On the Optimal Inflation Rate

by

Markus K. Brunnermeier & Yuliy Sannikov

Princeton University
Motivation

- What should the (long-run) optimal inflation rate be?

- What role do financial frictions play?
 - Can financial frictions destroy the superneutrality of money?

- Should emerging markets, with less developed financial markets, have a higher inflation rate/target?
Inflation Target

Table 4.1. Inflation Targeters

<table>
<thead>
<tr>
<th>Emerging market countries</th>
<th>Inflation Targeting Adoption Date(^1)</th>
<th>Unique Numeric Target = Inflation</th>
<th>Current Inflation Target (percent)</th>
<th>Forecast Process</th>
<th>Publish Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Israel</td>
<td>1997:Q2</td>
<td>Y</td>
<td>1–3</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1998:Q1</td>
<td>Y</td>
<td>3 (+/-1)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Korea</td>
<td>1998:Q2</td>
<td>Y</td>
<td>2.5–3.5</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Poland</td>
<td>1999:Q1</td>
<td>Y</td>
<td>2.5 (+/-1)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Brazil</td>
<td>1999:Q2</td>
<td>Y</td>
<td>4.5 (+/-2.5)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Chile</td>
<td>1999:Q3</td>
<td>Y</td>
<td>2–4</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Colombia</td>
<td>1999:Q3</td>
<td>Y</td>
<td>5 (+/-0.5)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>South Africa</td>
<td>2000:Q1</td>
<td>Y</td>
<td>3–6</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Thailand</td>
<td>2000:Q2</td>
<td>Y</td>
<td>0–3.5</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Mexico</td>
<td>2001:Q1</td>
<td>Y</td>
<td>3 (+/-1)</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Hungary</td>
<td>2001:Q3</td>
<td>Y</td>
<td>3.5 (+/-1)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Peru</td>
<td>2002:Q1</td>
<td>Y</td>
<td>2.5 (+/-1)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines</td>
<td>2002:Q1</td>
<td>Y</td>
<td>5–6</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industrial countries</th>
<th>Inflation Targeting Adoption Date(^1)</th>
<th>Unique Numeric Target = Inflation</th>
<th>Current Inflation Target (percent)</th>
<th>Forecast Process</th>
<th>Publish Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Zealand</td>
<td>1990:Q1</td>
<td>Y</td>
<td>1–3</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Canada</td>
<td>1991:Q1</td>
<td>Y</td>
<td>1–3</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1992:Q4</td>
<td>Y</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Australia</td>
<td>1993:Q1</td>
<td>Y</td>
<td>2–3</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Sweden</td>
<td>1993:Q1</td>
<td>Y</td>
<td>2 (+/-1)</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2000:Q1</td>
<td>Y</td>
<td><2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Iceland</td>
<td>2001:Q1</td>
<td>Y</td>
<td>2.5</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Norway</td>
<td>2001:Q1</td>
<td>Y</td>
<td>2.5</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Source: IMF, WEO, Sept. 2005
Literature

- **Money as store of value = bubble**

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>investment risk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Only money</th>
<th>Samuelson</th>
<th>Bewley</th>
</tr>
</thead>
<tbody>
<tr>
<td>With capital</td>
<td>Diamond</td>
<td>Aiyagari</td>
</tr>
</tbody>
</table>

Risk tied up with individual capital
Literature

- **Money as store of value = bubble**

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk, borrowing constraint, investment risk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Only money</th>
<th>Samuelson</th>
<th>Bewley</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>With capital</th>
<th>Diamond</th>
<th>Aiyagari</th>
<th>Angeletos (q = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dynamic inefficiency</td>
<td>capital shock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inefficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(r < r^, K > K^)</td>
<td></td>
</tr>
</tbody>
</table>

- depends on price of capital \(q \)
Literature

- Money as store of value = bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>investment risk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Only money</th>
<th>Samuelson</th>
<th>Bewley</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Basic “I Theory”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cash flow shock</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>With capital</th>
<th>Diamond</th>
<th>Aiyagari</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pecuniary externality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inefficiency</td>
</tr>
<tr>
<td>f'(k*) = r*</td>
<td></td>
<td>r > r*, K < K*</td>
</tr>
<tr>
<td>Dynamic inefficiency</td>
<td>Inefficiency</td>
<td></td>
</tr>
<tr>
<td>r < r*, K > K*</td>
<td>r < r*, K > K*</td>
<td></td>
</tr>
<tr>
<td>r^m = g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brunnermeier & Sannikov: Optimal Inflation Rate
Main results

