Lecture 05
One Sector Money Model with Idio Risk
Markus Brunnermeier & Yuliy Sannikov
The 4 Roles of Money

- **Store of value**
 - “I Theory of Money without I”
 - Less risky than other “capital” – no idiosyncratic risk
 - Fiscal theory of the price level

- **Medium of exchange**
 - Overcome double-coincidence of wants problem

- **Unit of account**

- **Record keeping device**
 - Virtual ledger
<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
<tr>
<td>Only money</td>
<td>Samuelson</td>
<td>Bewley</td>
</tr>
<tr>
<td>With capital</td>
<td>Diamond</td>
<td>Aiyagari</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Angeletos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk tied up with individual capital</td>
</tr>
</tbody>
</table>
Models on Money as Store of Value

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>investment risk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Only money</th>
<th>Samuelson</th>
<th>Bewley</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>With capital</th>
<th>Diamond</th>
<th>Aiyagari</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dynamic inefficiency</td>
<td>Inefficiency</td>
</tr>
<tr>
<td></td>
<td>$r < r^, K > K^$</td>
<td>$r < r^, K > K^$</td>
</tr>
<tr>
<td></td>
<td>Pecuniary externality</td>
<td>Inefficiency</td>
</tr>
<tr>
<td></td>
<td>$r > r^, K < K^$</td>
<td></td>
</tr>
</tbody>
</table>

(money) bubbles if $r < g$
Abel et al. vs. Geerolf

$r^M = g$
One Sector Model with Money

- Agent i’s preferences
 \[E \left[\int_0^\infty e^{-\rho t} \frac{(c_t^i)^{1-\gamma}}{1-\gamma} dt \right] \]

- Each agent operates one firm
 - Output
 \[y_t^i = a k_t^i \]
 - Physical capital k
 \[\frac{dk_t^i}{k_t^i} = (\Phi(i_t^i) - \delta) dt + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^i \]

- Financial Friction: Incomplete markets: Agents cannot share $d\tilde{Z}_t^i$
One Sector Model with Money

- Agent i’s preferences
 \[E \left[\int_0^\infty e^{-\rho t} \frac{(c_t)^{1-\gamma}}{1-\gamma} dt \right] \]

- Each agent operates one firm
 - Output
 \[y_t = a k_t \]
 - Physical capital k
 \[\frac{d k_t^i}{k_t^i} = (\Phi(\theta_t) - \delta) dt + \sigma dZ_t + \sigma d\tilde{Z}_t^i \]

- Financial Friction: Incomplete markets: Agents cannot share $d\tilde{Z}_t^i$

- Outside money
 - Money supply growth rate $(\mu^M + \mu^{Mi})$
 - μ^{Mi} used to pay interest on money (reserves)
 - μ^M generates seignorage
 \[\Rightarrow \text{transfers to agents proportional to networth } n_t^i \]
Postulate Aggregates and Processes

- $q_t K_t$ value of physical capital
- $p_t K_t$ value of nominal capital/outside money
 - $\frac{p_t K_t}{M_t}$ value of one unit of (outside) money
- $\vartheta_t = \frac{p_t}{q_t + p_t}$ fraction of nominal wealth
Postulate Aggregates and Processes

- $q_t K_t$ value of physical capital
- $p_t K_t$ value of nominal capital/outside money
 - $\frac{p_t K_t}{M_t}$ value of one unit of (outside) money
- $\theta_t = \frac{p_t}{q_t + p_t}$ fraction of nominal wealth

0. Postulate

- q-price process
 \[dq_t / q_t = \mu_t^q dt + \sigma_t^q dZ_t \]
- p-price process
 \[dp_t / p_t = \mu_t^p dt + \sigma_t^p dZ_t, \]
- SDF for each \tilde{i} agent
 \[d\xi_t / \xi_t = -r_{\tilde{f}, \tilde{i}} dt - \zeta_t^i dZ_t - \tilde{\zeta}_t^i d\tilde{Z}_t \]

0. Return processes

\[dr_t^{K, \tilde{i}} = \left(\frac{a - \iota_t^\tilde{i}}{q_t} + \Phi(\iota_t^\tilde{i}) - \delta + \mu_t^q + \sigma_t^q \right) dt + (\sigma + \sigma_t^q) dZ_t + \tilde{\sigma} d\tilde{Z}_t^\tilde{i} \]

\[dr_t^M = \left(\Phi(\iota_t) - \delta + \mu_t^p + \sigma \sigma_t^p - \mu_M - \mu_{Mi}^{Mi} + r \mu_{Mi}^{Mi} \right|_{=0} dt + (\sigma + \sigma_t^p) dZ_t \]
One Sector Model with Money

1b. Optimal Choices

- Optimal investment rate

\[\kappa \iota_t = q_t - 1 \]

\[
\frac{1}{q_t} = \Phi'(\iota_t) \quad \text{Tobin's } q
\]

All agents \(\iota_t = \iota \)

Special functional form:

\[\Phi(\iota_t) = \frac{1}{\kappa} \log(\kappa \iota_t + 1) \Rightarrow \kappa \iota_t = q - 1 \]
One Sector Model with Money

1b. Optimal Choices

- Optimal investment rate
 \[\kappa \lambda_t = q_t - 1 \]

- Optimal portfolio
 \[1 - \theta = \frac{(a - \iota)/q}{\gamma \tilde{\sigma}^2} + \frac{\mu^M}{\gamma \tilde{\sigma}^2} \]

\[
E[dr_t^K]/dt = \frac{a - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu^q_t + \sigma \sigma^q_t = r^f_t + \zeta_t (\sigma + \sigma^q_t) + \tilde{\zeta}_t \tilde{\sigma} \\
E[dr_t^M]/dt = \Phi(\iota_t) - \delta + \mu^p_t + \sigma \sigma^p_t - \mu^M = r^f_t + \zeta_t (\sigma + \sigma^p_t) \\
\frac{a - \iota_t}{q_t} + \mu^q_t + \sigma (\sigma^q_t - \sigma^p_t) + \mu^M = \zeta_t (\sigma^q - \sigma^p_t) + \tilde{\zeta}_t \tilde{\sigma}
\]
One Sector Model with Money

