A Global Safe Asset for & from Emerging Economies

Markus Brunnermeier Lunyang Huang

Princeton University
International: Flight to Safety

- Risk-on, Risk-off Flight-to-safe asset

Safe asset:
 - “Good friend analogy” is around/valuable when you need it
 - Safe asset tautology is safe because it is perceived to be safe
International: Flight to Safety

- Risk-on, Risk-off Flight-to-safe asset

- Problem: Safe asset is *asymmetrically supplied* by AE

 Flight-to-safety \rightarrow cross-border capital flows
International: Flight to Safety

- Risk-on, Risk-off Flight-to-safe asset

- Problem: Safe asset is asymmetrically supplied by AE
 Flight-to-safety \(\rightarrow\) cross-border capital flows
International: Flight to Safety

- Risk-on, Risk-off Flight-to-safe asset

- Problem: Safe asset is asymmetrically supplied by AE
 Flight-to-safety → cross-border capital flows

- At times of global crisis, issuance of new debt
 - For AE at inflated prices eases conditions
 - For EME at depressed prices worsens conditions

- Question: Who insures whom? “Poor insure rich Paradox”
 - Correct insurance only if buffer is large and debt long-term enough so that no new debt issuance needed & sell safe asset/reserves instead
Two Approaches

- **Approach 1: “Buffer Approach” (traditional)**
 - Lean against sudden stop (flight-to-safety) capital outflows
 - Precautionary Reserves
 - IMF liquidity lines
 - Central Banks Swap line arrangements

- **Approach 2: “Rechanneling Approach” (new proposal)**
 - “Global Safe Asset from & for Emerging Economies”
 with Lunyang Huang
 (Central Bank of Chile Conference 2017)
 formal analysis
1. “Buffer Approach” via Reserves Holdings

- South East Asia crisis 97/98: Sudden Stop/Flight-to-Safety ⇒ precautionary reserves

Source: Kieran (Wikipedia)
CIA World Factbook data 2011
1. “Buffer Approach” via Reserves Holdings

- South East Asia crisis 97/98: Sudden Stop/Flight-to-Safety ⇒ precautionary reserves
- **Negative carry** due to low yield of safe asset (exorbitant privilege)
 - As EME grows faster, it have to keep acquire foreign safe assets (export surplus required)
- Distorts exchange rates
1. “Buffer Approach” via Reserves Holdings

- **South East Asia crisis 97/98: Sudden Stop/Flight-to-Safety** ⇒ precautionary reserves

- **Negative carry** due to low yield of safe asset (exorbitant privilege)
 - As EME grows faster, they have to keep acquire foreign safe assets (export surplus required)

- **Distorts exchange rates**

- **Subsidizes private carry trades**
 - Carry traders undermine/undo official reserve holding
 - EME corporate sector $-borrowing
 - Bruno & Shin 2016
 - Hungarian/Polish household €-borrowing
 - Verner 2017
1. “Buffer Approach” via Reserves Holdings

- South East Asia crisis 97/98: Sudden Stop/Flight-to-Safety ⇒ precautionary reserves
- **Negative carry** due to low yield of safe asset (exorbitant privilege)
 - As EME grows faster, they have to keep acquire foreign safe assets (export surplus required)
- Distorts exchange rates
- Subsidizes private carry trades
 - Carry traders undermine/undo official reserve holding
2. Approach: “Rechanneling”

- Address root cause: Safe asset is supplied asymmetrically

- Analogy
2. Approach: “Rechanneling”

- Address root cause: Safe asset is supplied asymmetrically

- Analogy

![Diagram showing Flight-to-safety (weakens defense) under attack/siege]
2. Approach: “Rechanneling”

- Address root cause: Safe asset is supplied asymmetrically

- Analogy
 - Two lines of defense
 - Stronger inner circle (keep)

 ![Diagram of two lines of defense with a safe haven under attack/siege.]

 - Flight-to-safety (weakens defense)

 - Under attack/siege
2. Approach: “Rechanneling”

- Address root cause: Safe asset is supplied asymmetrically

- Analogy
 - Two lines of defense
 - Stronger inner circle (keep)

![Diagram showing two lines of defense with inner circle kept and flight-to-safety weakened during attack/siege.]
2. Approach: “Rechanneling”

- Address root cause: Safe asset is supplied asymmetrically

Pool of Sovereign Bonds
2. Approach: “Rechanneling”

- Address root cause: Safe asset is supplied asymmetrically

- Create globally supplied safe asset via pooling & tranching
2. Approach: “Rechanneling”

- Address root cause: Safe asset is supplied asymmetrically

- Create globally supplied safe asset via pooling & tranching

- Expand ESBies idea for euro area to EME: “SBBS (Sovereign-Bond Backed Securities) for the world”
 Euro-nomics group 2011, 2016, 2017
International: Flight to Safety

- Risk-on, Risk-off

- Channels back some of flight-to-safety capital flows

 fewer cross-border capital flows

- Who insures whom? (rich the poor?)

