Monetary Policy: A New Normal? & The I Theory of Money

Markus K. Brunnermeier
Princeton University

San Francisco Federal Reserve
San Francisco, Nov. 10th, 2014
Stability concepts & interconnections

- **Output (gap)**

 $$E[W(y_t - y^*, \pi_t - \pi^*)]$$

- **Price Stability**

- **Instruments**

 - short-term interest rate
 - unconventional MoPo
Stability concepts & interconnections

- **Output (Gap)**
- **Price Stability**
- **Financial Stability**
- **Fiscal Debt**

\[\text{E}[W(y_t - y^*, \pi_t - \pi^*, \text{risk concentration, sustain.})] \]

- **Instruments**
 - Short-term interest rate
 - Unconventional MoPo
 - Micro-prudential
 - LOLR
 - Fiscal rules
Stability concepts & interconnections

- **Output (Gap)**

 \[E[W(y_t - y^*, \pi_t - \pi^*)] \]

- **Price Stability**

- **Financial Stability**

 risk concentration, sustain.

- **Fiscal Debt**

 The Fiscal Theory of the Price Level

- **Instruments**

 - short-term interest rate
 - unconventional MoPo
 - micro-prudential MoPo
 - LOLR
 - fiscal rules
Stability concepts & interconnections

- **Output (Gap)**
 - **Price Stability**

 \[E[W(y_t - y^*, \pi_t - \pi^*, \text{risk concentration, sustain.})] \]

- **Instruments**
 - short-term interest rate
 - unconventional MoPo
 - macro-prudential
 - fiscal rules
 - LOLR

The Fiscal Theory of the Price Level

Diabolic Loop
- Bank-Sovereign Nexus
Stability concepts & interconnections

- **Output (Gap)**
- **Price Stability**
- **Financial Stability**
- **Fiscal Debt**

\[E[W(y_t - y^*, \pi_t - \pi^*, \text{risk concentration, sustain.})] \]

- **Instruments**
 - short-term interest rate
 - unconventional MoPo
 - macro-prudential
 - fiscal rules
 - LOLR

For complete description:
Brunnermeier Sannikov (2013) “Redistributive MoPo” (Jackson Hole paper)
Financial Stability in the I Theory

\[\Delta \text{price} = f(\Delta E[\text{future cash flows}], \Delta \text{risk premia}) \]

- **Endogenous risk** (dynamics)
 - Amplification
 - Runs

- **Risk premia** (time varying)
 - Term spread: expectations hypothesis fails
 - Credit spread: default risk + risk premium predicts future economic activity

Gilchrist & Zakrajsek

Risk premium news
the main driver
Financial Stability in the I Theory

\[\Delta \text{price} = f(\Delta E[\text{future cash flows}], \Delta \text{risk premia}) \]

- **Endogenous risk** (dynamics)
 - Amplification
 - Runs

- **Risk premia** (time varying)
 - Term spread: expectations hypothesis fails
 - Credit spread: default risk + risk premium predicts future economic activity

Gilchrist & Zakrajsek

Depends on “undercapitalization” of critical sectors

Risk premium news the main driver
Financial Stability in the I Theory

\[\Delta \text{price} = f(\Delta E[\text{future cash flows}], \Delta \text{risk premia}) \]

- **Endogenous risk** (dynamics)
 - Amplification
 - Runs

- **Risk premia** (time varying)
 - Term spread: expectations hypothesis fails
 - Credit spread: default risk + risk premium predicts future economic activity

- **Volatility Paradox**
 - Measured volatility is low when risk builds up (in background)

Gilchrist & Zakrajsek: Risk premium news the main driver

\[\Delta \text{price} = f(\Delta E[\text{future cash flows}], \Delta \text{risk premia}) \]
Financial Stability in the I Theory

\[\Delta \text{price} = f(\Delta E[\text{future cash flows}], \Delta \text{risk premia}) \]

- **Endogenous risk** (dynamics)
 - Amplification
 - Runs

- **Risk premia** (time varying)
 - Term spread: expectations hypothesis fails
 - Credit spread: default risk + risk premium predicts future economic activity

Gilchrist & Zakrajsek

- **Volatility Paradox**
 - Measured volatility is low when risk builds up (in background)

- **Measure** of Topography (distribution) of risk concentration pockets
 - Distribution of **Liquidity Mismatch**

Risk premium news the main driver
Liquidity Mismatch

Technological liquidity
- Reversibility of investment

Market liquidity
- Specificity of capital
- Price impact of capital sale

Funding liquidity
- Maturity structure of debt
- Can’t roll over short term debt
- Sensitivity of margins
- Margin-funding is recalled

Distribution of Liquidity Mismatch (with Gorton & Krishnamurthy)
- Across sector
- Substitutability of sector

