Financial and Monetary Economics
Eco529 Fall 2020
Lecture 04: Jumps and Runs

Markus K. Brunnermeier
Princeton University
Jumps due to multiple equilibria

- Bank runs
 - Diamond Dybvig

- Liquidity spirals
 - Brunnermeier Pedersen

- Sudden stops
 - Calvo, Mendoza, ...

- Currency attacks
 - Obstfeld (2nd generation models), Morris Shin

- Twin crisis models
 - Kaminsky Reinhart (3rd generation models)

- Loss of safe asset status
 - (after introducing safe asset in world with idiosyncratic risk)
Recall: Endogenous Risk due to Amplification

Initial exogenous shock σdZ_t /trigger

i’s best response

Run-up

amplification

shock

others’ average actions
Recall: Endogenous Risk due to **Multiple Equilibria Jumps**

- No exogenous shock, but sunspot process
- Higher strategic complementarities
Two Type/Sector Model with Outside Equity

- **Expert sector**
 - Experts must hold fraction $\chi_t^e \geq \alpha \kappa_t^e$ (skin in the game constraint)
 - Return on inside equity N_t^e can differ from outside equity
 - Issue outside equity at required return from HH
 - In related model, He and Krishnamurthy 2013 impose that inside and outside equity have same return
Two Type Model Setup

Expert sector

- Output: \(y_t^e = a^e k_t^e \), \(a^e \geq a^h \)
- Consumption rate: \(c_t^e \)
- Investment rate: \(i_t^e \)
 \[
 \frac{dk_t^{i,e}}{k_t^{i,e}} = \left(\Phi \left(i_t^{i,e} \right) - \delta \right) dt + \sigma dZ_t + \bar{\sigma} d\tilde{Z}_t^i
 \]
- \(E_0 \left[\int_0^\infty e^{-\rho^e_t \frac{(c_t^e)^{1-\gamma}}{1-\gamma}} dt \right] \), \(\rho^e \geq \rho^h \)

Friction: Can only issue

- Risk-free debt
- Equity, but most hold \(\chi_t^e \geq \alpha \kappa_t \)

Household sector

- Output: \(y_t^h = a^h k_t^h \)
- Consumption rate: \(c_t^h \)
- Investment rate: \(i_t^h \)
 \[
 \frac{dk_t^{i,h}}{k_t^{i,h}} = \left(\Phi \left(i_t^{i,h} \right) - \delta \right) dt + \sigma dZ_t + \bar{\sigma} d\tilde{Z}_t^i
 \]
- \(E_0 \left[\int_0^\infty e^{-\rho^h_t \frac{(c_t^h)^{1-\gamma}}{1-\gamma}} dt \right] \)
Unanticipated Run on Experts

- Can unanticipated withdrawal of all experts’ funding be self-fulfilling?
- Unanticipated crash – jump to $\eta^e = 0$
 - Absent a run: solution as in Lecture 03, since unanticipated
 - When do jump capital losses wipe out experts net worth?

$$\left(q(\eta^e_t) - q(0)\right) \left(\theta_{t,K}^e + \theta_{t,OE}^e\right) \eta^e_t K_t \geq \eta^e_t q(\eta^e_t) K_t$$

$$q(\eta^e_t) \left(1 - \frac{\eta^e_t}{\chi^e(\eta^e_t)}\right) \geq q(0) \quad \text{or} \quad q(\eta^e_t) \left(1 - \frac{1}{\theta_{t,K}^e + \theta_{t,OE}^e}\right) \geq q(0)$$

- Vulnerability region:
 - High price (not very low η^e)
 - “high risk-leverage” (not very high η^e)

- After run: $\eta^0 = 0$ forever
2 Types of Runs and Modeling Challenges

- What type of run? What’s the trigger?
 - Funding supply run: Depositor/households run
 - Household withdraw funding to experts
 - Funding demand run: Other experts run
 - Each expert tries to pay back debt and fire-sells assets
 - Drop in \(q \) is driver

- Model advantage: Always jump to the same point \(q(\eta^e = 0) \)!

- Modeling Challenges: (see Mendo (2020))
 1. Experts are whipped out forever.
 - OLG structure:
 - Death: all agents die with Poisson rate \(\lambda^d \),
 - Birth: fraction \(\psi \) of newborns are experts
 2. With anticipated run, expert fear “infinite marginal utility state” \(\eta^e = 0 \).
 - Transfer of \(\tau K \) to bankrupt experts after run
 - Also fixes challenge 1.
 - To keep \(\tau \) small also introduce relative performance penalty
From Ito to Levy and Cox Processes

- Ito process: \(dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t \) (geometric)
 - the Brownian “shocks” \(dZ_t \) are i.i.d. and small s.t. continuous path
 - For non-normal shocks within \(dt \) one needs discontinuities

- Levy process: \(dL_t = a dt + b dZ_t + dJ_t \) – most general class with i.i.d. increments
 \(dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t + j_t^X X_t dJ_t \)

- Restrict attention to Poisson processes:
 - Levy jump process can be written as integral w.r.t. Poisson random measures
 - Poisson process with arrival rate \(\lambda > 0 \):
 - \(J \) takes on values in \(\mathbb{N}_0 = \{0,1,2, \ldots \} \)
 - Increments \(J_{t+\Delta t} - J_t \) are Poisson distributed with Parameter \(\lambda \Delta t \)
 - Stochastic integral w.r.t. Poisson process simply sums up the values of the integrand
 \(\int_0^T a_t J_t = \sum_{n=1}^{J_T} a_{\tau_n} \)
 - Cox process: \(\lambda_t \) can be time-varying
 - Compensated Jump process: \(J_t - \int_0^t \lambda_s ds \) is martingale
 - If \(\int_0^t a_s dJ_s \) and \(a_t \) uses info only up to right before \(t \) then \(J_t - \int_0^t a_s \lambda_s ds \) is martingale
Ito formulas

\[df(X_t) = f'(X_t)(\mu_t^X X_t dt + \sigma_t^X X_t dZ_t) + \frac{1}{2} f''(X_t)(\sigma_t^X X_t)^2 dt + (f(X_t) - f(X_t-))dJ_t \]

\[= \left(f'(X_t)\mu_t^X X_t + \frac{1}{2} f''(X_t)(\sigma_t^X X_t)^2 \right) dt + f'(X_t)\sigma_t^X X_t dZ_t + \left(f \left((1 + j_t^X)X_t- \right) - f(X_t-) \right) dJ_t \]

