amplification, (sunspot) runs, ... “strategic complementarities”
Margins/Haircuts Spirals

- How are margins set by brokers/exchanges?
 - Value at Risk: \(\Pr(-(p_{t+1} - p_t) \geq m) = 1\% = \pi \)

- For collateralized lending, debt constraints are directly linked to the volatility of collateral
 - Constraints are more binding in volatile environments
 - Feedback effect between volatility and constraints

- Margin spiral force agents to delever in times of crisis
 - Collateral runs
 - Multiple equilibria
 - Counterparty bank run
Leverage with Margin Funding

- action/holdings of “expert traders”

- residual supply $S(p)$

Higher holding, \Rightarrow higher price
Leverage with Margin Funding

- action/holdings of “expert traders”

- residual supply $S(p)$

\[S(p) \]

- i’s best response

\[\text{others' average actions} \]

\[\text{higher holding, } \Rightarrow \text{ higher price} \]
Leverage with Margin Funding

- **action/holdings of “expert traders”**

- **residual supply** $S(p)$

- i’s best response

- **expert traders forced to sell**

- **Others sell** → **price drops**

- **higher holding, ⇒ higher price**

Graph showing:
- Vertical axis: i’s best response
- Horizontal axis: others’ average actions
- $S(p)$ curve
- $p(\cdot)$
- Others sell
- Price drops
- Higher holding
Leverage with Margin Funding

- action/holdings of “expert traders”

\[i's \text{ best response} \]

- Others sell
 - price drops
 - (1) ⇒ losses
 - (2) ⇒ volatility/VaR estimate ⇒ margins

- expert traders forced to sell
Leverage with Margin Funding

- action/holdings of “expert traders”

\[i' \text{’s best response} \]

expert traders forced to sell

Others sell

⇒ price drops

(1) ⇒ losses

(2) ⇒ volatility/VaR estimate ⇒ margins
Liquidity Spirals – Amplification effects

- Loss Spiral
- Margin Spiral

1. **Shock to capital** → **Loss of net worth**
2. **Precaution + tighter margins** → **volatility price**
3. **volatility price** → **Fire sales**

nonlinearity
Amplification/Destabilizing after Large Shock

- After a large (fundamental) shock

"large shock amplifier"
Stabilizing after Small Shocks

- After a small (fundamental shock)

\[i's \text{ best response} \]

"small shock absorber"
DeStabilizing after Large Shock

- After a large (fundamental) shock

![Diagram showing the concept of 'small shock absorber' and 'large shock amplifier'.]
Crash 2: Endogenous Fat Tails

- Initial shock is normally distributed
- Return distribution due to strategic complementarities
Impact of Higher Leverage due to Stock Repurchase

- Starting point

If firm repurchases equity paid with liquid asset
⇒ lower capital ratio
⇒ even smaller shocks lead to sharp drops
⇒ fat tails
Impact of More Liquidity Mismatch

- Starting point

If firm sells liquid safe asset and buys less liquid risky (long-maturity) asset
Impact of More Liquidity Mismatch

- Higher leverage

If firm sells liquid safe asset and buys less liquid risky (long-maturity) asset
⇒ lower (risk-weighted) capital ratio
⇒ more liquidity mismatch
Impact of More Liquidity Mismatch

- Margin spiral \Rightarrow more strategic complementarity

If firm sells liquid safe asset and buys less liquid (long-maturity) asset
Leverage Dynamics

- Credit cycle: *(Loss spiral)*
 - Constant volatility exog. shocks
 ⇒ Countercyclical leverage
 - Underinvestment (second best user problem)

- Leverage cycle: *(Margin spiral/Repo run)*
 - Exogenously time-varying volatility
 ARCH/Scary bad news ⇒ Destabilizing Margins
 ⇒ Pro-cyclical leverage

- Evidence: Pro- vs. countercyclical leverage depends on
 - investor type, book vs. market, new issuance vs. overall
Pro- vs. Counter-cyclical Leverage

- Adrian-Shin (2014): **Book vs. market leverage**
 - Intermediaries finance new assets with debt ⇒ Procyclical
- Geanakoplos-Pedersen (2014): **New vs. old leverage**
 - Margins spike in crisis ⇒ Procyclical
- He, Kelly, Manela (2017): Different constraints
 - “Equity constraint”: BGG/BruSan, countercyclical leverage
 - “Debt constraint”: Leverage cycle, procyclical leverage
 - Book/market leverage positively correlated for dealers
 - Evidence from HFs in Ang et al. (2011)
 - HFs procyclical, investment banks countercyclical
Run on Repo or not?

