Financial Dominance
Paolo Baffi Lecture 2015
by
Markus K. Brunnermeier
Princeton University

Banca d’Italia

Roma, Dec. 1st, 2015
Overview

1. Ex-post redistribution of losses & recap
 • To sector with higher “amplification threat”
 ▪ Financial sector’s amplification in 4 Steps
 ▪ Amplifying amplification through “Financial Dominance”

2. Ex-ante risk sharing rules & contingent commitment

3. Government debt
 • Banks as hostage vs. as insurers
 ▪ Doubling up strategy & diabolic loop
 • Role of other investors: “Secondary market dilemma”

4. Financial, fiscal and monetary dominance

5. European Monetary Union & ESBies
1. Re-distribution of losses after crisis erupted

Losses

- **Permanent**
 - Financial sector
 - HH sector
 - Nominal Savers
 - "financial repression"
 - Tax payer

- **Temporary**
 - (Liquidity)

Amplified by
- Liquidity spiral
- Disinflationary spiral
- Keynesian demand (MPCs)
Amplification in Financial Sector

- Technologies b
- Technologies a

The I Theory of Money

- with Yuliy Sannikov
Shock impairs assets: 1st of 4 steps

- Technologies \(b \)
- Technologies \(a \)
Shrink balance sheet: 2nd of 4 steps

- Technologies \(b \)

- Technologies \(a \)
Liquidity spiral: asset price drop: 3rd of 4

- Technologies b
- Technologies a

Switch
Disinflationary spiral: 4th of 4 steps

- Technologies \(b \)

- Intermediaries are hit and shrink their balance sheets inducing
 - Asset side liquidity spiral financial stability
 - Liability side disinflation spiral price stability

- Response of intermediaries to adverse shock leads to endogenous risk due to amplification
“Paradox of Prudence”

- ... in I Theory.

- Each bank is “micro prudent” (deleverages)
 - creates endogenous macro-risk “macro-inprudent”
 - Price process (drift & volatility) are taken as given
 - Pecuniary externality

- Analogy:
 Keynes’ paradox of thrift (levels instead of risk)
 each consumer saves ➞ aggregate income/saving declines
Ex-post Redistribution via Monetary Policy

- (Contingent) redistribution ... towards the banks “stealth recapitalization”

- Adverse shock \Rightarrow value of risky claims drops
- Monetary policy response: cut short-term interest rate
 - Value of long-term bonds (relative to money) \uparrow
 - “stealth recapitalization”
- Liquidity & Deflationary Spirals are mitigated

- Special Role of default-free long-term “safe asset” for MoPo
 - Interest rate policy leads to income/wealth effects (not only substitution effects)

- Refrain from government default
Redistribute via many Routes

- Ex-post redistribution via
 - Monetary policy: change asset prices/exchange rates
 “stealth recapitalization” (income not substitution effects)
 - Inflate away debt
 - Outright default on debt
 - Toughen foreclosure laws
 - Soften private bankruptcy
Redistribute via many Routes

- Ex-post redistribution via
 - Monetary policy: change asset prices/exchange rates “stealth recapitalization” (income not substitution effects)
 - Inflate away debt
 - Outright default on debt
 - Toughen foreclosure laws
 - Soften private bankruptcy

- Financial Dominance
 - Financial sector refuses to recapitalize itself, will try to maximize adverse amplification
 - “being weak is your strength”
 - defense mechanism against financial repression
Redistribute via many Routes

- **Ex-post redistribution via**
 - Monetary policy: change asset prices/exchange rates “stealth recapitalization” (income not substitution effects)
 - Inflate away debt
 - Outright default on debt
 - Toughen foreclosure laws
 - Soften private bankruptcy

- **Financial Dominance**
 - Financial sector refuses to recapitalize will try to maximize adverse amplification
 - “being weak is your strength”
 - defense mechanism against financial repression

Involves government debt

Source: Shin
Redistribute via many Routes

- **Ex-post redistribution via**
 - Monetary policy: change asset prices/exchange rates “stealth recapitalization” (income not substitution effects)
 - Inflate away debt
 - Outright default on debt
 - Toughen foreclosure laws
 - Soften private bankruptcy