- **Power rule:**
 \[\frac{dX_t^\gamma}{X_t^\gamma} = \left(\gamma \mu_t^X + \gamma (\gamma - 1)(\sigma_t^X)^2 \right) dt + \gamma \sigma_t^X dZ_t + \left((1 + j_t^X)^\gamma - 1 \right) dJ_t \]

- **Product rule:**
 \[\frac{d(X_t Y_t)}{X_t - Y_t -} = \left(\mu_t^X + \mu_t^Y + \sigma_t^X \sigma_t^Y \right) dt + \left(\sigma_t^X + \sigma_t^Y \right) dZ_t + \left(j_t^X + j_t^Y + j_t^X j_t^Y \right) dJ_t \]

- **Quotient rule:**
 \[\frac{d(X_t / Y_t)}{X_t - Y_t -} = \left(\mu_t^X - \mu_t^Y + (\sigma_t^Y)^2 - \sigma_t^X \sigma_t^Y \right) dt + \left(\sigma_t^X - \sigma_t^Y \right) dZ_t + \frac{j_t^X - j_t^Y}{1 + j_t^Y} dJ_t \]

- **Memorize simple rules:**
 - \[1 + j_t^X = (1 + j_t^X)^Y \]
 - \[1 + j_t^{XY} = (1 + j_t^X)(1 + j_t^Y) \]
 - \[1 + j_t^{X/Y} = \frac{1 + j_t^X}{1 + j_t^Y} \]
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i finance block
 a. Real investment ι + Goods market clearing (static)
 - Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K) forward equation

3. Value functions backward equation
 a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $\nu^i(\eta)u(K)$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $\nu^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
0. Postulate Aggregates and Processes

- **Individual capital evolution:**

\[
\frac{dk_{t}^{i,i}}{k_{t}^{i,i}} = (\Phi(i^{i,i}) - \delta)dt + \sigma dZ_t + d\Delta_{t}^{k,i,i}
\]

- Where \(\Delta_{t}^{k,i,i}\) is the individual cumulative capital purchase process

- **Capital aggregation:**
 - Within sector \(i\):
 \[K_{t}^{i} \equiv \int k_{t}^{i,i} d\bar{i}\]
 - Across sectors:
 \[K_{t} \equiv \sum_{i} K_{t}^{i}\]
 - Capital share:
 \[\kappa_{t}^{i} \equiv \frac{K_{t}^{i}}{K_{t}}\]

\[
\frac{dK_{t}}{K_{t}} = (\Phi(i_{t}) - \delta)dt + \sigma dZ_t
\]

- **Net worth aggregation:**
 - Within sector \(i\):
 \[N_{t}^{i} \equiv \int n_{t}^{i,i} d\bar{i}\]
 - Across sectors:
 \[N_{t} \equiv \sum_{i} N_{t}^{i}\]
 - Wealth share:
 \[\eta_{t}^{i} \equiv \frac{N_{t}^{i}}{N_{t}}\]

- **Value of capital stock:**

\[dq_{t}/q_{t} = \mu_{t}^{q}dt + \sigma_{t}^{q}dZ_{t} + j_{t}^{q}dJ_{t}\]

(c is numeraire)
0. Postulate Aggregates and Processes

- **Individual capital evolution:**
 \[
 \frac{dk_t^{i,i}}{k_t^{i,i}} = (\Phi\left(i_t^{i,i}\right) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,i,i}
 \]
 - Where \(\Delta_t^{k,i,i}\) is the individual cumulative capital purchase process

- **Capital aggregation:**
 - Within sector \(i\):
 \[
 K_t^i \equiv \int k_t^{i,i} d\bar{i}
 \]
 - Across sectors:
 \[
 K_t \equiv \sum_i K_t^i
 \]
 - Capital share:
 \[
 \frac{dK_t}{K_t} = (\Phi\left(i_t\right) - \delta)dt + \sigma dZ_t
 \]

- **Net worth aggregation:**
 - Within sector \(i\):
 \[
 N_t^i \equiv \int n_t^{i,i} d\bar{i}
 \]
 - Across sectors:
 \[
 N_t \equiv \sum_i N_t^i
 \]
 - Wealth share:
 \[
 \eta_t^i \equiv N_t^i / N_t
 \]

- **Value of capital stock:**
 \[
 dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t + j_t^q dJ_t
 \]
 - Postulate
 \[
 \frac{d\xi_t^i}{\xi_t^i} = \mu_t^{\xi^i} dt + \sigma_t^{\xi^i} dZ_t + j_t^{\xi^i} (dJ_t - \lambda_t dt)
 \]
 \(c\) is numeraire

- **Postulated SDF-process:**
 \[
 \frac{d\bar{\xi}_t^i}{\bar{\xi}_t^i} = \mu_t^{\bar{\xi}_t^i} dt + \sigma_t^{\bar{\xi}_t^i} dZ_t + j_t^{\bar{\xi}_t^i} (dJ_t - \lambda_t dt)
 \]
 \(c\) is numeraire

Since only risky debt and not risk-free debt is traded.
0. Postulate Aggregates and Processes