 - For AE: at inflated prices
 - For EME: at depressed prices

 Question: is buffer large (long-term) enough s.t. no new debt issuance needed & sale off safe asset
RoadMap

- Motivation
 - International: Flight to Safety

- Model Setup
 - Illustration
 - More detail

- Policy Analysis
 - Foreign Reserves: Buffering Approach
 - Tranching: Rechanneling Approach

- Global Safe Asset *from & for* Emerging Market Economies
Model Setup

- 3 Dates: $t = 0, 1, 2$

- Agents: entrepreneurs, households and foreigners

- Assets: Productive capital, domestic bonds and dollars

Timeline:

- Debt issuance
- Invest in capital
- Sunspot
- (Possible) Flight to Safety Crisis
- Capital payoffs
- Debt repayment/default

$t = 0$ $t = 1^-$ $t = 1^+$ $t = 2$
Assets

- **Capital:**
 - Only entrepreneurs can invest at $t = 0$
 - Output only at $t = 2$:
 - Entrepreneurs: $y_2^E = \tilde{A}K_1^E$; Foreigners: $y_2 = \eta\tilde{A}K_1^*$ ($\eta < 1$)
 - From $t = 1$, capital can be traded among agents, price q_t
 - TFP Shock:
Assets con’t

- Domestic Bonds:
 - The government issues zero coupon bonds at $t = 0$
 - Mature at $t = 2$ with a total face value B_0
 - Traded at $t = 0,1$ at price p_t
 - The government can repay up to a maximal lump-sum tax
 \[T_2 = \tau \tilde{A}K_1^E \]
 i.e., \textit{Repayment} = max \{B_0, T_2\}
 - Is perceived “safe” when bonds are not expected to be default

- Dollars/ Treasuries:
 - Outside storage technology offers return R per period
 - Low risk-free yield
Agents

- Domestic Entrepreneurs
 - Risk-neutral preferences:
 $\max E_0[C_0 + \beta C_1 + \beta^2 C_2]$
 - The only agent that can invest in capital at $t = 0$
 - (Exogenous) Safe asset demand/constraint:
 $S_t^E \geq \beta^{2-t} \alpha K_t^E$
 - Possible safe assets:
 - dollars, domestic bonds when they are nearly default free
 - Prefer to invest minimal dollars: $\frac{1}{R^S} > \beta$
 - Low Initial wealth W_0^E, not enough to buy all domestic bonds
Agents con’t

- **Domestic households**
 - The same preference as entrepreneurs
 - Can not hold capitals
 - Initial wealth W_0^H, buys the rest of domestic bonds at $t = 0$

- **Foreigners**
 - Similar preference: $\max E_0[C_0 + \beta^* C_1 + \beta^{*2} C_2]$
 - Less patient than entrepreneurs: $\frac{1}{R^*} > \beta > \beta^*$

- **Additionally:**
 - For simplicity, crisis is unanticipated at $t = 0$
 - Debt-capital ratio $d = \frac{B_0}{K_0}, b^E = \frac{B_0^E}{K_0}, b^H = \frac{B_0^H}{K_0}$
 \[
d = b^E + b^H\]
Equilibrium at $t = 0$

- **Entrepreneurs:**
 - For sufficiently high \tilde{A}, prefer Capital > Domestic bonds > consumption > dollars
 - Hold domestic bonds for safe asset constraint: $b^E = \frac{B_0^E}{K_0} = \alpha$

- **Households:**
 - Buy all residual bonds supply
 - Indifferent between consumption and bonds: $p_0 = \beta^2, b^H = d - \alpha$

- **Foreigners:**
 - Holding nothing due to impatience (low valuation)

- Equilibrium going forward depends on realization of TFP shock
Equilibrium at $t = 1$

- Three possibilities:
 - \bar{A} subgame equilibrium:
 - Fundamental is strong, no crisis
\(\bar{A} \) subgame equilibrium at \(t = 1 \)