1b. Optimal Choices

- Optimal investment rate
 \[\kappa \iota_t = q_t - 1 \]

- Optimal portfolio
 \[1 - \theta = \frac{(a-\iota)/q}{\gamma \tilde{\sigma}^2} + \frac{\mu^M}{\gamma \tilde{\sigma}^2} \]

\[
E[dr_t^{K,i}]/dt = \frac{a - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q = r_t^f + \zeta_t (\sigma + \sigma_t^q) + \tilde{\zeta}_t \tilde{\sigma} \\
E[dr_t^M]/dt = \Phi(\iota_t) - \delta + \mu_t^p + \sigma \sigma_t^p - \mu^M = r_t^f + \zeta_t (\sigma + \sigma_t^p) \\
\frac{a - \iota_t}{q_t} + \mu_t^q - \mu_t^p + \sigma (\sigma_t^q - \sigma_t^p) + \mu^M = \zeta_t (\sigma_t^q - \sigma_t^p) + \tilde{\zeta}_t \tilde{\sigma} \\
\]

Price of Risk: \[\zeta_t = -\sigma_t^q + \sigma_t^{p+q} + \gamma \sigma, \quad \tilde{\zeta}_t = \gamma \tilde{\sigma}_t^n = \gamma (1 - \theta_t) \tilde{\sigma} \]
1b. Optimal Choices

- Optimal investment rate
 \[\kappa \iota_t = q_t - 1 \]

- Optimal portfolio
 \[1 - \theta = \frac{(a - \iota)}{q} + \frac{\mu^M}{\gamma \tilde{\sigma}^2} \]

\[E[dr_t^K]/dt = \frac{a - \iota}{q_t} + \Phi(\iota_t) - \delta + \mu^q + \sigma \sigma^q = r^f_t + \zeta_t(\sigma + \sigma^q) + \tilde{\zeta}_t \tilde{\sigma} \]
\[E[dr_t^M]/dt = \Phi(\iota_t) - \delta + \mu^p + \sigma \sigma^p - \mu^M = r^f_t + \zeta_t(\sigma + \sigma^p) \]

In Steady State

\[constant \; q, p \]
\[\frac{a - \iota}{q_t} + \mu^q - \mu^p + \sigma (\sigma^q - \sigma^p) + \mu^M = \zeta_t(\sigma^q - \sigma^p) + \tilde{\zeta}_t \tilde{\sigma} \]

\[Price \; of \; Risk: \quad \zeta_t = -\sigma^q + \sigma^p + \gamma \sigma, \quad \tilde{\zeta}_t = \gamma \tilde{\sigma}^n = \gamma (1 - \theta_t) \tilde{\sigma} \]
One Sector Model with Money

1b. Optimal Choices

- Optimal investment rate
 \[\kappa \iota_t = q_t - 1 \]

- Optimal portfolio
 \[1 - \theta = \frac{(a - \iota)}{q} + \frac{\mu^M}{\gamma \bar{\sigma}^2} \]

\[E[dr_t^K, i]/dt = \frac{a - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu^q_t + \sigma \sigma^q_t = r^f_t + \zeta_t (\sigma + \sigma^q_t) + \tilde{\zeta}_t \bar{\sigma} \]

\[E[dr_t^M]/dt = \Phi(\iota_t) - \delta + \mu^p_t + \sigma \sigma^p_t - \mu^M = r^f_t + \zeta_t (\sigma + \sigma^p_t) \]

In Steady State constant \(q, p \)

\[\frac{a - \iota}{q} + \mu^M = \tilde{\zeta}_t \bar{\sigma} \]

Price of Risk:

\[\zeta = \gamma \sigma, \quad \tilde{\zeta} = \gamma \bar{\sigma}^n = \gamma (1 - \theta) \bar{\sigma} \]

yields

\[1 - \theta = . . . \]
One Sector Model with Money

1b. Optimal Choices

- Optimal investment rate
 \[\kappa \lambda_t = q_t - 1 \]

- Optimal portfolio
 \[1 - \theta = \frac{(a-\iota)/q}{\gamma \bar{\sigma}^2} + \frac{\mu^M}{\gamma \bar{\sigma}^2} \]

\[
E[dr_t^{K,i}]/dt = \frac{a-l_t}{q_t} + \Phi(\iota_t) - \delta + \mu^q_t + \sigma \sigma^q_t = r^f_t + \zeta_t (\sigma + \sigma^q_t) + \tilde{\zeta}_t \bar{\sigma}
\]

\[
E[dr_t^M]/dt = \Phi(\iota_t) - \delta + \mu^p_t + \sigma \sigma^p_t - \mu^M = r^f_t + \zeta_t (\sigma + \sigma^p_t)
\]

In Steady State

- constant \(q, p \)
 \[\frac{a-\iota}{q} + \mu^M = \tilde{\zeta}_t \bar{\sigma} \]

- Price of Risk: \[\zeta = \gamma \sigma, \quad \zeta = \gamma \bar{\sigma}^n = \gamma (1 - \theta) \bar{\sigma} \]

- Risk-free rate: \[r^f = \Phi(\iota) - \delta - \mu^M - \gamma \sigma^2 \]

\(\Rightarrow \) yields \(1 - \theta = . . . \)
One Sector Model with Money

1b. Optimal Choices

- Optimal investment rate
 \[\kappa_t = q_t - 1 \]