- ... from price processes to return processes (using Ito)
- Use Ito product rule to obtain capital gain rate \((\text{in absence of purchases/sales}) \)
 - Define \(\tilde{k}^i_t \): \(\frac{d\tilde{k}^i_t}{\tilde{k}^i_t} = \left(\Phi \left(l^i_t \right) - \delta \right) dt + \sigma dZ_t + d\Delta \tilde{k}^i_t \)

\[
dr^k_t \left(l^i_t \right) = \left(\frac{a^i - l^i_t}{q} + \Phi \left(l^i_t \right) - \delta + \mu^q_t + \sigma^q \right) dt \\
+ \left(\sigma + \sigma^q \right) dZ_t + j^q_t dJ_t
\]

- Return on defaultable debt

\[
dr^D_t = r^i_t dt + j^D,^i_t dJ_t
\]

- Postulate SDF-process: (Example: \(\xi^i_t = e^{-\rho t}V'(n^i_t) \))

\[
\frac{d\xi^i_t}{\xi_t} = -r^F,^i_t dt - \xi^i_t dZ_t - \gamma^i_t \left(dJ_t - \lambda_t dt \right)
\]
The Big Picture

- allocation of physical assets
- output $A(\kappa)$
- consumption + investment
- net worth distribution η
- capital growth $\Phi(\iota) - \delta$
- debt
- outside equity
- value function

Precautionary

Backward equation

Forward equation with expectations

Kappa

Drift

Volatility
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given \(C/N \)-ratio and SDF processes for each finance block
 a. Real investment + Goods market clearing (static)
 - Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice + Asset market clearing or Asset allocation \(\kappa \) & risk allocation \(\chi \)
 - Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable \(\eta \) (and \(K \)) forward equation

3. Value functions backward equation
 a. Value fcn. as fcn. of individual investment opportunities \(\omega \)
 - Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. \(V^i(n^i; \eta, K) \) into \(v^i(\eta)u(K) \)
 c. Derive \(C/N \)-ratio and \(\zeta \) price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. \(v^i(\eta) \) into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
1a. Individual Agent Choice of $l, \theta, c/n$

- Choice of l is static problem (and separable) for each t

- \[
\max_{l_t^i} dr^k_t(l_t^i)
= \max_{l_t^i} \left(\frac{a^i - l_t^i}{q_t} + \Phi(l_t^i) - \delta + \mu^q + \sigma \sigma^q \right) + (\sigma + \sigma_t^q) dZ_t + j_t^q dJ_t
\]

- FOC: $\frac{1}{q_t} = \Phi'(l_t^i)$ Tobin’s q
 - All agents $l_t^i = l_t \Rightarrow \frac{dK_t}{K_t} = (\Phi(l_t) - \delta) dt + \sigma dZ_t$
 - Special functional form:
 - $\Phi(\iota) = \frac{1}{\phi} \log(\phi \iota + 1) \Rightarrow \phi \iota = q - 1$

- Goods market clearing: $(A(\kappa) - l_t)K_t = \sum_i C_i$
 \[
 \kappa_t a^e K_t + (1 - \kappa_t) a^h K_t - l(q_t)K_t = \eta^e_t \frac{c_t^e}{N_t^e} q_t K_t + (1 - \eta^e_t) \frac{c_t^h}{N_t^h} q_t K_t
 \]
 For aggregate capital return, Replace a^i with $A(\kappa)$
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i finance block
 a. Real investment ι + Goods market clearing (static)
 - Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K) forward equation

3. Value functions backward equation
 a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
1a. Individual Agent Choice of $i, \theta, c/n$

$$\max_{\{i_t, \theta_t, c_t\}_{t=0}^\infty} E \left[\int_0^\infty e^{-\rho t} u(c_t) dt \right]$$

s.t. \(\frac{dn_t}{n_t} = -\frac{c_t}{n_t} dt + \sum_j \theta_t^j dr_t^j + \text{labor income/endow/taxes} \)

- Portfolio Choice: Martingale Approach
 - Let x_t^A be the value of a “self-financing trading strategy” (reinvest dividends)

- Theorem: $\xi_t x_t^A$ follows a Martingale, i.e. drift = 0.
 - Let
 $$\frac{dx_t^A}{x_t^A} = \mu_t^A dt + \sigma_t^A dZ_t + j_t^A dJ_t,$$
 - Recall SDF
 $$\frac{d\xi_t^i}{\xi_t^i} = -r_t dt - \xi_t^i dZ_t - \nu_t^i (dJ_t - \lambda_t dt)$$
 - By Itô product rule
 $$\frac{d(\xi_t^i x_t^A)}{\xi_t^i x_t^A} = (-r_t + \mu_t^A - \xi_t^i \sigma_t^A - (1 - \nu_t^i) \lambda_t) dt + (\sigma_t^A - \xi_t^i) dZ_t + \left(j_t^A - (1 - \nu_t^i)(1 + j_t^A) \right) dJ_t$$

- Expected return: $\mu_t^A + \lambda j_t^A = r_t + \xi_t^i \sigma_t^A + \nu_t^i \lambda j_t^A$
1a. Individual Agent Choice of i, θ, c/n

- Expected return: $\mu_t^A + \lambda j_t^A = r_t^i + \zeta_t^i \sigma_t^A + \nu_t^i \lambda j_t^A$
 - r_t^i is the shadow risk-free rate (need not to be same across groups)
 - ζ_t^i is the price of Brownian risk of agents i, $\zeta_t^i \sigma_t^A$ is the required Brownian risk premium of agents i
 - $\nu_t^i \lambda_t$ is the price of Poisson upside risk if $j_t^A > 0$
 For risk-neutral agents $\nu_t^i = 0$

- Remark:
 - $dr^{e,K}$ experts return on capital
 - $dr^{h,OE}$ households return on outside equity
 - $dr^{h,D}$ households’ return on debt is risky (due to bankruptcy)
1a. Individual Agent Choice of i, θ, c/n

- Expected return: $\mu_t^A + \lambda j_t^A = r_t^i + \zeta_t^i \sigma_t^A + \nu_t^i \lambda j_t^A$
 - r_t^i is the shadow risk-free rate (need not to be same across groups)
 - ζ_t^i is the price of Brownian risk of agents i,
 $\zeta_t^i \sigma_t^A$ is the required Brownian risk premium of agents i
 - $\nu_t^i \lambda_t$ is the price of Poisson upside risk if $j_t^A > 0$
 For risk-neutral agents $\nu_t^i = 0$