1. Not system-wide
2. Tri-party and bilateral repo markets behaved very differently
3. In tri-party market, runs on
 a. select counterparty (Lehman)
 ▪ Diamond-Dybvig run
 b. select collateral (private label MBS/ABS)
 ▪ Brunnermeier-Pedersen run
Gorton & Metrick (2011)

- Bilateral repo data (private date by Gorton)
US Repo Run? 2008/9

- Margins on collateral assets
 - very stable in tri-party repo market
 - Copeland, Martin, Walker (2011)
 - Opposing view: Gorton, Metrick (2011)
 - Not stable on private MBS/ABS
 - but small relative to overall MBS/ABS market (3%)
 - ABCP was a much bigger part...
 - Krishnamurthy, Nagel, Orlov (2011)

- Margin jump/run on selected counterparties
 - Bear Stearns (anecdotally)
 - Lehman (in data)
 - Not in Krishnamurthy et al.
Bilateral and Tri-party Haircuts/Margins?

Differences in Median Haircuts

Source: FRBNY Calculations
ABCP collapse – rollover risk

- ABCP dries up
 - no rollover, esp. by money market funds ("Break the Buck" Rule 2a-7)
- SIVs draw on credit lines of sponsoring bank
- Banking Crisis: IKB, SachsenLB, Northern Rock, IndyMac, ...

![Graph showing the amount of ABCP and Non-ABCP outstanding from January 2004 to January 2009.](image-url)
ABCP: Composition

- Non-U.S. Residential Mortgages
- Student Loans
- Credit Cards
- Autos
- Commercial Real Estate
- Home Equity (Subprime)

$ Billions

Mar-00 Sep-00 Mar-01 Sep-01 Mar-02 Sep-02 Mar-03 Sep-03 Mar-04 Sep-04 Mar-05 Sep-05 Mar-06 Sep-06 Mar-07 Sep-07 Mar-08 Sep-08

[Graph showing the composition of ABCP with different categories and their values over time.]
Crash 3: Spillover across Institutions

- Financial Contagion

- Broadly, two types:
 - Contractual linkages: (Direct) cross-exposures
 - General equilibrium linkages: (Indirect) price effects.
Absorbers vs. amplifier

- **Shock absorber**
- **Shock amplifier**

<table>
<thead>
<tr>
<th>Direct</th>
<th>Indirect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractual links</td>
<td>“Virtual links”</td>
</tr>
<tr>
<td>Loss through bankruptcy/default</td>
<td>Similar exposure than other levered players</td>
</tr>
<tr>
<td>Position data</td>
<td>Response indicator - expectations/constraints</td>
</tr>
</tbody>
</table>

Distribution
- exogenous
- endogenous

 Depends on strategic substitutability/complementarity
Market Connectedness and Contagion

- Connected Interbank market

- Not fully connected market

- The more connected the larger is the scope for contagion

- Trade-off: Spillover/contagion vs. diversification!
Systemic Risk Measure: $\Delta CoVaR$

- *In returns*

- VaR_q^j is defined as quantile

 $$\Pr(X^j \leq VaR_q^j) = q$$

- $CoVaR_q^{j|x^i}$ is the conditional quantile

 $$\Pr\left(X^j \leq CoVaR_q^{j|x^i}|C(X^i)\right) = q$$

- The contribution

 $$\Delta CoVaR_q^{j|i} = CoVaR_q^{j|x^i=VaR_q^i} - CoVaR_q^{j|x^i=VaR_{50}^i}$$

- *In dollars*

 $$\Delta^\$ CoVaR_q^{j|i} = Size^i \times \Delta CoVaR_q^{j|i}$$
\(\triangle \text{CoVaR} \) vs. \(\text{VaR} \)

- Probability of a tree catching fire
- Probability of a tree on fire spilling over to forest
Various conditionings

- $\Delta CoVaR$
 - Q1: Which institutions move system (in a non-causal sense)
 - $VaR_{system}^i | \text{institution } i \text{ in distress}$

- Exposure $\Delta CoVaR$
 - Q2: Which institutions are most exposed if there is a systemic crisis?
 - $VaR^i | \text{system in distress}$

- Network $\Delta CoVaR$
 - VaR of institution j conditional on i

- Asset by asset $\Delta CoVaR$
Crash 3: Paradox of Prudence

- “Micro-prudence” of bank is “macro-imprudent”
- Two “spirals” amplify
 - Liquidity spiral (price of capital)
 - Disinflationary spiral (price of money)
Crash 3: Paradox of Prudence

- “Micro-prudence” of bank is “macro-imprudent”
- Two “spirals” amplify
 - Liquidity spiral (price of capital)
 - Disinflationary spiral (price of money)
 - Banks issue less inside money (& diversify less risk risk)
 - HH demand more money

⇒ Lower inflation

BruSan “The I Theory of Money”
Crash 4: Spillovers Across Assets

- **Net worth channel:**
 - Expert net worth affects all assets
 - Leverage cycle: Spillovers from “crossover” investors JG
 - Margins spike in one market
 ⇒ Crossover investors transfer capital from other markets
- **BruPed:** Multiple equilibria:
 - Joint jump in price across assets
 - Even assets with uncorrelated payoffs jump together
 - Could also be integrated in a DD-model