- Wealth shifts/undercapitalization likely, also shift risk premia
Risk Build-up Phase – “Volatility Paradox”

- Liquidity mismatch increases during tranquil times

- Intermediation chain often hide overall liquidity mismatch
- Distribution matters: “Topography of Liquidity Mismatch”

Duration of projects
- Long-term irreversible projects
- Austrian element (Hayekian triangle)

Specialization (specificity)
- Low market liquidity
 ⇒ larger fire-sale discount

Debt maturity
- Austenian element
Sectorial analysis

- **Government**
 - Outside money
 - Inside money
 - Equity

- **Banks**
 - Reserves
 - Credit
 - Inside money
 - Equity

- **Households**
 - Real Estate
 - Risky Credit
 - Equity
 - Corporation
 - Factory
 - Risky Credit
 - Equity

- **Savers**

Riskier direct lending/credit
<table>
<thead>
<tr>
<th>“Bare bone” NK Model</th>
<th>I Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction</td>
<td>Price/Wage stickiness</td>
</tr>
<tr>
<td>Manage</td>
<td>Price dispersion</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear around Steady State</td>
<td>Non-linearities</td>
</tr>
<tr>
<td>Transmission mechanism</td>
<td>Euler equation (STABLE)</td>
</tr>
<tr>
<td></td>
<td>Substitution effect</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>“Bare bone” NK Model</td>
<td>I Theory</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Friction</td>
<td>Price/Wage stickiness</td>
</tr>
<tr>
<td>Money/Interest</td>
<td>Interest rate prime focus (moneyless economy)</td>
</tr>
<tr>
<td>Instruments</td>
<td>Interest rate & QE</td>
</tr>
<tr>
<td>Rule</td>
<td>[i_t = \pi_t + r_t^* + \lambda(y_t - y^) + \alpha(\pi_t - \pi^)]</td>
</tr>
<tr>
<td>Long-term interest rate</td>
<td>Expectations hypothesis</td>
</tr>
</tbody>
</table>

\[i_t = \pi_t + r_t^* + \lambda(y_t - y^*) + \alpha(\pi_t - \pi^*) \]

- coefficients of Taylor rule are constant/stable

\[\begin{pmatrix} i_t \\ \pi_t \\ \gamma_t \end{pmatrix} = F \begin{pmatrix} y_t - y^* \\ \pi_t - \pi^* \\ \text{VaR}_t[y_{t+\tau}] \\ \{LM\}^{sector}_t \end{pmatrix} \]
Trade-off: Price vs. Financial Stability

- Induce “financial risk taking” during crisis in order to reduce endogenous risk, contraction & disinflation
 - Precautionary delevering leads to
 - Fire-sale prices
 - Disinflation
 - Liquidity spiral
 - Inefficient due to pecuniary externalities
- Take on “financial risk” to
 - boost economy,
 - reduce endogenous risk (& risk premia)

1. “Stealth” recapitalization of impaired sector (bottleneck)
 - Banking vs. insurance, SMEs,
 - Corporate sector, household,…
2. Make risk-taking attractive
Mainstream: $\text{QE} = \text{interest rate cut below 0}$

Economically relevant duration

Interest rate cut
Interest rate cuts vs. QE/Forward Guidance

- Mainstream: $\text{QE} = \text{interest rate cut below 0}$

Economically relevant duration

τ
Interest rate cuts vs. QE/Forward Guidance

- **Mainstream:** \(\text{QE} = \text{interest rate cut below 0} \)

- **I Theory view:** different distributional implications across and within financial sector
 - banks borrow short and lend long
 - insurance/pension funds companies
 - households – depends on mortgage market

Bottleneck MoPo: Whose balance sheets are impaired?
Inflation Index: Core vs. Headline

- **Empirical view:** “core” is better predictor of future $\pi_{t+\tau}$ - exclude energy since it is mean reverting

- **NK view:** Core excludes less sticky prices - exclude energy since prices are flexibel

- **I Theory view:** price changes cause wealth effect desirable or not? - exclude energy (in Europe) since it causes wealth transfer to middle east/Russia

(Is oil price drop and lowflation bad for Eurozone?)
Conclusions – the “Forgotten Normal”

- Price stability and financial stability are linked
 - Money is created by financial sector
- Monetary policy and Macro-prudential policy interact

- Taylor rule has to be expanded
 - Instruments (LHS of Taylor rule) are multi-dimensional
- I Theory: Wealth/income effects vs. substitution effects
- Financial stability – price stability trade-off:
 More financial risk taking (in crisis), less disinflation
- QE/Forward guidance ≠ interest rate cut (below zero)
- Reinterpretation of Optimal Inflation Index
 - Optimal inflation index depends on which sector is impaired