- Remark:
 - For CRRA utility: SDF is $\xi_t = e^{-\rho} \omega_t^{1-\gamma} n_t^{-\gamma}$
 $1 - \nu_t = (1 + j_t^\omega)^{1-\gamma} (1 + j_t^n)^{-\gamma}$
 - For log utility: $\nu_t = 1 - \frac{1}{1 + j_t^n} = \frac{j_t^n}{1 + j_t^n}$
 - For Epstein-Zin: part of ω_t-process
1a. Individual Agent Choice of i, θ, c/n

- Of experts with outside equity issuance (after plugging in households’ outside equity choice)
 \[
 \frac{a^e - \nu_t}{q_t} + \Phi(\nu_t) - \delta + \mu^q_t + \sigma \sigma^q_t - \left[\frac{\chi^e_t}{\kappa^e_t} r^F,e_t + \left(1 - \frac{\chi^e_t}{\kappa^e_t} \right) r^F,h_t \right] + \lambda_t \cdot j^q_t = \\
 \left[\frac{\epsilon^e_t}{\kappa^e_t} \gamma^e_t + \xi^h_t \left(1 - \frac{\chi^e_t}{\kappa^e_t} \right) \right] (\sigma + \sigma^q_t) + \left[\nu^e_t \frac{\chi^e_t}{\kappa^e_t} + \nu^h_t \left(1 - \frac{\chi^e_t}{\kappa^e_t} \right) \right] \lambda_t \cdot j^q_t
 \]

- Of households’ capital choice
 \[
 \frac{a^h - \nu_t}{q_t} + \Phi(\nu_t) - \delta + \mu^q_t + \sigma \sigma^q_t - r^F,h_t + \lambda_t \left(j^q_t - j^D_t \right) \\
 \leq \xi^h_t (\sigma + \sigma^q_t) + \nu^h_t \lambda_t (j^q_t - j^D_t)
 \]
 with equality if $\kappa^e_t < 1$

- Note: Later approach replaces this step with Fisher Separation Social Planners’ choice (see below)
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i
 a. Real investment ι_i + Goods market clearing (static)
 ▪ Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ_i + Asset market clearing or Asset allocation κ_i & risk allocation χ_i
 ▪ Toolbox 2: “price-taking social planner approach” – Fisher separation theorem

 ▪ Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K)
 ▪ forward equation

3. Value functions
 ▪ backward equation
 a. Value fcn. as fcn. of individual investment opportunities ω_i
 ▪ Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i, \eta, K)$ into $v^i(\eta)u(K)$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
1b. Asset/Risk Allocation across I Types

- **Price-Taking Planner’s Theorem:**
 A social planner that takes prices as given chooses an physical asset allocation, \(\kappa_t \), and Brownian risk allocation, \(\chi_t \), and a Jump risk allocation, \(\zeta_t \), that coincides with the choices implied by all individuals’ portfolio choices.

\[
\begin{align*}
\mathbb{E}_{t} \left[\frac{d r_{t}^{N}(\kappa_{t})}{dt} \right] - \zeta_t \sigma(\chi_t) - \lambda v j(\zeta_t) &= dr^F / dt \\
\text{subject to friction: } F(\kappa_t, \chi_t, \zeta_t) &\leq 0
\end{align*}
\]

- **Example:**
 1. \(\chi_t = \zeta_t = \kappa_t \) (can’t issue outside equity to offload Brownian or risky debt to offload Jump risk)
 2. \(\chi_t \geq \alpha \kappa_t \) (skin in the game constraint, outside equity up to a limit)

Let \(d N_t / N_t = \mu_t^N dt + \sigma_t^N d Z_t + j_t^N d J_t \)
1b. Asset/Risk Allocation across \textit{I} Types

- Sketch of Proof of Theorem

1. Fisher Separation Thm: (delegated portfolio choice by firm)
 - FOC yield the martingale approach solution
 - Each individual agent \((i, \bar{i})\) portfolio maximization is equivalent to the maximization problem of a firm
 \[
 \max_{\{\theta^j,i\}} \frac{E_t \left[dr^{n(i,i)}\right]}{dt} - \zeta \sigma^n - \lambda v^i j n^i(\zeta_t)
 \]
 \[
 dr^{n(i,i)} = \sum_j \theta^j,i dr^j = \sum_j \theta^j,i E[dr^j] + \sum_j \theta^j,i (\sigma^j dZ_t + v^i j (dJ_t - \lambda_t dt))
 \]
 is linear in \(\theta\)s
 - Either bang-bang solution for \(\theta\)s s.t. portfolio constraints bind
 - Or prices/returns/risk premia are s.t. that firm is indifferent

2. Aggregate
 - Taking \(\eta\)-weighted sum to obtain return on aggregate wealth

3. Use market clearing to relate \(\theta\)s to \(\kappa\)s & \(\chi\)s & \(\zeta\)s (incl. \(\theta\)-constraint)
1b. Allocation of Capital/Risk: 2 Types

- **Expert:** \(\theta^e = (\theta^{e,K}, \theta^{e,OE}, \theta^{e,D}) \) for capital, outside equity, debt

- **Restrictions:**
 \[
 \begin{align*}
 \theta^{e,K} & \geq 0, \\
 \theta^{e,OE} & \leq 0, \\
 \theta^{e,OE} & \geq -(1 - \alpha) \theta^{e,K} \quad \text{skin in the game}
 \end{align*}
 \]

maximize
\[
\begin{align*}
\theta^{e,K}_t E[dr^{e,K}_t]dt + \theta^{e,OE}_t (E[dr^{OE}_t]dt) + \theta^{e,D}_t E[dr^{D,e}_t] - \zeta^e_t (\theta^{e,K}_t + \theta^{e,OE}_t) \sigma^{r,eK}_t \\
- \lambda_t \nu^e_t ((\theta^{e,K}_t + \theta^{e,OE}_t) j^{eK}_t + \theta^{e,D}_t j^{D}_t)
\end{align*}
\]