- **Financial Dominance**
 - Financial sector refuses to recapitalize will try to maximize adverse amplification
 - “being weak is your strength”
 - defense mechanism against financial repression

Involves government debt
Overview

1. Ex-post redistribution of losses & recap
 • To sector with higher “amplification threat”
 ▪ Financial sector’s amplification in 4 Steps
 ▪ Amplifying amplification through “Financial Dominance”

2. Ex-ante risk sharing rules & contingent commitment

3. Government debt
 • Banks as hostage vs. as insurers
 ▪ Doubling up strategy & diabolic loop
 • Role of other investors: “Secondary market dilemma”

4. Financial, fiscal and monetary dominance

5. European Monetary Union & ESBies
Ex-ante: Rule – Contingent Commitment

- **Ideal Rule** (e.g. monetary rule):
 - Distribute to “bottleneck” (balance sheet impaired sector)
 - Improves risk sharing/insurance
 - reduces amplification
 - endogenous risk
Ex-ante: Rule – Contingent Commitment

- **Ideal Rule** (e.g. monetary rule):
 - Distribute to “bottleneck” (balance sheet impaired sector)
 - Improves risk sharing/insurance
 - reduces amplification /endogenous risk
Ex-ante: Rule – Contingent Commitment

- **Ideal Rule** (e.g. monetary rule):
 - Distribute to “bottleneck” (balance sheet impaired sector)
 - Improves risk sharing/insurance
 - reduces amplification
 - endogenous risk

- **Problems:**
 1. Insurance alters behavior
 - Moral hazard
 2. Time-inconsistent rule
 How to commit to it?
Contingent Commitment Challenge

<table>
<thead>
<tr>
<th>Ex-ante</th>
<th>Interim</th>
<th>Ex-post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gov. promises to limit ex-post redistributions (only risk sharing)</td>
<td>Strategic positioning</td>
<td>Redistribution of losses, MoPo, bail-outs</td>
</tr>
</tbody>
</table>

Time-inconsistency

- **Ex-ante**: promise limited redistribution to keep interest rate low
- **Ex-post**: redistribute too much

Financial dominance

- Pay out dividend
- Invest in gov. bonds (crowds out real lending)
- Deflationary spiral

Benefits sector that can cause most severe amplifications
Overview

1. Ex-post redistribution of losses & recap
 - To sector with higher “amplification threat”
 - Financial sector’s amplification in 4 Steps
 - Amplifying amplification through “Financial Dominance”

2. Ex-ante risk sharing rules & contingent commitment

3. Government debt
 - Banks as hostage vs. as insurers
 - Doubling up strategy & diabolic loop
 - Role of other investors: “Secondary market dilemma”

4. Financial, fiscal and monetary dominance

5. European Monetary Union & ESBies

- Dual role of contingent debt
 - Liquidity: Smooth temporary shocks over time
 - Tax smoothing
 - Keynesian stimulus
 - Solvency: Risk sharing permanent shocks over states of nature
 - Through MoPo
 - Through default

- Time-consistency + risk sharing problem
 - Ex-ante:
 - promise to repay in states above a certain cut off
 - (partially) default in “crisis states”
 - Ex-post:
 - Excessive default

- Contingent commitment vs. “straightjacket commitment”
Government Debt: Toy Model

- $t = 1$ Refinance outstanding debt (from $t = 0$)
 - Determines face value of new debt
 - Default costs

- $t = 2$ uncertainty realizes -- state space
 1. $x = \text{GDP: Economic activity – income of citizens}$
 2. $\bar{x} = \text{Primary surplus: absent austerity measures/extra taxes}$

- Repay debt
- Extra austerity measures/taxes to cover shortfall
- Default decision
Government Debt

- Limited commitment: verification cost
- Risk-neutral investors

\begin{align*}
\text{Payoff of debt claim in } t = 2 &= \frac{1}{x} \\
\text{Face value} &= 1
\end{align*}
Government Debt

- Limited commitment: verification cost
- Risk-neutral investors

\[
\text{Payoff of debt claim in } t = 2 = \frac{1}{\bar{x}} \times (1 - \text{default probability})
\]
Government Debt

- Limited commitment: verification cost
- Risk-neutral investors

Contingent debt
 - Partial default in bad states

Payoff of debt claim in $t = 2$

Face value vs. Tax revenue (normal regime)