- Optimal portfolio
 \[1 - \theta = \frac{(a - \iota)}{q} \frac{\mu^M}{\gamma \bar{\sigma}^2} + \frac{\mu^M}{\gamma \bar{\sigma}^2} \]

\[
E[dr_t^K]/dt = \frac{a - \iota}{q_t} + \Phi(\iota_t) - \delta + \mu^q + \sigma \sigma^q = r^f_t + \zeta_t (\sigma + \sigma^q_t) + \bar{\zeta}_t \bar{\sigma}
\]
\[
E[dr_t^M]/dt = \Phi(\iota_t) - \delta + \mu^p + \sigma \sigma^p - \mu^M = r^f_t + \zeta_t (\sigma + \sigma^p_t)
\]

In Steady State
\[\frac{a - \iota}{q} + \mu^M = \bar{\zeta}_t \bar{\sigma} \]

Price of Risk: \[\zeta = \gamma \sigma, \quad \bar{\zeta} = \gamma \bar{\sigma}^n = \gamma (1 - \theta) \bar{\sigma} \]
Risk-free rate: \[r^f = \Phi(\iota) - \delta - \mu^M - \gamma \sigma^2 \]

Poll 18: \(r^f \) is
a) Risk-free rate
b) Shadow risk-free rate
c) Differs across individuals
One Sector Model with Money

1b. Optimal Choices

- Optimal investment rate
 \[\kappa_t = q_t - 1 \]

- Optimal portfolio
 \[1 - \theta = \frac{(a-\iota)/q + \mu^M}{\gamma \sigma^2} \]

Poll 18: why does real \(r^f \) decline with \(\mu^M \)

a) Because investment rate \(\iota \) changes
b) Insurance via money becomes more costly
c) Prices are not sticky, money is neutral, and hence the real rate should not be affected

\[
E[dr^K_t]/dt = \frac{a - \iota}{q_t} + \Phi(\iota_t) - \delta + \mu^q_t + \sigma^q_t = r^f_t + \zeta_t(\sigma + \sigma^q_t) + \tilde{\zeta}_t \tilde{\sigma}
\]

\[
E[dr^M_t]/dt = \Phi(\iota_t) - \delta + \mu^p_t + \sigma^p_t - \mu^M = r^f_t + \zeta_t(\sigma + \sigma^p_t)
\]

In Steady State

constant \(q, p \)

\[\frac{a - \iota}{q} + \mu^M = \tilde{\zeta}_t \tilde{\sigma} \]

\[\text{Price of Risk: } \zeta = \gamma \sigma, \quad \tilde{\zeta} = \gamma \tilde{\sigma}^n = \gamma (1 - \theta) \tilde{\sigma} \]

\[\text{Risk-free rate: } r^f = \Phi(\iota) - \delta - \mu^M - \gamma \sigma^2 \]
One Sector Model with Money

1b. Optimal Choices

- Optimal investment rate
 \[\kappa_t = q_t - 1 \]

- Optimal portfolio
 \[1 - \theta = \frac{(a - \iota)/q}{\gamma \tilde{\sigma}^2} + \frac{\mu^M}{\gamma \tilde{\sigma}^2} \]

\[E[dr^K_t]/dt = \frac{a - \iota}{q_t} + \Phi(\iota_t) - \delta + \mu^q_t + \sigma \sigma^q_t = r^f_t + \zeta_t (\sigma + \sigma^q_t) + \tilde{\zeta}_t \tilde{\sigma} \]

\[E[dr^M_t]/dt = \Phi(\iota_t) - \delta + \mu^p_t + \sigma \sigma^p_t - \mu^M = r^f_t + \zeta_t (\sigma + \sigma^p_t) \]

Poll 17: the real \(r^f \) does not depend on \(\tilde{\sigma} \)

- a) Because determined by growth rate of \(K \)
- b) Because it is a shadow price/rate
- c) Because return on money \(E[dr^M_t]/dt \) doesn’t

In Steady State

constant \(q, p \)

\[\frac{a - \iota}{q} + \mu^M = \tilde{\zeta}_t \tilde{\sigma} \]

Price of Risk: \[\zeta = \gamma \sigma, \quad \tilde{\zeta} = \gamma \tilde{\sigma}^n = \gamma (1 - \theta) \tilde{\sigma} \]

Risk-free rate: \[r^f = \Phi(\iota) - \delta - \mu^M - \gamma \sigma^2 \]
One Sector Model with Money

1b. Optimal Choices

▪ Optimal investment rate

\[\kappa I_t = q_t - 1 \]

▪ Optimal portfolio

\[1 - \theta = \frac{(a-i)/q}{\gamma \bar{\sigma}^2} + \frac{\mu^M}{\gamma \bar{\sigma}^2} \]

▪ Optimal consumption

\[\frac{c}{n} =: \zeta \quad \text{is a constant} \]

▪ Why a constant?

Recall \(\frac{c}{n} = \rho^{1/\gamma} \omega^{1-1/\gamma} \) and investment opportunity/networth multiplier is constant over time in steady state
One Sector Model with Money

1b. Optimal Choices

- Optimal investment rate
 \[\kappa \iota_t = q_t - 1 \]

- Optimal portfolio
 \[1 - \theta = \frac{(a-i)/q}{\gamma \bar{\sigma}^2} + \frac{\mu^M}{\gamma \bar{\sigma}^2} = 1 - \vartheta = \frac{qK_t}{(p+q)K_t} \]

- Optimal consumption
 \[\frac{c}{n} =: \zeta \Rightarrow C = \zeta (p + q)K_t = (a - i)K_t \]
One Sector Model with Money

1b. Optimal Choices

- Optimal investment rate
 \[\kappa l_t = q_t - 1 \]

- Optimal portfolio
 \[1 - \theta = \frac{(a-\ell)/q}{\gamma \bar{\sigma}^2} + \frac{\mu^M}{\gamma \bar{\sigma}^2} \]

- Optimal consumption
 \[\frac{c}{n} =: \zeta \Rightarrow C = \zeta \left(\frac{p + q}{q} \right) K_t / \left(1/(1 - \theta) \right) \]