- **Household:** \(\theta^h = (\theta^{h,K}, \theta^{h,OE}, \theta^{h,D}) \)

maximize
\[
\begin{align*}
\theta^{h,K}_t E[dr^{h,K}_t]/dt + \theta^{h,OE}_t E[dr^{OE}_t]/dt + \theta^{h,D}_t E[D_r^{D,h}_t] - \zeta^h_t (\theta^{h,K}_t + \theta^{h,OE}_t) \sigma^{r,hK}_t \\
- \lambda_t \nu^h_t ((\theta^{h,K}_t + \theta^{h,OE}_t) j^{hK}_t + \theta^{h,D}_t j^{D}_t)
\end{align*}
\]
1b. Allocation of Capital/Risk: 2 Types

- **Example 2**: 2 Type + with outside equity

\[
\max_{\{\kappa_t^e, \lambda_t^e\}} \left[\frac{\kappa_t^e a^e + (1 - \kappa_t^e)a^h - \nu_t}{q_t} + \Phi(\nu_t) - \delta + \right] - (\chi_t^e \zeta_t^e + (1 - \chi_t^e)\zeta_t^h)(\sigma + \sigma_t^q) + \ldots
\]

- **FOC** χ: Case 1: \(\zeta_t^e (\sigma + \sigma_t^q) + \ldots > \zeta_t^h (\sigma + \sigma_t^q) + \ldots \Rightarrow \chi_t^e = \alpha \kappa_t^e \\
Case 2: \Rightarrow \chi_t^e > \alpha \kappa_t^e$

- Case 1: plug $\chi_t^e = \alpha \kappa_t^e$ in objective
 - a. $FOC_{\kappa}: \frac{a^e - a^h}{q_t} > \alpha (\zeta_t^e - \zeta_t^h)(\sigma + \sigma_t^q) + \ldots \Rightarrow \kappa_t^e = 1$
 - b. $= \Rightarrow \kappa_t^e < 1$

- Case 2:
 - a. $FOC_{\kappa}: \frac{a^e - a^h}{q_t} > 0 \Rightarrow \kappa_t^e = 1$
 - b. $= 0 \Rightarrow \kappa_t^e < 1$ impossible

\[
\chi_t^e = \alpha \kappa_t^e
\]
1b. Allocation of Capital, κ, and Risk, χ

- Summarizing previous slide (2 types with outside equity)

<table>
<thead>
<tr>
<th>Cases</th>
<th>$\chi^e_t \geq \alpha \kappa^e_t$</th>
<th>$\kappa^e_t \leq 1$</th>
<th>$(\alpha^e - \alpha^h)q_t \geq \alpha (\zeta^e_t - \zeta^h_t)(\sigma + \sigma^q_t) + \cdots$</th>
<th>$(\zeta^e_t - \zeta^h_t)(\sigma + \sigma^q_t) + \cdots \geq 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>=</td>
<td><</td>
<td>=</td>
<td>></td>
</tr>
<tr>
<td>1b</td>
<td>=</td>
<td>=</td>
<td>></td>
<td>></td>
</tr>
<tr>
<td>2a</td>
<td>></td>
<td>=</td>
<td>></td>
<td>=</td>
</tr>
<tr>
<td>impossible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HHs’ short-sale constraint of capital binds, $\kappa^e_t = 1$

Experts’ skin in the game constraint binds, $\chi^e_t = \alpha \kappa^e_t$
Invariance of Relative Capital Demand

- One of the insights of Mendo (2020) is that self-fulfilling jumps do not influence the relative demand for capital of experts relative to households. I.e. the excess market return that experts demand to hold capital is not affected.

- Subtract experts pricing condition from households

\[\mu_t^{r,k,e} - \mu_t^{r,k,h} \geq \frac{\chi_t^e}{\kappa_t^e} (\zeta_t^e - \zeta_t^h)(\sigma + \sigma_{t}^q) - \frac{\chi_t^e}{\kappa_t^e} \lambda_t (1 - \nu_t^h) \left(\frac{\partial j_t^D}{\partial \theta_t^{e,K}} (\theta_t^{e,K} - 1) + j_t^q - j_t^D \right) \]

\[= 0 \]

- Losses are split between experts and households (via defaultable debt)

- Since experts’ losses are capped by their net worth due to limited liability, all additional losses from increasing capital holding, \(\theta_t^{e,K} \), are born by households
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i finance block
 a. Real investment ι + Goods market clearing (static)
 ▪ Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 ▪ Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 ▪ Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K) forward equation

3. Value functions backward equation
 a. Value fcn. as fcn. of individual investment opportunities ω
 ▪ Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
Toolbox 3: Change of Numeraire

- x_t^A is a value of a self-financing strategy/asset in $\$
- Y_t price of € in $\$$(exchange rate)
 \[
 \frac{dY_t}{Y_t} = \mu_t^Y dt + \sigma_t^Y dZ_t + j_t^Y dJ_t
 \]
- x_t^A/Y_t value of the self-financing strategy/asset in €

\[
e^{-\rho_t u'(c_t)} Y_t \frac{x_t^A}{Y_t} \]

follows a martingale (+ SDF in new numeraire $\hat{\xi}_t = \xi_t Y_t$)

Recall $\mu^A_t - \mu^B_t + \lambda_t (j^A_t - j^B_t) = \left(-\sigma_t^\xi \right) \left(\sigma^A - \sigma^B_t\right) + \nu_t \lambda_t (j^A_t - j^B_t)$

\[
\frac{A}{B} \mu^A_t - \mu^Y_t + \lambda_t \left(\frac{A}{B} j^A_t - \frac{B}{B} j^Y_t\right) = \left(-\sigma_t^\xi \right) \left(\sigma^A - \sigma^B_t\right) + (\nu_t - j^Y_t - \nu_t j^Y_t) \lambda_t \frac{j^A_t - j^B_t}{1 + j^Y_t}
\]