Verification cost
Government Debt

- Limited commitment: verification cost
- Risk-neutral investors

\[\text{Face value} = \frac{1}{x} \]

\[\text{Tax revenue (normal regime)} = \frac{1}{x} \]

\[\text{Payoff of debt claim in } t = 2 \]

\[\text{Refinancing Potential } t = 1 \]
Government Debt

- Limited commitment: verification cost
- Risk-neutral investors

\[\text{Face value} \]

\[\text{Tax revenue (normal regime)} \]

\[\text{Face value} \]

\[\frac{1}{x} \]

\[\text{Verification cost} \]

\[\text{Default probability} \]

\[\text{Payoff of debt claim in } t = 2 \]

\[\text{Refinancing Potential } t = 1 \]
Government Debt

- Limited commitment: verification cost
- Risk-neutral investors
Government Debt

- Limited commitment: verification cost
- Risk-neutral investors

\[
\text{Refinancing Potential } t = 1
\]

\[
\text{Face value}
\]

Payoff of debt claim in \(t = 2 \)

\[
\text{Face value}
\]

\[
\text{Tax revenue (normal regime)}
\]

\[
\text{0}
\]

\[
\text{Verification cost}
\]

\[
\text{In default probability}
\]

\[
\text{Tax revenue (normal regime)}
\]

\[
\text{0}
\]

\[
\frac{1}{x}
\]

\[
\text{1} / x
\]

\[
\text{solvent}
\]

\[
\text{illiquidity}
\]

\[
\text{insolvent}
\]
Government Debt

- Limited commitment: verification cost
- Risk-neutral investors

\[
\text{Payoff of debt claim in } t = 2
\]

\[
\text{Face value}
\]

\[
\text{Verification cost}
\]

\[
\text{Tax revenue (normal regime)}
\]

\[
\text{Refinancing Potential } t = 1
\]

\[
\text{Face value}
\]

\[
\text{1 + } r^B
\]

\[
\text{solvent}
\]

\[
\text{illiquidity}
\]

\[
\text{insolvent}
\]
“Straight Jacket” Commitment

\[
\frac{1}{x} \rightarrow 0
\]

Tax revenue (normal regime)

Face value
"Straight Jacket" Commitment

- Refinancing Potential $t = 1$
- No liquidity problem
- solvent
- insolv.
- always liquidity
“Straight Jacket” Commitment

- ... but tax short-fall
- Needs to raise taxes/austerity: distortionary costs

1 \over x \times 1

Face value

but.... shortfall

Refinancing Potential \ t = 1

No liquidity problem

always liquidity

in catastrophe states
“Straight Jacket” Commitment

- Shortfall needs to be financed through
 - Austerity measures
 - Emergency tax hikes

\[\tau(x - F) \]

- For very low realizations of \(x \) these costs might go to infinity

No liquidity problem
How can Financial Sector Help?

1. Offer itself as **hostage** for commitment device to repay financial dominance is helpful ...
 - Impose “default cost” C on citizens
 - x, i.e. GDP, declines as banking sector goes into tailspin
 - History: Bank of England
 - But government has to
 - Pay in addition to bail out banking sector
 - Banking sector kills real sector, gov. debt crowds out real loans

2. Provide insurance against
 - Rollover risk
 - Solvency risk

only achievable if banks have sufficient loss absorption capacity financial dominance rules this out
“Straight Jacket” Commitment

- Default if austerity costs + repayment exceed $C + x$
 - Default if $\tau(x - F) + F > C + x$
Diabolic Loop

- Trigger: fiscal or financial

- Financial dominance increases commitment costs!
“Bank Hostage” Commitment

- Default if austerity costs + repayment exceed $C + x$
 - Default if $\tau(x - F) + F > C + x$
- Financial dominance increase commitment costs C
“Bank Hostage” Commitment

- Default if austerity costs + repayment exceed $C + x$
 - Default if $\tau(x - F) + F > C + x$
- Increase commitment costs C

Lower default probability
“Bank Hostage” Commitment

- Default if austerity costs + repayment exceed $C + x$
 - Default if $\tau(x - F) + F > C + x$