4. Market Clearing

\[= 1 - \vartheta = \frac{qK_t}{(p+q)K_t} \]

\[= \frac{(a - \ell)K_t}{q} \]
One Sector Model with Money

1b. Optimal Choices

- Optimal investment rate
 \[\kappa \kappa_t = q_t - 1 \]

- Optimal portfolio
 \[1 - \theta = \frac{(a - \iota)/q}{\gamma \sigma^2} + \frac{\mu M}{\gamma \sigma^2} \]

- Optimal consumption
 \[\frac{c}{n} = : \zeta \Rightarrow C = \zeta \left(\frac{p + q}{q} \right) \]
 \[\Rightarrow \iota = \frac{1 - \vartheta}{1 - \vartheta + \kappa \zeta} \]

4. Market Clearing

\[= 1 - \vartheta = \frac{qK_t}{(p + q)K_t} \]
One Sector Model with Money

1b. Optimal Choices

- Optimal investment rate
 \[\kappa I_t = q_t - 1 \]

- Optimal portfolio
 \[1 - \theta = \frac{(a - \iota)/q}{\gamma \bar{\sigma}^2} + \frac{\mu^M}{\gamma \bar{\sigma}^2} \]

- Optimal consumption
 \[\frac{c}{n} =: \zeta \Rightarrow C = \zeta \left(p + q \right) \]
 \[= (a - \iota) \]
 \[q \]
 \[\Rightarrow \iota = \frac{(1 - \theta)a - \zeta}{1 - \theta + \kappa \zeta} \]
 \[q = (1 - \theta) \frac{1 + \kappa a}{1 - \theta + \kappa \zeta} \]

4. Market Clearing

\[= 1 - \vartheta = \frac{qK_t}{(p+q)K_t} \]
One Sector Model with Money

1b. Optimal Choices

- Optimal investment rate
 \[\kappa t = q_t - 1 \]

- Optimal portfolio
 \[1 - \theta = \frac{(a - i)/q}{\gamma \bar{\sigma}^2} + \frac{\mu^M}{\gamma \bar{\sigma}^2} = 1 - \vartheta = \frac{qK_t}{(p+q)K_t} \]

- Optimal consumption
 \[\frac{c}{n} =: \zeta \Rightarrow C = \zeta \left(p + q \right) \frac{q}{1/(1 - \vartheta)} = \left(a - i \right) \frac{q}{q} \Rightarrow i = \frac{(1 - \vartheta)a - \zeta}{1 - \vartheta + \kappa \zeta} \]

4. Market Clearing

Let \(\hat{\mu}^M := (1 - \vartheta)\mu^M \) (monotone transformation)

\[(1 - \vartheta) = \sqrt{\frac{\zeta + \hat{\mu}^M}{\gamma \bar{\sigma}^2}} = \frac{q}{q + p} \]

\[q = (1 - \vartheta) \frac{1 + \kappa a}{1 - \vartheta + \kappa \zeta} \]
Two Stationary Equilibria

<table>
<thead>
<tr>
<th>Moneyless equilibrium</th>
<th>Money equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_0 = 0)</td>
<td>(p = \frac{(1 + \kappa \alpha)(\sqrt{\gamma \tilde{\sigma}} - \sqrt{\zeta} + \hat{\mu}_M)}{\sqrt{\zeta} + \hat{\mu}_M + \kappa \sqrt{\gamma \tilde{\sigma}} \zeta})</td>
</tr>
<tr>
<td>(q_0 = \frac{1 + \kappa \alpha}{1 + \kappa \zeta})</td>
<td>(q = \frac{(1 + \kappa \alpha)\sqrt{\zeta} + \hat{\mu}_M}{\sqrt{\zeta} + \hat{\mu}_M + \kappa \sqrt{\gamma \tilde{\sigma}} \zeta})</td>
</tr>
<tr>
<td>(\iota = \frac{\alpha - \zeta}{1 + \kappa \zeta})</td>
<td>(\iota = \frac{\sqrt{\zeta} + \hat{\mu}_M \alpha - \sqrt{\gamma \tilde{\sigma}} \zeta}{\sqrt{\zeta} + \hat{\mu}_M + \kappa \sqrt{\gamma \tilde{\sigma}} \zeta})</td>
</tr>
</tbody>
</table>

![Graph](image.png)
Two Stationary Equilibria

<table>
<thead>
<tr>
<th>Moneyless equilibrium</th>
<th>Money equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_0 = 0)</td>
<td>(p = \frac{1 + \kappa a}{\sqrt{\zeta} + \hat{\mu}^M + \kappa \sqrt{\gamma} \sigma})</td>
</tr>
<tr>
<td>(q_0 = \frac{1 + \kappa a}{1 + \kappa \zeta})</td>
<td>(q = \frac{1 + \kappa a \sqrt{\zeta} + \hat{\mu}^M}{\sqrt{\zeta} + \hat{\mu}^M + \kappa \sqrt{\gamma} \sigma \zeta})</td>
</tr>
<tr>
<td>(\lambda = \frac{\alpha - \zeta}{1 + \kappa \zeta})</td>
<td>(\lambda = \frac{\sqrt{\zeta} + \hat{\mu}^M a - \sqrt{\gamma} \sigma \zeta}{\sqrt{\zeta} + \hat{\mu}^M + \kappa \sqrt{\gamma} \sigma \zeta})</td>
</tr>
</tbody>
</table>

Poll 25: Why does aggregate risk \(\sigma \) not show up in solution

- a) We had to set it to zero to solve
- b) It scales everything in \(AK \)
- c) It is hidden in \(\zeta \)
- d) It is hidden in \(\hat{\mu}^M \)
Two Stationary Equilibria