- Price of Brownian risk $\xi^\epsilon = \xi^\$ - σ^Y
- Price of Jump risk $\nu_t^\epsilon = \nu_t^\$ - $j_t^Y - \nu_t j_t^Y$
Change of Numeraire: SDF

- SDF in good numeraire is
 \[d \xi_t^i / \xi_{t-}^i = -r_t^F dt - \zeta_t^i dZ_t - \nu_t^i (dJ_t - \lambda_t dt) \]

- SDF in total net worth numeraire is
 \[d \hat{\xi}_t^i / \hat{\xi}_{t-}^i = \mu_t^i dt - (\zeta_t^i - \sigma_t^N) dZ_t - (\nu_t^i - j_t^N - \nu_t j_t^N) dJ_t \]
 \[= \hat{r}_t^F dt - (\zeta_t^i - \sigma_t^N) dZ_t - (\nu_t^i - j_t^N - \nu_t j_t^N)(dJ_t - \lambda_t dt) \]
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i finance block
 a. Real investment ι + Goods market clearing (static)
 - Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing or
 Asset allocation κ & risk allocation χ
 - Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K) forward equation

3. Value functions backward equation
 a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
2. GE: Markov States and Equilibria

- Equilibrium is a map
 - Histories of shocks $\{Z_s, s \in [0, t]\}$
 - Prices $q_t, \zeta_t^i, \iota_t^i, \theta_t^e$
 - Net worth distribution
 $$\eta_t^e = \frac{N_t^e}{q_tK_t} \in (0,1)$$
 Net worth share

- All agents maximize utility
 - Choose: portfolio, consumption, technology

- All markets clear
 - Consumption, capital, money, outside equity
2. Law of Motion of Wealth Share η_t

Method 1: Using Ito’s quotation rule $\eta^i_t = N^i_t / (q^i_t K^i_t)$

- Recall

 $$\frac{dN^i_t}{N^i_t} = -\frac{C^i_t}{N^i_t} dt + \frac{r^{bm}_t}{N^i_t} dt + \sum_{t} \left(\frac{\chi^i_{t} \kappa^i_{t} (\sigma + \sigma^q_t)}{\eta^i_t} - \sigma^{bm} \right) dt + + \nu \left(j^N_{t} - j^{bm}_t \right) dt$$

- $$\frac{d\eta^i_t}{\eta^i_t} = \ldots \text{(lots of algebra)}$$

Method 2: Change of numeraire + Martingale Approach

- New numeraire: Total wealth in the economy, N_t
- Apply Martingale Approach for value of i’s portfolio

- Simple algebra to obtain drift of η^i_t: μ^i_t
 Note that change of numeraire does not affect ratio η^i_t!
2. μ^η Drift of Wealth Share: Many Types

- **New Numeraire**
 - "Total net worth" in the economy, N_t (without superscript)
 - Type i’s portfolio net worth = net worth share

- **Martingale Approach with new numeraire**
 - Asset $A = i$’s portfolio return in terms of total wealth,
 $$\left(\frac{C_t^i}{N_t^i} + \mu^\eta_t^i + \lambda_t j^i \right) dt + \sigma^\eta_t^i dZ_t$$
 - Dividend yield $\frac{C_t^i}{N_t^i}$
 - $E[\text{capital gains}]$ rate $\lambda_t j^i$

 - Asset B (benchmark asset that everyone can hold, e.g. risk-free asset or money (in terms of total economy wide wealth as numeraire))
 $$r_t^{bm} dt + \sigma_t^{bm} dZ_t$$

- Apply our martingale asset pricing formula
 $$\mu_t^A - \mu_t^B + \lambda_t (j_t^A - j_t^B) = \hat{\xi}_t^i (\sigma_t^A - \sigma_t^B) + \hat{\nu}_t (j_t^A - j_t^B)$$

Hat notation $\hat{\cdot}$ indicates total net worth numeraire.
2. μ^η Drift of Wealth Share: Many Types

- Asset pricing formula (relative to benchmark asset)
\[
\mu_t^\eta + \frac{C_t^i}{N_t^i} - r_t^{bm} + \lambda_t \left(j_t^\eta - j_t^{bm} \right) = \left(\zeta_t^i - \sigma_t^N \right) \left(\sigma_t^{\eta} - \sigma_t^{bm} \right) + \hat{\nu}_t^i \left(j_t^\eta - j_t^{bm} \right)
\]

- Add up across types (weighted),
 (capital letters without superscripts are aggregates for total economy)
\[
\sum_{i'} \eta_t^{i'} \mu_t^{i'} + \frac{C_t}{N_t} - r_t^{bm} + \sum_{i'} \eta_t^{i'} j_t^{i'} - \lambda_t d j_t^{bm} = 0
\]
\[
\sum_{i'} \eta_t^{i'} \hat{\zeta}_t^{i'} \left(\sigma_t^{\eta} - \sigma_t^{bm} \right) + \sum_{i'} \eta_t^{i'} \hat{\nu}_t^{i'} \left(j_t^{i'} - j_t^{bm} \right) = 0
\]

- Subtract from first equation
\[
\mu_t^\eta + \lambda_t j_t^{\eta'} = \frac{C_t}{N_t} - \frac{C_t^i}{N_t^i} - \hat{\zeta}_t \left(\sigma_t^{\eta} - \sigma_t^{bm} \right) - \sum_{i'} \eta_t^{i'} \hat{\zeta}_t^{i'} \left(\sigma_t^{\eta'} - \sigma_t^{m} \right)
\]
\[
+ \hat{\nu}_t^i \left(j_t^\eta - j_t^{bm} \right) - \sum_{i'} \eta_t^{i'} \hat{\nu}_t^{i'} \left(j_t^{i'} - j_t^{bm} \right)
\]
2. μ^η Drift of Wealth Share: Two Types $i \in \{e, h\}$