- Increase commitment costs C

- Lower default probability
- Lower verification cost
- Lower face value F
- Interest rate

Diagram:
- $\tau(x - F)$
- $C + x - F$
- F
- $1/x$
- x

Default austerity
“Bank Hostage” Commitment

- Default if austerity costs + repayment exceed $C + x$
 - Default if $\tau(x - F) + F > C + x$
- Increase commitment costs C

Graphically:
- Lower default probability
- Lower verification cost
- Lower face value F
- Lower interest rate

Again:
- Lower default probability

Diagram:
- $\tau(x - F)$
- $C + x - F$
- $1/x$
- x
- Default austerity
“Bank Hostage” Commitment

- Default if austerity costs + repayment exceed $C + x$
 - Default if $\tau(x - F) + F > C + x$

- Increase commitment costs C

- Default prob ↓, but if: higher cost C & higher austerity τ

- “doubling up strategy”

- Lower default probability
- Lower verification cost
- Lower face value F
- Lower interest rate

Again
- Lower default probability
Diabolic Loop 2 overturns argument!

- Less lending to real economy
- GDP and tax revenue, \(x \), declines
Diabolic Loop 2

- Default if austerity costs + repayment exceed $C + x$
 - Default if $\tau(x - F) + F > C + x$
- Increase commitment costs C

\[\text{Default if austerity costs + repayment exceed } C + x \]
\[\text{Increase commitment costs } C \]
Diabolic Loop 2

- Default if austerity costs + repayment exceed $C + x$
 - Default if $\tau(x - F) + F > C + x$
- Increase commitment costs C

\[\tau(x - F) \]

\[C + x - F \]

\[1/x \]

- Lowers GDP, x
- Default probability rises

default austerity
Diabolic Loop 2

- Default if austerity costs + repayment exceed $C + x$
 - Default if $\tau (x - F) + F > C + x$
- Increase commitment costs C

- Lowers GDP, x
- Default probability rises
- Verification costs rise
- Face value F rises
- Interest rate rises
Diabolic Loop 2

- Default if austerity costs + repayment exceed $C + x$
 - Default if $\tau(x - F) + F > C + x$
- Increase commitment costs C

2nd “GDP Diabolic Loop” can undo all the benefits
 - Bank hostage is not even a doubling up strategy

\[C + x - F \]
\[\tau(x - F) \]
“Bank Hostage” Commitment

- Extremely high commitment cost C due to financial dominance
 - “straight jacket commitment”

- Reduces illiquidity problems

- Lower default prob., lower interest rate, but if failure then much worse “doubling up strategy”

- &... but 2nd Diabolic Loop goes in opposite direction

- No safety valve
... but can other investors help?

“Secondary markets dilemma”

- Selling government debt to foreign investors
- Selling government debt to voters

Before crisis gov.-debt always travels back to weak banks!

- Only way out: avoid financial dominance
 - MacroPru to ensure equity cushion of banks is large enough
How can Financial Sector Help?

1. Offer itself as hostage for commitment device to repay financial dominance is helpful ...
 - Impose “default cost” C on citizens
 - x, i.e. GDP declines as banking sector goes into tailspin
 - But government has to
 - Pay in addition to bail out banking sector
 - Banking sector kills real sector, gov. debt crowds out real loans

2. Provide insurance against
 - Rollover risk
 - Solvency risk

 only achievable if banks have sufficient loss absorption capacity
 → financial dominance rules this out
 - Sensible MacroPru regulation needed
Overview

1. Ex-post redistribution of losses & recap
 • To sector with higher “amplification threat”
 ▪ Financial sector’s amplification in 4 Steps
 ▪ Amplifying amplification through “Financial Dominance”

2. Ex-ante risk sharing rules & contingent commitment

3. Government debt
 • Banks as hostage vs. as insurers
 ▪ Doubling up strategy & diabolic loop
 • Role of other investors: “Secondary market dilemma”

4. Financial, fiscal and monetary dominance

5. European Monetary Union & ESBies
Interaction with Fiscal & Monetary Dominance

- Overcommitment problem

1. Split government in different authorities
2. Macro Pru & banks/investors share risk vs. straight jacket commitment
 - Strict rules for financial sector
 - Other commitments (fiscal risk sharing)
3. Both safe asset & contingent debt is needed
 - “squaring a circle”?
Institutional design: split authorities