<table>
<thead>
<tr>
<th>Moneyless equilibrium</th>
<th>Money equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_0 = 0$</td>
<td>$p = \frac{(1 + \kappa a)(\sqrt{\gamma \tilde{\sigma}} - \sqrt{\zeta} + \hat{\mu}^M)}{\sqrt{\zeta} + \hat{\mu}^M + \kappa \sqrt{\gamma \tilde{\sigma}} \zeta}$</td>
</tr>
<tr>
<td>$q_0 = \frac{1 + \kappa a}{1 + \kappa \zeta}$</td>
<td>$q = \frac{(1 + \kappa a)\sqrt{\zeta} + \hat{\mu}^M}{\sqrt{\zeta} + \hat{\mu}^M + \kappa \sqrt{\gamma \tilde{\sigma}} \zeta}$</td>
</tr>
<tr>
<td>$\iota = \frac{a - \zeta}{1 + \kappa \zeta}$</td>
<td>$\iota = \frac{\sqrt{\zeta} + \hat{\mu}^M a - \sqrt{\gamma \tilde{\sigma}} \zeta}{\sqrt{\zeta} + \hat{\mu}^M + \kappa \sqrt{\gamma \tilde{\sigma}} \zeta}$</td>
</tr>
</tbody>
</table>

Poll 26: Why is p moving in the opposite direction to q in $\tilde{\sigma}$?

a) Flight to safety

b) With high $\tilde{\sigma}$ insurance role of money is more important
Equilibrium consumption/networth ratio ζ

- Recall $\zeta = \rho + \frac{\gamma - 1}{\gamma} \left(r_t^f - \rho + \frac{\gamma \sigma^2 + ((1-\vartheta)\bar{\sigma})^2}{2} \right)$
 and using $\tilde{\vartheta} = \gamma (1 - \vartheta)\bar{\sigma}$

 - Since $r_t^f = \Phi(u_t) - \delta - \mu^M - \gamma \sigma^2$ (from previous slide above)
 and using $u = \frac{\sqrt{\zeta} + \mu^M a - \sqrt{\gamma} \bar{\sigma} \zeta}{\sqrt{\zeta} + \mu^M + \kappa \sqrt{\gamma} \bar{\sigma} \zeta}$
 - ... we obtain ζ

- Of course for log utility ($\gamma = 1$), simply $\zeta = \rho$

Poll 27: precautionary savings for $\gamma > 1$

a) Consumption-wealth ratio ζ decreases in σ, only for $\gamma < 1$

b) Risk σ affects r^f

c) Risk $\bar{\sigma}$ affects r^f

d) Precautionary savings only exists with borrowing constraints
Two Stationary Equilibria for $\gamma = 1, \mu^M = 0$

<table>
<thead>
<tr>
<th>Moneyless equilibrium</th>
<th>Money equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_0 = 0$</td>
<td>$p = \frac{(1 + \kappa a)(\tilde{\sigma} - \sqrt{\zeta})}{\sqrt{\zeta} + \kappa \tilde{\sigma} \zeta}$</td>
</tr>
<tr>
<td>$q_0 = \frac{1 + \kappa a}{1 + \kappa \zeta}$</td>
<td>$q = \frac{(1 + \kappa a)\sqrt{\zeta}}{\sqrt{\zeta} + \kappa \tilde{\sigma} \zeta}$</td>
</tr>
<tr>
<td>$\iota = \frac{a - \zeta}{1 + \kappa \zeta}$</td>
<td>$\iota = \frac{\sqrt{\zeta} a - \tilde{\sigma} \zeta}{\sqrt{\zeta} + \kappa \tilde{\sigma} \zeta}$</td>
</tr>
</tbody>
</table>

where $\zeta = \rho$
Welfare

- Value function for log utility

\[V = \int_0^\infty e^{-\rho t} E[\log c_t] dt = \frac{1}{\rho} \log \rho + \int_0^\infty e^{-\rho t} E[\log n_t] dt \]

- By Ito:

\[\log n_t = \log n_0 + \int_0^t \left(\frac{dn_s}{n_s} - \frac{1}{2} \frac{d<n>_s}{n_s^2} \right) \]

\[= \log n_0 + \int_0^t \left(\mu^n_s - \frac{1}{2} (\sigma^n_s)^2 - \frac{1}{2} (\tilde{\sigma}^n_s)^2 \right) ds + \int_0^t \sigma^n_s dZ_s + \int_0^t \tilde{\sigma}^n_s d\tilde{Z}_s \]

\[V = \frac{\log \rho}{\rho} + \frac{\log n_0}{\rho} + \int_0^\infty e^{-\rho t} \int_0^t E \left[\mu^n_s - \frac{1}{2} (\sigma^n_s)^2 - \frac{1}{2} (\tilde{\sigma}^n_s)^2 \right] ds dt \]

- in steady state \(\mu^n_s = \mu^n = \Phi(\iota) - \delta \), \(\sigma^n_s = \sigma^n = \sigma \), \(\tilde{\sigma}^n_s = \tilde{\sigma}^n = (1 - \vartheta)\tilde{\sigma} \)

\[\int_0^t E[...] ds = \left(\mu^n_s - \frac{1}{2} (\sigma^n_s)^2 - \frac{1}{2} (\tilde{\sigma}^n_s)^2 \right) t = \left(\Phi(\iota) - \delta - \frac{1}{2} \sigma^2 - \frac{1}{2} (1 - \vartheta)^2 \tilde{\sigma}^2 \right) t \]

- Hence, \(\int_0^\infty e^{-\rho t} \int_0^t E[...] ds dt = \int_0^\infty e^{-\rho t} \left(\Phi(\iota) - \delta - \frac{1}{2} \sigma^2 - \frac{1}{2} (1 - \vartheta)^2 \tilde{\sigma}^2 \right) t dt \)

\[= \frac{1}{\rho} \int_0^\infty e^{-\rho t} dt \left(\Phi(\iota) - \delta - \frac{1}{2} \sigma^2 - \frac{1}{2} (1 - \vartheta)^2 \tilde{\sigma}^2 \right) \quad \text{(integration by parts)} \]

\[= \frac{1}{\rho^2} \left(\Phi(\iota) - \delta - \frac{1}{2} \sigma^2 - \frac{1}{2} (1 - \vartheta)^2 \tilde{\sigma}^2 \right) \]
Welfare