- Subtract from each other yield net worth share dynamics

$$\mu^\eta_t + \lambda_t j^\eta_t = \frac{C^e_t}{N_t^e} - \frac{C^e_t}{N_t^e} - (1 - \eta^e_t)\hat{s}^e_t \left(\sigma^\eta_t + \sigma_{t bm}^N \right) - (1 - \eta^e_t)\hat{s}^h_t \left(\sigma^\eta_t + \sigma_{t bm}^N \right)$$

$$+ (1 - \eta^e_t)\hat{v}^e_t \left(j^\eta_t - j_{t bm}^N \right) - (1 - \eta^e_t)\hat{v}^h_t \left(j^\eta_t - j_{t bm}^N \right)$$

- In our model, benchmark asset is risky debt,
 - $\sigma_{t bm}^N = -\sigma_t^N$,
 - $j_{t bm}^N = \frac{j_D^N - j_{t N}^D}{1 + j_{t N}^N}$ (since j_D^N risky debt jump in c-numeraire, $j_{t N}^N$ wealth jump)
 - Apply quotient rule for jumps

$$\mu^\eta_t + \lambda_t j^\eta_t = \frac{C^e_t}{N_t^e} - \frac{C^e_t}{N_t^e} - (1 - \eta^e_t)\hat{s}^e_t \left(\sigma^\eta_t + \sigma_{t N}^N \right) - (1 - \eta^e_t)\hat{s}^h_t \left(\sigma^\eta_t + \sigma_{t bm}^N \right)$$

$$+ (1 - \eta^e_t)\hat{v}^e_t \left(j^\eta_t - \frac{j_D^N - j_{t N}^D}{1 + j_{t N}^N} \right) - (1 - \eta^e_t)\hat{v}^h_t \left(j^\eta_t - \frac{j_D^N - j_{t N}^D}{1 + j_{t N}^N} \right)$$
2. σ^η Volatility of Wealth Share

- Since $\eta_t^i = N_t^i / N_t$,

$$
\sigma_t^{\eta^i} = \sigma_t^{N^i} - \sigma_t^N = \sigma_t^{N^i} - \sum_{i'} \eta_t^{i'} \sigma_t^{N^{i'}} \\
= (1 - \eta_t^i) \sigma_t^{N^i} - \sum_{i' \neq i} \eta_t^{i-} \sigma_t^{N^{i-}}
$$

$$
\eta_t^{j_i} = \frac{j_t^{N^i} - j_t^N}{1 + j_t^N} = \frac{j_t^{N^i} - \sum_{i'} \eta_t^{i'} j_t^{N^{i'}}}{1 + \sum_{i'} \eta_t^{i'} j_t^{N^{i'}}} = \frac{(1 - \eta_t^i) j_t^{N^i} - \sum_{i' \neq i} \eta_t^{i-} j_t^{N^{i-}}}{1 + \sum_{i'} \eta_t^{i'} j_t^{N^{i'}}}
$$

- Note for 2 types example

$$
\eta_t^{j^e} = \frac{(1 - \eta_t^e)(j_t^{N^e} - j_t^{N^h})}{1 + \eta_t^e j_t^{N^e} + (1 - \eta_t^e) j_t^{N^h}}
$$
Note:
- OLG structure and
- transfers τK_t

also affects net worth evolution and still has to be incorporated!
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i
 \[\text{finance block} \]
 a. Real investment ι + Goods market clearing (static)
 \[\text{Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach} \]
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 \[\text{Toolbox 2: “price-taking social planner approach” – Fisher separation theorem} \]
 \[\text{Toolbox 3: Change in numeraire to total wealth (including SDF)} \]

2. Evolution of state variable η (and K)
 \[\text{forward equation} \]

3. Value functions
 \[\text{backward equation} \]
 a. Value fcn. as fcn. of individual investment opportunities ω
 \[\text{Special cases: log-utility, constant investment opportunities} \]
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)(n^i/n)^{1-\gamma}$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
The Big Picture

allocation of physical assets

output $A(\kappa)$

capital growth $\Phi(i) - \delta$

net worth distribution η

value function

precautionary

drift

Backward equation

Debt

Outside equity

risk amplification

volatility

Forward equation

with expectations

consumption + investment

net worth
distribution

42
3a. CRRA Value Function
Applies separately for each type of agent

- Martingale Approach: works best in endowment economy
- Here: mix Martingale approach with value function (envelop condition)

\[V^i(n^i_t; \eta_t, K_t) \] for individuals \(i \)

- For CRRA/power utility
 \[u(c^i_t) = \frac{(c^i_t)^{1-\gamma-1}}{1-\gamma} \]
 ⇒ increase net worth by factor, optimal \(c^i \) for all future states increases by this factor ⇒ \(\left(\frac{c^i_t}{n^i_t} \right) \)-ratio is invariant in \(n^i_t \)

- ⇒ value function can be written as
 \[V^i(n^i_t; \eta_t, K_t) = \frac{u(\omega^i(\eta_t, K_t)n^i_t)}{\rho^i} \]

- \(\omega^i_t \) Investment opportunity/ “net worth multiplier”
 - \(\omega^i(\eta_t, K_t) \)-function turns out to be independent of \(K_t \)
 - Change notation from \(\omega^i(\eta_t, K_t) \)-function to \(\omega^i_t \)-process
3a. Special case: log utility

- Result: \(q(\eta^e) \)-function is invariant to run risk, i.e. same as in Lecture 03.
 - ... but expected returns are different.