Fiscal authority split Central Bank

0/1-Dominance vs. battle: “dynamic game of chicken”
0/1-Dominance vs. battle: “dynamic game of chicken”

- Monetary dominance
 - Fiscal authority is forced to adjust budget deficits

- Fiscal dominance
 - Inability or unwillingness of fiscal authorities to control long-run expenditure/GDP ratio
 - Limits monetary authority to raise interest rates
Institutional Design: Financial Dominance

- **Monetary dominance**
 - Fiscal authority is forced to adjust budget deficits

- **Fiscal dominance**
 - Inability or unwillingness of fiscal authorities to control long-run expenditure/GDP ratio
 - Limits monetary authority to raise interest rates

- **Financial dominance**
 - Inability or unwillingness of financial sector to absorb losses
 - Refusal to issue no equity – pay out dividends in early phase of crisis
Institutional Design: 2^\text{nd} \ Game of Chicken

- **Monetary dominance**
 - Fiscal authority is forced to adjust budget deficits

- **Fiscal dominance**
 - Inability or unwillingness of fiscal authorities to control long-run expenditure/GDP ratio
 - Limits monetary authority to raise interest rates

- **Financial dominance**
 - Inability or unwillingness of financial sector to absorb losses
 - Refusal to issue no equity – pay out dividends in early phase of crisis
Overview

1. Ex-post redistribution of losses & recap
 • To sector with higher “amplification threat”
 ▪ Financial sector’s amplification in 4 Steps
 ▪ Amplifying amplification through “Financial Dominance”

2. Ex-ante risk sharing rules & contingent commitment

3. Government debt
 • Banks as hostage vs. as insurers
 ▪ Doubling up strategy & diabolic loop
 • Role of other investors: “Secondary market dilemma”

4. Financial, fiscal and monetary dominance

5. European Monetary Union & ESBies
European Context

- **Straightjacket commitment**
 - No inflation valve
 - No exchange rate valve
 - Cross-border Flight to safety capital flows

- **How can government debt be both?**
 - Safe asset (without default)
 - To smooth out temporary liquidity shortage, allow for Keynesian stimulus
 - Insurance instrument
 - To risk share extreme crisis states (Greece, ...)

ESBies
- Pool
- Split into two classes
 - Safe
 - Defaultable
European Context

- Straightjacket commitment
 - No inflation valve
 - No exchange rate valve
 - Cross-border Flight to safety capital flows

- How can government debt be both?
 - Safe asset (without default)
 - To smooth out temporary liquidity shortage, allow for Keynesian stimulus
 - Insurance instrument
 - To risk share extreme crisis states (Greece, ...)

- ESBies
 - Pool
 - Split into two classes
 - Safe
 - Defaultable

A sovereign bonds L
 | ESBies
 | Junior Bond
Flight to safety

- Today: asymmetric shifts **across borders**
 - Value of German debt decreases
 - German CDS spread rises, but yield on bund drops (flight to quality)
 - Value of Italian/Spanish/Greek... sovereign debt declines
Flight to safety

- Today: asymmetric shifts across borders
 - Value of German debt decreases
 - German CDS spread rises, but yield on bund drops (flight to quality)
 - Value of Italian/Spanish/Greek... sovereign debt declines
- With ESBies: Negative co-movement across tranches
 - Value of ESBies expands – due to flight to quality
 - Value of Junior bond shrinks – due to increased risk
 - Asset side is more stable

Flight to safety asset is endogenous (coordination problem)
Conclusion

1. Ex-post redistribution of losses & recap
 • To sector with higher “amplification threat”
 ▪ Financial sector’s amplification in 4 Steps
 ▪ Amplifying amplification through “Financial Dominance”

2. Ex-ante risk sharing rules & contingent commitment
 • Straight jacket commitment removes safety valve

3. Government debt
 • Banks as hostage vs. as insurers
 ▪ Over-commitment due to financial dominance
 ▪ Doubling up strategy & diabolic loop
 • Role of other investors: “Secondary market dilemma”

4. Financial, fiscal and monetary dominance

5. European Monetary Union & ESBies