- **Value function**

\[
V = \frac{\log \rho}{\rho} - \frac{\delta + \frac{1}{2} \sigma^2}{\rho^2} + \frac{\log K_0}{\rho} + \frac{\log (p+q)}{\rho} + \frac{\Phi(\iota) - \frac{1}{2}(1-\vartheta)^2 \tilde{\sigma}^2}{\rho^2}
\]

\(V_0 := \)

(\text{does not depend on } \hat{\mu}^M)

Effect of \(\hat{\mu}^M \) on total (initial) wealth

Growth-risk trade-off

- **Plug in model solution for \(p + q, \Phi(\iota), \text{and } \vartheta \)**

\[
V = V_0 + \frac{1}{\rho} \left(\frac{1}{\kappa} \log \frac{(1 + \kappa a) \tilde{\sigma}}{\kappa p \tilde{\sigma} + \sqrt{\rho + \hat{\mu}^M}} \right) + \frac{1}{\rho^2} \left(\frac{1}{\kappa} \log \frac{(1 + \kappa a) \sqrt{\rho + \hat{\mu}^M}}{\kappa p \tilde{\sigma} + \sqrt{\rho + \hat{\mu}^M}} \right) - \frac{1}{2} (\rho + \mu^M)
\]

Closed form!
(up to \(\hat{\mu}^M \)-transformation)
Optimal Inflation Rate

- Money growth μ^M affects
 - Shadow risk-free rate
 - (Steady state) inflation in two ways
 \[
 \pi = \mu^M + \mu^{Mi} - \left(\Phi(\iota(\mu^M)) - \delta\right) \frac{g}{g}
 \]

- Proposition:
 - For sufficiently large $\tilde{\sigma}$ and $\kappa < \infty$ welfare maximizing $\mu^{M*} > 0$.
 - Laissez-faire Market outcome is not even constrained Pareto efficient
 - Economic growth rate g is also higher
 - Growth maximizing $\mu^{g*} \geq \mu^{M*}$, s.t. $p^{g*} = 0$, Tobin (1965)

- Corollary: No super-neutrality of money
 - μ^{Mi}: Super-neutrality only w.r.t. part of money growth rate that is used to pay interest on money
 - μ^M: Nominal money growth rate affects real economic growth by distorting portfolio choice if $\kappa < \infty$
 - No price/wage rigidity, no monopolistic competition
Optimal Inflation Rate

- Pecuniary Externalities
 - Individual agent takes prices, including interest rate as given
 - Tilt portfolio towards (physical capital)
 - q rises
 - Investment rate ι rises, growth rate is higher r^M increases
 - Idiosyncratic risk increases reduces welfare
 - After negative shock, replacing lost capital is cheaper
 - due to “capital shocks”
 - Not with “cash flow shock” (in consumption units) as in Brunnermeier & Sannikov (2016) AER P&P
Proposition: (comparative static)
\(\mu^M \) and optimal inflation target
- does not depend on depreciation rate \(\delta \), but inflation does
- is strictly increasing in idiosyncratic risk \(\tilde{\sigma} \)

“Emerging markets should have higher inflation target”
In sum..

- What should the (long-run) optimal inflation rate be?
 - Competitive market outcome is constrained Pareto inefficient.
 - Inflation is Pigouvian & internalizes pecuniary externality!
 - HH take real interest rate as given, but
 - Portfolio choice affects economic growth and real interest rate

- What role do financial frictions play?
 - incomplete markets ⇒ no superneutrality of money
 - No price/wage rigidity needed

- Emerging markets, with less developed financial markets, should have higher inflation rate/target
 - Higher idiosyncratic risk ⇒ higher pecuniary externality
The 4 Roles of Money

- **Store of value**
 - “I Theory of Money without I”
 - Less risky than other “capital” – no idiosyncratic risk
 - Fiscal theory of the price level

- **Medium of exchange**
 - Overcome double-coincidence of wants problem

- **Unit of account**

- **Record keeping device**
 - Virtual ledger
Fiscal Theory of the Price Level

- Money in a broad sense (includes government debt)
 - store of value emphasis!
- Suppose one can pay taxes with money (fiscal backing)
 - HH can pay with money instead of real goods
- Central bank might “print money” to pay expenditures and dilute real value of government debt
- FTPL equation: What is the real value of government debt
 - Like asset pricing equation (in discrete time)

\[
\frac{M_t + B_t}{\varphi_t} = E \left[\sum_{t=\tau}^{\infty} \frac{\xi_{\tau}}{\xi_t} s_{\tau} K_{\tau} \right]
\]

- \(B_t \) all nominal government debt (long-term government bond \(B_t = 0 \))
- \(s_{\tau} K_{\tau} \) is primary surplus
 - (tax revenue minus government expenditure (without interest payments))
- \(\varphi_t = M_t/p_t K_t \) price level (inverse of “value of money”)
FTPL Equation

- Fiscal budget with $B_t = 0 \ \forall t$

$$p_t K_t \mu^M M_t dt + \tau a K_t = g K_t$$

- $p_t K_t \mu^M dt$ seignorage (Recall μ^M is money growth rate that excludes the part used to pay interest)

- τ tax minus transfers per unit of output

- g government expenditures per unit of K_t (totally wasted)

- If $g = 0$, then $\tau a K_t$ is primary surplus, denoted by sK_t

FTPL equation:

$$\frac{M_t + B_t}{\sigma_t} = E \left[\sum_{\tau=t}^{\infty} \frac{\xi_\tau}{\xi_t} S_\tau K_\tau \right]$$

$$p_t K_t = \lim_{T \to \infty} \int_t^T E_t \left[\frac{\xi_\tau}{\xi_t} S_\tau K_\tau \right] d\tau + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} p_T K_T \right]$$