- HH portfolio choice
 - Physical capital: w/ idiosyncratic risk + dividend
 - Money: w/o idiosyncratic risk + no dividend (bubble)
 - Tilted inefficiently towards money

- Money growth ⇒ inflation ⇒ “tax on money”
- ⇒ lowers real interest rate ⇒ tilts portfolio choice
- ⇒ boosts physical investment ⇒ higher economic growth
- ⇒ raises real interest rate (partially undoes inflation tax)

- Pecuniary externality:
 - individual households do not take this GE effect into account.
 - Planner who can print money and distribute seignorage can improve growth + Pareto welfare.

- Derive optimal money growth rate/inflation rate
Model setup

- In each period j
 - HH enters with physical capital k_t & nominal money m_t
 - Produce output $A k_t \Delta t$
 - Real cash flow shock $z_j = \sigma \varepsilon_j k_j \sqrt{\Delta t}$
 - Transfer from government τw (proportional to wealth)
 - Decide
 - Investment rate ι
 - Adjustment cost function $\Phi(\iota) = \frac{1}{\kappa} \log(1 + \kappa \iota)$
 - Portfolio & consumption choice
 - Purchase/sell physical capital $x^k_j = \text{portfolio share}$
 - Consume c_j

\[
\max_{\{c_j,k_{j+1},m_{j+1},\iota_j\}} \mathbb{E} \left[\sum_{j=0}^{\infty} \left(\frac{1}{1 + \rho \Delta t} \right)^j \log c_j \cdot \Delta t \right]
\]
Model setup

- Consumption good is numeraire
- q price of physical capital
 real value of all physical capital qK_j
- p real value of all nominal wealth pK_j

- M_j aggregate nominal money supply
 - grows at a rate μ
 - Seignorage income is $\frac{\mu \Delta t}{1+\mu \Delta t} pK_j$
- $\varphi_j := \frac{M_j}{pK_j}$ is the price level
Model setup

- Consumption good is numeraire
- q price of physical capital
 - real value of all physical capital qK_j
- p real value of all nominal wealth pK_j

- M_j aggregate nominal money supply
 - grows at a rate μ policy variable of government
 - Seignorage income is $\frac{\mu \Delta t}{1+\mu \Delta t} pK_j$
- $\phi_j := \frac{M_j}{pK_j}$ is the price level
Model setup

- HH’s budget constraint

\[(c_j + \nu_j k_j)\Delta t + qk_{j+1} + \frac{m_{j+1}}{p_j} =
\]

\[Ak_j\Delta t + z_j + q(1 + (\Phi(\nu_j) - \delta)\Delta t)k_j + R_{j-1}m_j \frac{m_j}{p_{j-1}} + \tau w_j\]

- Government’s budget constraint
 - Seignorage income

\[S_j := \frac{M_j - M_{j-1}}{M_j}pK_j = \left(1 - \frac{1}{1 + \mu\Delta t}\right)pK_j = \frac{\mu\Delta t}{1 + \mu\Delta t}pK_j.\]

 - Distribution through transfers \(\tau\)

\[\frac{w_j}{(p + q)K_j}S_j = \frac{p}{p + q} \frac{\mu\Delta t}{1 + \mu\Delta t}w_j =: \tau\]
Optimality conditions

- Optimal investment rate \(\iota^* \)
 \[q = \frac{1}{\Phi'(\iota^*)} = 1 + \kappa \iota^* \]
 Tobin’s q

- Optimal consumption
 \[c^* = \frac{\rho}{1+\rho\Delta t} w' \]
 due to log utility
 - Where \(w' = R^k q k + R^m m + \tau w \) wealth just prior to consumption
 - \(R^k = 1 + \left(\frac{A-\iota^* + \Phi(\iota^*) - \delta}{q} \right) \Delta t + \frac{\sigma \varepsilon \sqrt{\Delta t}}{q} \) “capital return”
 - \(R^m = \frac{1 + g \Delta t}{1 + \mu \Delta t} = 1 + \frac{g - \mu}{1 + \mu \Delta t} \Delta t \) “money return”
 - \(R^p(x^k) := x^k R^k + (1 - x^k) R^m + \tau \) “portfolio return”

