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Abstract

The “reversal interest rate” is the rate at which accommodative monetary policy

“reverses” its intended effect and becomes contractionary for the economy. It occurs

when recapitalization gains from duration mismatch are more than offset by decreases

in net interest margins, lowering banks’ net worth and tightening its capital constraint.

The determinants of the reversal interest rates are (i) banks asset holdings with fixed

(non-floating) interest payments, (ii) the strength of the constraints that they face,

(iii) the degree of interest rate pass-through to deposit rates, and (iv) the initial cap-

italization of banks. Furthermore, quantitative easing increases the reversal interest

rate and hence should only be employed after interest rate cut is exhausted. Over time

the reversal interest rate creeps up, since the capital gains effect fades out as long-

term bonds holdings mature while the net interest margin effect does not. Finally, we

calibrate a New Keynesian model which embeds our banking model.
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1 Introduction

In most New Keynesian models, the transmission of monetary rates into deposit and lending

rate is perfect. The economy enters a liquidity trap as policy rates approach zero only

because of an exogenously assumed zero lower bound. This assumption has been questioned,

especially since a growing group of central banks – the Bank of Japan, the ECB, the Swiss

National Bank, the Swedish Riksbank and Danmarks Nationalbank – have set negative

interest rates.

This motivates the broader question: what is the effective lower bound on monetary

policy? Given that subzero rates are technically feasible, we argue in this paper that the

effective lower bond is given by the “reversal interest rate”, the rate at which accommodative

monetary policy “reverses” its effect and becomes contractionary for output. Below the “re-

versal interest rate”, a decrease in the monetary policy rate depresses rather than stimulates

the economy.

Importantly, the reversal interest rate is not (necessarily) zero. Hence, unlike what some

commentators suggest, negative interest rates are not fundamentally different. In our model,

when the reversal interest rate is positive, say 1 %, then a policy rate cut from 1% to 0.9%

is already contractionary. On the other hand, if the reversal interest rate is -1 %, there is

room to go negative up to that point.

The exact level of the reversal interest rate depends on macro-prudential policy, especially

financial regulation, as well as other parameters of the economic environment and financial

sector’s balance variables. Restrictive financial regulation in bad times can undermine mon-

etary policy or render it ineffective. Further determinants of the reversal interest rate in our

model include banks’ equity capitalization, banks’ interest rate exposure, banks’ liquidity

constraints, the market structure of the financial sector, and the elasticity of deposit rates.

Quantitative easing (QE) increases the reversal interest rate, as it takes fixed income out

of the balance sheets of the banks. In that sense, QE should only employed after interest

rate cuts are exhausted.

In our multi-period partial equilibrium extension, the path of policy rates that is most

stimulatory has rates increasing over time. This is because effects on net interest income

(NII) are negative and cumulate every period, while capital gains fade out over time, making

the path of optimal rates “creeps up”. In other words, exceedingly long low interest rate

environments can depress lending in this setting.

Our reversal interest rate existence result continues to hold in general equilibrium. We
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embed our banking model in an otherwise standard New-Keynesian model and show that a

reversal rate still obtains quantitatively, whose magnitude depends on the calibration of the

model. With sticky prices an interest cut triggers a demand boost. This accommodating

force also raises banks’ interest income and hence lowers the reversal interest rate, but not

enough to prevent its existence.

In our two-period model, we identify three channels to determine how an interest rate

cut by the central bank affect banks’ profits, equity and credit growth.

First, banks with long-term legacy assets with fixed interest payments benefit from a

policy interest rate cut. As the central bank lowers the interest rate, banks can refinance

their long-term assets at a cheaper rate. This increases the value of their equity; they are

better capitalized, which relaxes their regulatory or economic constraint. Viewed differently,

banks’ fixed interest rate holdings experience capital gains. Hence, an interest rate cut

is essentially a “stealth recapitalization” of the banks, as stressed in Brunnermeier and

Sannikov (2016)’s “I Theory of Money”.

Second, a lower policy rate negatively affect banks’ profits on new business, through

lowering banks’ net interest margins. In the hypothetical case of a perfectly competitive

financial sector without frictions, any monetary policy rate cut is passed through fully to

the deposit and loan rate. Lower loan rates then lead to increased credit growth, and

the real economy expands. Since profits from margin business are fully competed away –

except for an eventual risk premium –, they are always zero and are not affected by rates

changes. Hence banks with legacy asset holdings with fixed interest rates unambiguously

benefit from an interest rate cut. In the real world, however, financial markets are not

perfectly competitive and banks have market power. In our baseline model the banking

sector grants risky loans, holds safe assets (in form of safe bonds and reserves) and issues

bank deposits as well as equity. Importantly, we assume that banks’ have market power over

their ability to grant loans and raise deposits. When a central bank cut the interest rate,

the yield on safe assets and reserves goes down. As a consequence, the marginal benefit from

raising deposits decreases, which leads the banks’ to decrease deposit rates, inducing the

desired substitution effect on depositors that the central bank seeks. Overall, however, the

banking sector is hurt on its deposit business, since the marginal benefit from its investments

decreases; the decrease in the deposit rate is only a typical quantity restriction a monopsonist

imposes following a decline in the marginal benefit of lending. Furthermore, as yields on safe

assets decrease, banks’ decrease their lending rates for risky loans in order to substitute their

safe assets positions into riskier high-yield ones, another effect which the central bank seeks
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to induce. This decrease in the lending rate, although optimal, participates in the overall

decline of bank profits.