Bubble
FTPL and Money Bubbles

- FTPL equation:

\[
p_t K_t = \lim_{T \to \infty} \int_t^T E_t \left[\frac{\xi_\tau}{\xi_t} s_\tau K_\tau \right] d\tau + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} r_T K_T \right]
\]

- w/o aggregate risk, \(\sigma = 0 \):

\[
\Rightarrow \frac{\xi_\tau}{\xi_t} = e^{-r^f(\tau-t)} \text{ and } r^f = (\Phi(\nu) - \delta) - \mu^M \]

- If \(\mu^M = 0 \)

\[
\Rightarrow s = 0 \quad r^f = g, \text{ bubble can exist}
\]
FTPL and Money Bubbles

FTPL equation:

\[p_t K_t = \lim_{T \to \infty} \int_t^T E_t \left[\frac{\xi_\tau}{\xi_t} s_\tau K_\tau \right] d\tau + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} p_T K_T \right] \]

w/o aggregate risk, \(\sigma = 0 \):

\[\Rightarrow \frac{\xi_\tau}{\xi_t} = e^{-r_f(\tau-t)} \text{ and } r_f = (\Phi(\nu) - \delta) - \mu^M \]

- If \(\mu^M = 0 \)
 \[\Rightarrow s = 0 \quad r_f = g, \text{ bubble can exist} \]

Poll 39: What pins down the size of the money bubble?

a) For \(r_f = g \) bubble can take on any size
b) Asset pricing/Euler equation
c) Output good market clearing equation
FTPL and Money Bubbles

FTPL equation:

\[
p_tK_t = \lim_{T \to \infty} \int_t^T E_t \left[\frac{\xi_t}{\xi_t} s_t K_t \right] d\tau + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} p_T K_T \right]
\]

- w/o aggregate risk, \(\sigma = 0 \):
 \[
 \Rightarrow \frac{\xi_t}{\xi_t} = e^{-r_f(\tau-t)} \quad \text{and} \quad r_f = \left(\Phi(\mu) - \delta \right) - \mu_M
 \]
 - If \(\mu_M = 0 \) \(\Rightarrow s = 0 \quad r_f = g \), bubble can exist
 - If \(\mu_M > 0 \) \(\Rightarrow \) transfers \(\Rightarrow s < 0 \quad r_f < g \), fundamental<0, bubble>0
 - If \(\mu_M < 0 \) \(\Rightarrow \) taxes \(\Rightarrow s > 0 \quad r_f > g \), fundamental only

- w/ aggregate risk similar
 - homework
FTPL and Money Bubbles

FTPL equation:

\[
p_t K_t = \lim_{T \to \infty} \int_t^T E_t \left[\frac{\xi_{\tau}}{\xi_t} s_{\tau} K_{\tau} \right] d\tau + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} p_T K_T \right]
\]

- w/o aggregate risk, \(\sigma = 0 \):

 \[
 \Rightarrow \frac{\xi_{\tau}}{\xi_t} = e^{-r_f (\tau-t)} \text{ and } r_f = (\Phi(\nu) - \delta) - \mu^M
 \]

 - If \(\mu^M = 0 \) \(\Rightarrow s = 0 \) \(r_f = g \), bubble can exist
 - If \(\mu^M > 0 \) \(\Rightarrow \) transfers \(\Rightarrow s < 0 \) \(r_f < g \), fundamental < 0, bubble > 0
 - If \(\mu^M < 0 \) \(\Rightarrow \) taxes \(\Rightarrow s > 0 \) \(r_f > g \), fundamental only

- w/ aggregate risk similar
 - homework

Poll 41: Suppose gov. \(g > 0 \) (and wasted)
 a) Analysis doesn’t change
 b) Only goods market clearing changes
 c) SDF \(\xi_t \) is different, and so is \(r_f \)
FTPL: Resolving Equilibrium Multiplicity

- **Equilibria**
 - Moneyless steady state with $p^0 = 0$
 - Price p_t converges over time to zero (hyperinflation)

- With $\varepsilon > 0$ fiscal backing $p_t > \varepsilon$, these equilibria are eliminated
 \Rightarrow only steady state money equilibrium remains

- Off equilibrium fiscal backing suffices to rule out moneyless and hyperinflation equilibria
 - If after a hypothetical jump into the moneyless equilibrium, one can pay (a small amount) of taxes with money.
 Hence, money is not worthless and the moneyless equilibrium does not exist.
FTPL: Who controls inflation?

- **Monetary dominance**
 - Fiscal authority is forced to adjust budget deficits

- **Fiscal dominance**
 - Inability or unwillingness of fiscal authorities to control long-run expenditure/GDP ratio
 - Limits monetary authority to raise interest rates

- **0/1 Dominance vs. battle:** “dynamic game of chicken”

See [YouTube video 4](https://www.youtube.com/watch?v=4), minute 4:15
The 4 Roles of Money

- **Store of value**
 - “I Theory of Money without I”
 - Less risky than other “capital” – no idiosyncratic risk
 - Fiscal theory of the price level

- **Medium of exchange**
 - Overcome double-coincidence of wants problem

- **Unit of account**

- **Record keeping device**
 - Virtual ledger
Medium of Exchange – Transaction Role

- Overcome double-coincidence of wants

- Quantity equation: \(\varphi_t T_t = \nu M_t \)
Medium of Exchange – Transaction Role

- Overcome double-coincidence of wants

Quantity equation: \(\varphi_t T = \nu M_t \)

- \(\nu \) (nu) is velocity (Monetarism: \(\nu \) exogenous, constant)
- \(T \) transactions
 - Consumption
 - New investment production
 - Transaction of physical capital
 - Transaction of financial claims

\[
\begin{align*}
C & \quad Y \\
iK & \\
d\Delta^k & \\
d\theta^{j \in M} &
\end{align*}
\]
Medium of Exchange – Transaction Role