- Optimal Portfolio
 \[
 \max_{x^k} \frac{1}{1+\rho\Delta t} \alpha_1 E[\log R^p(x^k)]
 \]
 \[
 E[\log R^p(x^k)] = E\left[\left(R^p(x^k) - 1 \right) - \frac{1}{2} (R^p(x^k) - 1)^2 \right] + o(\Delta t) =
 \approx \left(\Phi(\iota^*) - \delta - \frac{q}{p+q} \mu + x^k \left(\frac{A - \iota^*}{q} + \mu \right) - \frac{1}{2} \left(x^k \right)^2 \frac{\sigma^2}{q^2} \right) \Delta t
 \]
 \[x^k = q (A-\iota^*) \frac{\sigma^2}{q^2} + q^2 \mu \frac{\sigma^2}{\sigma^2} \]
Market clearing conditions

- **Goods market**
 - \(AK_j \Delta t = i^* K_j \Delta t + \frac{\rho}{1 + \rho \Delta t} W_j' \Delta t \)
 - \((A - i^*) \Delta t = \rho [\Delta t + (\Phi(i^*) - \delta)(\Delta t)^2](p + q)\)
 - \(A - i^* = \rho (p + q) \) for \(\Delta t \to 0 \)

- **Capital market**
 - \(\frac{x^k W_j}{q} = K_j \Rightarrow q \frac{K_j}{W_j} x^k = \frac{q(A-i^*)}{\sigma^2} + \frac{q^2 \mu}{\sigma^2} \)
 - \(\frac{1}{p+q} = \frac{A-i^*}{\sigma^2} + \frac{q \mu}{\sigma^2} \)

- **Money market**
 - clears by Walras law
Equilibrium

- Collecting the three equations:

 \[q = 1 + \kappa \iota^* \]
 \[\rho(p + q) = A - \iota^* \]
 \[\frac{\sigma^2}{q + p} = A - \iota^* + q\mu \]

- Equilibrium solved in terms of \(\hat{\mu} := x^k\mu \) (monotone transformation)

 \[p = \frac{\sigma(1 + \kappa \rho)}{\sqrt{\rho + \hat{\mu}}} - (1 + \kappa A) \]
 \[q = 1 + \kappa A - \frac{\kappa \rho \sigma}{\sqrt{\rho + \hat{\mu}}} \]
 \[\iota^* = A - \rho \frac{\sigma}{\sqrt{\rho + \hat{\mu}}} \]

Closed form!
Welfare

- Plug in FOC in value function
- Plug in equilibrium
- All households start symmetrically

- Expected Utility of an individual household

\[
V = V_0 + \frac{1}{\kappa} \log \left(1 + \kappa A - \frac{\kappa \rho \sigma}{\sqrt{\rho + \hat{\mu}}} \right) - \delta + \rho - \frac{1}{2} (\rho + \hat{\mu}) \frac{\log \left(\frac{\sigma}{\sqrt{\rho + \hat{\mu}}} \right)}{\rho}.
\]

Closed form!
Optimal inflation rate

- Money growth μ affects (steady state) inflation in two ways

 $$\pi = \mu - \left(\Phi(i^*(\mu)) - \delta \right)$$

- Proposition:
 - If $\frac{\sigma}{\sqrt{\rho}} > \frac{2(A\kappa+1)}{1+2\kappa\rho}$, welfare maximizing money growth rate $\mu^* > 0$.
 - Market outcome is not even constrained Pareto efficient
 - Economic growth rate, $g > r^m$, is also higher
 - Growth maximizing $\mu^{g*} \geq \mu^*$, s.t. $p^{g*} = 0$, Tobin (1965)
 $$i^* = A - \rho \frac{\sigma}{\sqrt{\rho} + \mu} \text{ increasing in } \hat{\mu}$$

- Corollary: No super-neutrality of money
 - Nominal money growth rate affects real economy
 - No price/wage rigidity, no monopolistic competition
Proposition: (comparative static)

- μ^* does not depend on depreciation rate δ, but inflation does.
- μ^* is strictly increasing in idiosyncratic risk σ.

“Emerging markets should have higher inflation target.”
Conclusion: our 3 initial questions

- What should the (long-run) optimal inflation rate be?
 - Competitive market outcome is constrained Pareto inefficient.
 - Inflation is Pigouvian & internalizes pecuniary externality!
 - HH take real interest rate as given, but
 - Portfolio choice affects economic growth and real interest rate

- What role do financial frictions play?
 - incomplete markets \Rightarrow no superneutrality of money
 - No price/wage rigidity needed

- Emerging markets, with less developed financial markets, should have higher inflation rate/target
 - Higher idiosyncratic risk \Rightarrow higher pecuniary externality