- Proof (sketch)
 - Log utility implies, prices of risk:
 - \(\sigma_t^i = \sigma^n_i \)
 - \(\lambda_t \nu_t^i = \lambda_t / (1 + j^n_i) \)
 - Goods market clearing
 - Brownian amplification equation
 \[
 \sigma + \sigma^q_t = \frac{\sigma}{1 - \frac{q'}{q}(\kappa - \eta)}
 \]
 - Relative asset pricing equation
 \[
 \frac{a^e - a^h}{q_t} \geq \left(\frac{\kappa_t}{\eta_t} - \frac{1 - \kappa_t}{1 - \eta_t} \right) \left(\sigma + \sigma^q_t \right)^2
 \]
3a. Value function in OLG setting

- Note: with OLG structure we have to take care that individual value function differs from sector wide.

\[V_t^i = \frac{1}{\rho^i} \left(\omega_t^{i_n} \right)^{1-\gamma} = \frac{1}{\rho^i} \left(\omega_t^{i_n} \eta_t^{i_i} N^i \right)^{1-\gamma} \]

- Where \(\eta_t^{i_i} \) is the net worth share of individual \((i, i)\) within sector \(i\)
- It is time-varying deterministically, and hence does not affect asset pricing.
3a. CRRA Value Function: relate to ω

- Value function can be written as $\frac{u(\omega_t n_t^i)}{\rho}$, that is

 $$
 \frac{1}{\rho^i} \frac{\left(\omega_t n_t^i\right)^{1-\gamma}}{1-\gamma} - 1 = \frac{1}{\rho^i} \frac{\left(\omega_t^i\right)^{1-\gamma} \left(n_t^i\right)^{1-\gamma}}{1-\gamma} - 1
 $$

- $\frac{\partial v}{\partial n^i} = u'(c^i)$ by optimal consumption (if no corner solution)

 $$
 \frac{\left(\omega_t^i\right)^{1-\gamma} \left(n_t^i\right)^{-\gamma}}{\rho^i} = (c_t^i)^{-\gamma} \iff \frac{c_t^i}{n_t^i} = (\rho^i)^{1/\gamma} \left(\omega_t^i\right)^{1-1/\gamma}
 $$

Optimal consumption is different:

$$
\frac{\omega^{1-\gamma} n^{-\gamma}}{n} = \frac{\partial v}{\partial n} = \frac{\partial f}{\partial c} = \rho (\omega n)^{1-\gamma} \frac{1}{c}
$$

$$
\frac{\omega^{1-\gamma} n^{-\gamma}}{\rho} = c_t^{-\gamma} \iff \frac{c_t}{n_t} = \rho
$$
3a. CRRA Value Function: relate to ω

- value function can be written as
 \[\frac{u(\omega_t^n_t)}{\rho} \]

\[\frac{1}{\rho^i \frac{1}{1-\gamma} - 1} = \frac{1}{\rho^i \frac{(\omega_t^n_t)^{1-\gamma} (n_t)^{1-\gamma}}{1-\gamma}} - 1 \]

- SDF now
 \[\xi_t = e^{\int_0^t \frac{\partial f}{\partial V}(c_s, V_s) ds} V_t \frac{\partial V}{\partial n} \]

\[\xi_t n_t = (1 - \gamma) V_t \]

- Get new discounting term
 \[e^{-\int_0^t \frac{\partial f}{\partial V}(c_s, V_s) ds} \xi_t n_t = (1 - \gamma) V_t \]

\[E_t [dV_t] / V_t = (-\partial f / \partial V_t - c_t / n_t) dt \]
3a. CRRA Value Function: Special Cases

\[
\frac{c_t^i}{n_t^i} = (\rho_i)^{1/\gamma}(\omega_t^i)^{1-1/\gamma}
\]

- For log utility $\gamma = 1$:
 \[
 \xi_t^i = e^{-\rho t} / c_t^i = e^{-\rho t} / (\rho n_t^i) \text{ for any } \omega_t^i \Rightarrow \sigma_t^n = \sigma_t^c = \sigma_t
 \]
- Expected excess return: $\mu_t^A - r_t^F = \sigma_t^n \sigma_t^A$
- Recall $\frac{dn_t^i}{n_t^i} = -\frac{c_t^i}{n_t^i} dt + (1 - \theta_t^i)dr_t^K + \theta_t dr_t$

\[
\]
3a. CRRA Value Function: Special Cases

\[
\frac{c_t^i}{n_t^i} = (\rho_i)^{1/\gamma} (\omega_t^i)^{1-1/\gamma}
\]

- For log utility \(\gamma = 1 \):
 \[
 \xi_t^i = e^{-\rho_i t} / c_t^i = e^{-\rho_i t} / (\rho n_t^i)
 \]
 for any \(\omega_t^i \)
 \(\sigma_t^{n_i} = \sigma_t^{c_i} = \xi_t^i \)

- Expected excess return:
 \(\mu_t^A - r_t^F = \sigma_t^{n_i} \sigma_t^A \)

- Recall
 \[
 \frac{d n_t^i}{n_t^i} = -\frac{c_t^i}{n_t^i} dt + (1 - \theta^i)dr_t^K + \theta^i dr_t
 \]

- For constant investment opportunities \(\omega_t^i = \omega^i \),
 \[c^i / n^i \] is constant and hence \(\sigma_t^{c_i} = \sigma_t^{n_i} \)

- Expected excess return:
 \(\mu_t^A - r_t^F = \gamma \sigma_t^{n_i} \sigma_t^A \)

Poll 49: Which term refers to (dynamic/Mertonian) hedging demand?

- a) \(\gamma \)
- b) \(\sigma_t^{n_i} \)
- c) hidden in risk-free rate
- d) none of the above
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes
1. For given C/N-ratio and SDF processes for each i finance block
 a. Real investment ι + Goods market clearing (static)
 • Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 • Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 • Toolbox 3: Change in numeraire to total wealth (including SDF)
2. Evolution of state variable η (and K) forward equation
3. Value functions backward equation
 a. Value fcn. as fcn. of individual investment opportunities ω
 • Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)$
 c. Derive C/N-ratio and ζ price of risk
4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration
5. KFE: Stationary distribution, Fan charts