- Overcome double-coincidence of wants

Quantity equation: \(\varphi_t T_t = \nu M_t \)

- \(\nu \) (nu) is velocity (Monetarism: \(\nu \) exogenous, constant)
- \(T \) transactions
 - Consumption \(C \)
 - New investment production \(iK \) produce own machines
 - Transaction of physical capital \(d\Delta^k \) infinite velocity
 - Transaction of financial claims \(d\theta^j_{i\in M} \) infinite velocity
Models of Medium of Exchange

- Reduced form models
 - Cash in advance
 - Shopping time models
 - Money in the utility function
 - New Keynesian Models
 - No satiation point
 - New Monetary Economics

\[T_t = \nu \frac{M_t}{\theta_t} \]

\[c_t \leq \sum_{j \in M} \nu^j \theta^j n_t \]

\[c = (c^c, l) \]

Only asset with money-like features

For general setting:
see Brunnermeier-Niepelt 2018
Cash in Advance

- **Liquidity/cash in advance constraint**
 - \(c_t \leq \sum_{j \in M} \nu^j \theta^j n_t \)
 - Lagrange multiplier \(\hat{\lambda}_t \)
 - Asset \(j \in M \) which relaxes liquidity/CIA constraint

- **Price of liquid/money asset**

\[
\begin{align*}
p_t^{j \in M} &= E_t \left[\frac{\xi_t + \Delta}{\xi_t} \left(x_{t+\Delta} + p_{t+\Delta} \right) \right] - \hat{\lambda}_t \nu^j p_j^{t \in M} \\
p_t^{j \in M} &= E_t \left[\frac{1}{\xi_t} \frac{1}{1 + \hat{\lambda}_t \nu^j} \left(x_{t+\Delta} + p_{t+\Delta} \right) \right] \\
p_t^{j \in M} &= \lim_{T \to \infty} E_t \left[\sum_{\tau=1}^{(T-t)/\Delta} \frac{\xi_t + \tau \Delta}{\xi_t} \frac{\Lambda^j_{t+\tau \Delta}}{\Lambda^j_t} x_{t+\tau \Delta} \right] + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} \frac{\Lambda^j_T}{\Lambda^j_t} p_T \right]
\end{align*}
\]

As if SDF is multiplied by “liquidity multiplier” (Brunnermeier Niepelt)
Cash in Advance

- Liquidity/cash in advance constraint
 - \(c_t \leq \sum_{j \in M} \nu^j \theta^j n_t \)
 - Lagrange multiplier \(\hat{\lambda}_t \)
 - Asset \(j \in M \) which relaxes liquidity/CIA constraint

\[
p^j_{t\in M} = \lim_{T \to \infty} E_t \left[\int_t^T \frac{\xi_\tau \Lambda^j_{\tau}}{\xi_t \Lambda^j_{t}} x_\tau d\tau \right] + \lim_{T \to \infty} E_t \left[\frac{\xi_T \Lambda^j_T}{\xi_t \Lambda^j_t} p_T \right]
\]

- “Money bubble” easier to obtain due to liquidity service
 - Condition absent aggregate risk: \(r^M < g \) easier to obtain since \(r^M < r^f \)

- HJB approach
 (Problem Set #3)

\[
\mu_t^r,^j = r_t^f + \zeta_t \sigma_t^r,^j + \tilde{\zeta}_t \tilde{\sigma}^r,^j - \lambda_t \nu^j
\]

(Shadow) risk-free rate of illiquid asset

where \(\lambda_t = \hat{\lambda}_t / V'(n_t) \)
Add Cash in Advance to BruSan Model

- Return on money
 - Store of value – as before
 - Liquidity service
 \[\frac{E[dr_t^M]}{dt} = \Phi(\iota_t) - \delta + \mu_t^p + \sigma \sigma_t^p - \mu^M = r^f_t + \zeta_t (\sigma + \sigma_t^p) - \lambda_t v^M \]

- In steady state
 \[\Phi(i) - \delta - \left(\frac{\mu^M - \lambda v^M}{\bar{\mu}^M} \right) = r^f + \zeta \sigma \]

- Solving the model as before ...
 - By simply replace \(\mu^M \) with \(\mu^M - \lambda_t v^M_t \)
 - Special case: \(\bar{\mu}^M = 0 \), i.e. \(\mu^M = \lambda v^M \), \(\gamma = 1 \) ⇒ explicit solution as fcn of \(\zeta \)
 - Same \(q \) and \(p \) as a function of \(\zeta \),
 - But \(\zeta \neq \rho \) if CIA constraint binds in steady state
 - Check:
 1. Assume it binds, i.e. \(\zeta = v \theta \)
 2. Recall from slide 21 for \(\bar{\mu}^M = 0 \) and \(\gamma = 1 \), \(\theta = \frac{\sigma - \sqrt{\zeta}}{\sigma} \)
 3. Equate 1. and 2. to obtain quadratic solution for \(\zeta \)
 1. If \(\zeta < \rho \), then solution equals \(\zeta \)
 2. If \(\zeta > \rho \), then \(\zeta = \rho \) and hence CIA doesn’t bind, \(\lambda = 0 \), above solution

- “Occasionally” binding CIA constraint (outside of steady state)
 since for sufficiently high \(\bar{\sigma} \) agents hold money as store of value (insurance motive)
 \(\Rightarrow \lambda_t = 0 \)

- Money in the utility function is as if constraint always binds, see DiTella (2018)
The 4 Roles of Money

- **Store of value**
 - “I Theory of Money without I”
 - Less risky than other “capital” – no idiosyncratic risk
 - Fiscal theory of the price level

- **Medium of exchange**
 - Overcome double-coincidence of wants problem

- **Unit of account**
 - Benchmark price to have agreed upon/fewer relative prices
 - Price stickiness in New Keynesian Models

- **Record keeping device**
 - Virtual ledger
Extra Slides