- Measurement: **CoVaR**
Overview: Financial Crises

- Run-up phase
 - Distorted Beliefs
 - Concentration of Risk
 - Maturity Shortening

- Crash phase
 - Traditional Bank Runs
 - Modern Banks and Liquidity Spirals
 - Fire-sales
 - Spillovers

- Recovery phase
 - Persistence vs. Resilience
 - Dynamic Amplification
 - Volatility Dynamics/Volatility Paradox
Persistence

- Even in standard real business cycle models, temporary adverse shocks can have long-lasting effects.
- Due to feedback effects, persistence is much stronger in models with financial frictions.
 - Bernanke & Gertler (1989)
 - Carlstrom & Fuerst (1997)
- Negative shocks to net worth exacerbate frictions and lead to lower capital, investment and net worth in future periods.
CF: Persistence & Dampening

- Negative shock in period t decreases N_t
 - This increases financial friction and decreases I_t

- Decrease in capital supply leads to
 - Lower capital: K_{t+1}
 - Lower output: Y_{t+1}
 - Lower net worth: N_{t+1}
 - Feedback effects in future periods $t + 2, \ldots$

- Decrease in capital supply also leads to
 - Increased price of capital q_t
 - Dampening effect on propagation of net worth shock
Persistence ⇒ Dynamic Amplification

- Bernanke, Gertler and Gilchrist (1999) introduce *technological illiquidity* in the form of nonlinear adjustment costs to capital

- Negative shock in period t decreases N_t
 - This increases financial friction and decreases I_t

- In contrast to the dampening mechanism present in CF, now decrease in *capital demand* (not supply) leads to
 - Decreased price of capital due to adjustment costs
 - *Amplification* effect on propagation of net worth shock
Bernanke, Gertler & Gilchrist (BGG)

- BGG assume separate investment sector
 - This separates entrepreneurs’ capital decisions from adjustment costs

- $\Phi(\cdot)$ represents technological illiquidity
 - Increasing and concave with $\Phi(0) = 0$
 - $K_{t+1} = \Phi\left(\frac{I_t}{K_t}\right)K_t + (1 - \delta)K_t$

- FOC of investment sector
 - $\max_{I_t} \{q_t K_{t+1} - I_t\} \Rightarrow q_t = 1/\Phi'\left(\frac{I_t}{K_t}\right)$
Kiyotaki & Moore (KM) ‘97

- Kiyotaki, Moore (1997) adopt a collateral constraint, $Rb_t \leq q_{t+1}k_t$, instead of CSV
- *market illiquidity* – second best use of capital

- Output is produced in two sectors, differ in productivity

- Aggregate capital is fixed, resulting in
 - extreme *technological illiquidity*
 - Investment is completely irreversible

- Durable asset has two roles:
 - Collateral for borrowing
 - Input for production
KM Amplification

- **Static** amplification occurs because fire-sales of capital from productive sector to less productive sector depress asset prices
 - Importance of *market liquidity* of physical capital
- **Dynamic** amplification occurs because a temporary shock translates into a persistent decline in output and asset prices
 - Forward
 - Backward

 grow networth via retained earnings

 asset pricing
“Kocherlakota Critique”

- Amplification for negative shocks differs from positive shocks
 - In Kocherlakota (2000) optimal scale of production
 (positive shock does not lead to expansion)
- Amplification is quantitatively too small
 - Capital share is only 1/3 and hence GDP is too small

- Cordoba and Ripoll (2004)
 - Needs sizeable capital share plus
 - Low intertemporal substitution
“Single Shock Critique”

- Critique: After the shock all agents in the economy know that the economy will deterministically return to the steady state.
 - Length of slump is deterministic (and commonly known)
 - No safety cushion needed

- In reality an adverse shock may be followed by additional adverse shocks
 - Build-up extra safety cushion for an additional shock in a crisis

- Impulse response vs. volatility dynamics
Endogenous Volatility & Volatility Paradox

- **Endogenous Risk/Volatility Dynamics in BruSan**
 - Beyond Impulse responses
 - Input: constant volatility
 - Output: endogenous risk time-varying volatility

⇒ Precautionary savings
 - Role for money/safe asset

⇒ Nonlinearities in crisis ⇒ endogenous fat tails, skewness

- **Volatility Paradox**
 - Low exogenous (measured) volatility leads to high build-up of (hidden) endogenous volatility (Minsky)
Conclusion

- “Run-up”, “Crisis”, and “Recovery”-mechanisms
 - Belief-focused (representative + heterogeneous)
 - Friction-focused, where risk is central
- Risk concentration, fire-sales, spillovers, ...
- Paradox of Prudence
- Volatility Paradox
 - Mean-Amplification, Exog. ARCH, Endog. Volatility Dynamics
- Macro/Monetary models with financial sector should include
 - physical investment
 - inside money creation
Extra Slides