- Similar to equilibrium at \(t = 0 \)
- Strong fundamental \((\bar{A})\) guarantees government repayment
- Asset positions unchanged
- Asset price changes due to time discounting:
 \[q_{1,u} = \beta \bar{A}, p_{1,u} = \beta \]
Equilibrium at $t = 1$

- Three possibilities:
 - Fundamental $E_1 \tilde{A}$ equilibrium:
 - Weak fundamental, but no sunspot triggers crisis
Fundamental $E_1[\bar{A}]$-equilibrium at $t = 1$

- Similar to equilibrium at $t = 0$
- Weak fundamental (\bar{A}) but market confidence makes government repayment self-fulfilling
- Asset positions unchanged
- Asset price changes due to time discounting:
 - $q_{1,f} = \beta E_1[\bar{A}], p_{1,f} = \beta$
Equilibrium at $t = 1$

- Three possibilities:
 - Flight-to-Safety equilibrium:
 - Weak fundamental, sunspot triggers crisis
Flight-to-Safety equilibrium at \(t = 1 \)

Flight to Safety:
- Entrepreneurs seek dollars
- Sell capital and bonds to foreigners at discounted price

\[
q_{1,s} = \beta^* \eta \quad \text{E}_1[\tilde{A}] < q_{1,f} \text{E}_1[\tilde{A}],
\]

Impatience Inefficiency

\[
p_{1,s} = \beta^* (1 - \pi_2 \quad h) \\
\text{haircut}
\]

- Entrepreneurs hold capital

\[
K_{1,s}^E = \frac{q_{1,s}K_0 + p_{1,s}B_0^E}{q_{1,s} + \alpha \beta} = \frac{\beta^* \eta \text{E}_1[\tilde{A}] + \beta^* (1 - \pi_2 h) b^E}{\beta^* \eta \text{E}_1[\tilde{A}] + \alpha \beta} K_0 = K_{1,s}^E(h)
\]

Self-fulfilling default:
- Assume default happens only if \(A \) realizes (No default for \(\overline{A} \))
- Endogenous debt haircut:

\[
B_0 (1 - h) = \tau A K_{1,s}^E \leftrightarrow d (1 - h) = \tau A \frac{K_{1,s}^E(h)}{K_0}
\]

- Crisis existence condition: \(h > 0 \)
- In Fundamental \(\text{E}_1[\overline{A}] \) equilibrium: \(d < \tau A \)
Self-fulfilling Debt Crisis

- Minimal tax revenue in normal times τA
- Debt repayment $d(1 - h)$
- Minimal tax revenue in crisis times $\tau \frac{A K^E_{1,s}(h)}{K_0}$
Crisis vulnerability and Severity

- Let x be the policy parameter

- Crisis vulnerability:
 - The area of d (indebtedness) where a flight-to-safety crisis exists
 - Intuition: For sufficiently low d, implied $h(d) < 0$
 - In the baseline model:
 \[V^B(x) = \max\{\alpha, d^b\}, \tau A \],
 \[d^b \text{ solves } h(d^b) = 0 \]

- Crisis Severity:
 - The fraction of capital fire sold in a crisis
 - Output loss is linear in this measure
 - In the baseline model:
 \[S^B(x) = \max\{0, \frac{\beta^*\eta E_1[\tilde{A}]+(1-\pi_2)\beta^*\alpha}{\beta^*\eta E_1[\tilde{A}]+\beta \alpha-\tau A\beta^*\pi_2 \alpha} \} \]

- Later analyze how policies affect these measure
RoadMap

▪ Motivation
 • International: Flight to Safety

▪ Model Setup
 • Illustration
 • More detail

▪ Policy Analysis
 • Foreign Reserves: Buffering Approach
 • Tranching: Rechanneling Approach

▪ Global Safe Asset from & for Emerging Market Economies
Foreign Reserves

- **Implementation:**
 - The gov can issue additional bonds (purchased by households) for purchasing reserves.
 - Face value of additional bonds: $b^R K_0$
 - Since $p_0 = 1/\beta^2$, reserves worth $R^2/\beta^2 b^R K_0$

- **Benefit-cost analysis:**
 - Given debt haircut h^R,
 \[
 \frac{R^2}{\beta^2} b^R K_0 - (1 - h^R) b^R K_0 = \\
 \left(\frac{R^2}{\beta^2} - 1\right) b^R K_0 + h^R b^R K_0
 \]
 - negative carry
 - debt forgiveness
Equilibrium

- Subgame equilibriums without crisis is similar

- Focus on flight-to-safety crisis with reserves
 - Fire-sale of capital the same as in baseline
 \[
 K_{1,s}^E = \frac{q_1 s K_0 + p_1 s B_0^E}{q_1 s + \alpha \beta} = \frac{\beta^* \eta E_1 [\tilde{A}] + \beta^* (1 - \pi_2 h^R) b^E}{\beta^* \eta E_1 [\tilde{A}] + \alpha \beta} K_0 = K_{1,s}^E (h^R)
 \]
 - Endogenous haircut \(h^R \):
 \[
 (b^e + b^h)(1 - h^R) + b^R (1 - h^R) = \tau A \frac{K_{1,s}^E (h)}{K_0} + b^R (\beta^2 R^2)
 \]
Equilibrium

- Subgame equilibriums without crisis is similar

- Focus on flight-to-safety crisis with reserves
 - Fire-sale of capital the same as in baseline
 \[
 K_{1,s}^E = \frac{q_1 s K_0 + p_1 s B_0^E}{q_1 s + \alpha \beta} = \frac{\beta^* \eta E_1[\tilde{A}] + \beta^*(1 - \pi_2^h h^R)b^E}{\beta^* \eta E_1[\tilde{A}] + \alpha \beta} K_0 = K_{1,s}^E(h^R)
 \]
 - Endogenous haircut \(h^R \):
 \[
 (b^e + b^h)(1 - h^R) + b^R (1 - h^R) = \tau A \frac{K_{1,s}^E(h)}{K_0} + b^R (\beta^2 R^2)
 \]
 - New Debt Repayment
 - Reserves
 - Crisis existence condition: \(h^R > 0 \)
Self-fulfilling Debt Crisis (With Reserves)

- Minimal tax revenue in normal times τA
- Carry Cost $b^R(1 - (\beta R^S)^2)$
- Debt repayment $d(1 - h)$
- Minimal tax revenue in crisis times $\tau A K_{1,s}^E(h)/K_0$
- Haircut h

Points:
- h^*
- h^R
Crisis vulnerability and Severity (With Reserves)

- b^R is the policy parameter here

- **Crisis vulnerability:**
 - Compare to baseline:
 $$V^R(b^R) \supseteq V^B$$
 - Intuition: At $h^R = 0$, no debt forgiveness but negative carry

- **Crisis Severity:**
 - Compare to baseline:
 $$S^R(b^R) \leq S^B \iff h^R \geq 1 - (\beta R^\$)^2 \iff h \geq 1 - (\beta R^\$)^2$$
 - Intuition: If crisis is severe enough, debt forgiveness creates gain that exceeds negative carry
RoadMap

- Motivation
 - International: Flight to Safety

- Model Setup
 - Illustration
 - More detail

- Policy Analysis
 - Foreign Reserves: Buffering Approach
 - Tranching: Rechanneling Approach

- Global Safe Asset from & for Emerging Market Economies
Tranching

- **Implementation:**
 - Set up a SPV that purchases government bonds and issues a senior and junior bond.
 - Default loss is first absorbed by junior bonds
 - Total face value of senior bonds: \(sK_0 < dK_0 \)
 - Assume \(s > \alpha \), entrepreneurs are fully protected
 - Notations: \(b^{S,E}, b^{S,H}, b^{J,E}, b^{J,H} \)

- **Benefit-cost analysis:**
 - No cost within the model
 - Senior bonds are less likely to lose safe-asset-status
 - Owners of senior bonds (E) recover larger value even in defaults
Equilibrium

- Subgame equilibriums without crisis is similar
 - At $t = 0$, junior bonds and senior bonds are perfect substitutes
 - Assume entrepreneurs slightly prefer senior bonds

- Focus on flight-to-safety crisis here
 - Senior bonds haircut $h^S > 0 \iff h^J = 1$ (Junior bonds wiped out)
 - Fire-sale of capital the same as in baseline

$$K_{1,s}^E = \frac{q_{1,s}K_0 + p_{1,s}^SB_0^{S,E}}{q_{1,s} + \alpha\beta} = \frac{\beta^*\eta E_1[\bar{A}]+\beta^*(1-\pi_2h^S)b^{S,E}}{\beta^*\eta E_1[\bar{A}]+\alpha\beta} K_0 = K_{1,s}^E(h^S)$$

- Endogenous haircut h^S:

 Baseline:
 \[(b^E+b^H)(1-h) = d(1-h) = \tau A \frac{K_{1,s}^E(h)}{K_0}\]

- Crisis existence condition: $h^S > 0$
Equilibrium

- Subgame equilibriums without crisis is similar
 - At $t = 0$, junior bonds and senior bonds are perfect substitutes
 - Assume entrepreneurs slightly prefer senior bonds

- Focus on flight-to-safety crisis here
 - Senior bonds haircut $h^S > 0 \iff h^J = 1$ (Junior bonds wiped out)
 - Fire-sale of capital the same as in baseline

$$K_{1,s}^E = \frac{q_{1,s}K_0 + p_{1,s}^SB_0^{S,E}}{q_{1,s} + \alpha \beta} = \frac{\beta^*\eta E_1[\bar{A}] + \beta^*(1-\pi_2 h^S)b^{S,E}}{\beta^*\eta E_1[\bar{A}] + \alpha \beta} K_0 = K_{1,s}^E(h^S)$$

- Endogenous haircut h^S:
 - Tranching: $(b^{S,E} + b^{S,H})(1 - h^S) = s(1 - h^S) = \tau A \frac{K_{1,s}^E(h^S)}{K_0}$
 - h^S can be solved from baseline model assume $d = s$

- Crisis existence condition: $h^S > 0$
 - Tranching is equivalent to eliminate $d - s$ debt burden in crisis
Crisis vulnerability and Severity (With Tranching)

- s is the policy parameter here
 - But $\alpha \leq s \leq d$

- Crisis vulnerability:
 - Compare to baseline:
 \[V^T(s) = V^B \mid_{d=s} \subset V^B \]

- Crisis Severity:
 - Compare to baseline:
 \[S^T(s) = S^B \mid_{d=s} \leq S^B \]
RoadMap

- Motivation
 - International: Flight to Safety

- Model Setup
 - Illustration
 - More detail

- Policy Analysis
 - Foreign Reserves: Buffering Approach
 - Tranching: Rechanneling Approach

- Global Safe Asset from & for Emerging Market Economies
Tranching and Pooling

- Tranching can be strengthened via diversifying local shock
 - generalize the model to a continuum of ex-ante identical countries
- Set up international SPV to implement GloSBBies
Policy Analysis (Tranching & Pooling)

- s (senior bonds/capital) is the policy parameter
 - But $\alpha \leq s \leq d$

- Crisis vulnerability:
 - Crisis exists iff

 $s > (1 - \pi^i_2) \quad \text{Issued} \quad d \quad \text{repayment of} \quad d^B \quad \text{defaulted country}$

 d^B

 $\quad \text{safe asset} \quad \text{default free country} \quad \text{repyment of}$

 $\quad \text{repayment of}$

 - For national tranching, crisis exists iff

 $s > d^B$

- Crisis Severity:
 - Compare to national tranching:

 $S^\text{GloSBies}(s) < S^T(s) = S^B|_{d=s} \leq S^B$
Conclusion

- **High Debt Level**
 - Domestic Challenge: Central Bank independence
 - International Challenge: Flight-to-Safety

- **Global Financial Architecture**
 - Buffer approach interventionistic
 - Reserve holding costly due to cost of carry & distortionary
 - IMF support very limited
 - Swap lines Limited (not all IMF member countries)
 - Rechanneling approach self-stabilizing (autonomous)

- **Tranching completes the market**
 - Allows catering to investors groups with different risk attitudes
 - Makes EME less crisis prone

- **International pooling and tranching**
 - SBBS/ESBies for the world
 - Expands IMF’s fire power
“Good friend analogy” - like reserve assets
- Safe/available at any horizon - “when it counts”
- Precautionary buffer
 - held in addition to more risky assets
 - Risk \Rightarrow demand for safe assets \uparrow

“Safe asset tautology”
- Safe because it is “perceived to be safe”
- Safe independent of fundamentals
 - US Treasuries downgrade by S&P in 2011 \Rightarrow yield \downarrow
 - German CDS spread \Rightarrow yield during Euro crisis \downarrow
- Multiple equilibria
- Bubble
Model Setup

- Three Dates: \(t = 0, 1, 2 \)
- Time 0:
 - The government issues bonds maturing in date 2
 - Domestic agents invest capital and buy domestic bonds
- Time 1:
 - Potential flight-to-safety crisis
 - Capital and domestic bonds are fire sold to foreigners
- Time 2:
 - Capital produces output
 - The government partially defaults if tax revenue < maturing bonds