Third, the change in profits induced by lower policy rates can feed back into lending. In

our model, as in reality, the risk-taking ability of the banking sector is constrained by its

net worth. If the latter is high enough so that the constraint does not bind, or if capital

gains are strong enough to actually increase net worth, then an interest cut generates the

boom in lending that the central bank seeks to induce. However, if capital gains are too low

to compensate the loss in net interest income, net worth decreases to the point where the

constraint binds, limiting banks’ ability to take on risk. At that point, i.e. at the reversal

interest rate, any further interest cuts generate a decline in lending though the net-worth

feedback. Moreover, an interesting amplification mechanism emerges. As the negative wealth

effect further tightens banks’ equity constraint, banks cut back on their credit extension and

are forced to increase their safe asset holdings. As safe assets yield lower returns, banks’

profits decline even more, forcing banks to substitute out of risky loans into safe assets,

which in turn lowers their profit, and so on.

We then uncover the determinants of the reversal interest rate in our baseline model. The

reversal interest rate depends on bank assets interest rate exposure, the tightness of financial

regulation, as well as the market structure of the banking sector. If banks hold more long-

term bonds and mortgages with fixed interest, the “stealth recapitalization” effect due to

an interest rate cut is more pronounced, and the reversal interest rate is lower. Stricter

capital requirements rise the reversal interest rate. Lower market power, which decreases

profits, also generates a higher reversal interest rate. For example, in a negative interest rate

environment, innovations that allow depositors to substitute bank accounts for cash more

easily hurt the banks’ margins and raise the reversal interest rate; if such innovation occurs

below the reversal interest rate, it directly feeds back into lower lending. We also find that

our baseline model has important implications for the timing and sequencing of Quantitative

Easing measures (QE). The optimal sequencing is the following. First, induce banks (possibly

through favorable refinancing operations) to hold long-term bonds with a fixed interest rate;

second, cut the policy interest rate to generate capital gains for a “stealth recapitalization” of

the banking sector; third, conduct QE and lift the long-term assets of banks’ balance sheets

so that banks realize their capital gains: banks sell their long-term bonds to the central bank

in exchange for short-term bonds or reserves at high prices. However, after QE a further

interest rate cut is less effective (and might be even counterproductive) since now banks

hold mostly short-term reserves. QE undermines the power of future interest rate cuts and
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increases the “reversal interest rate”.

In the multiple period extension, our analysis shows that the length of the interest rate

cut can last longer if banks hold fixed income assets with longer maturity. Holding policy

rates low for longer leads to lower net interest margins for a longer period, but also allows

banks to refinance their legacy fixed income assets at a cheaper rate (or equivalently enjoy

immediate capital gains appreciation). While the latter effect fades out as long-term bond

holdings mature, the former persists. In other words, if bank assets are of shorter duration,

then a longer interest rate cut might lead to larger NII profit losses than fixed income capital

gains. In that sense, the reversal interest rate “creeps up” over time: an exceedingly long

period of low rates may end up lower lending from today onwards, amid feedback effects on

the banks’ valuations. This result augments the literature on the forward guidance puzzle

opened by the work of Del Negro et al. (2012).

Finally, we embed our banking model in a New Keynesian model and calibrate it in

order to study quantitatively the importance of General Equilibrium effects. We find that

demand effects indeed work towards supporting banks’ profits and hence their ability to

grant loans, but that this effect is mitigated: the pass-through of changes in monetary rates

is not one-to-one, but impaired because of the decreased mark-downs as the level of nominal

rates drops. This mitigates the strength of the inter-temporal substitution channel, hence

generating weaker demand effects. We find in our calibration that the rate at which monetary

policy rate cuts reverse its effect on consumption – a general equilibrium reversal interest

rate – is around -1%. As emphasized in the conclusion, though, alleviating policies such as

ECB’s long-term refinancing operations can help support bank profitability and decrease that

number, while other policies such as quantitative easing can help lift up aggregate demand

– our main focus is on the interest-rate channel of monetary policy in general equilibrium.

The rest of this paper is organized as follows. First, we provide an overview of the

related literature. Second, we present a partial-equilibrium, two-period model where we

can explicitly prove the existence of a reversal rate under certain assumptions. We also

provide comparative statics and implications of our model for Quantitative Easing as well

as the deposit rate pass-through in this section. Third, we extend the model to multiple

periods while keeping the analysis in partial equilibrium. This allows us to uncover results

the above mentioned creeping up effect. Fourth, we introduce our simple banking model

inside an otherwise standard New Keynesian model. We calibrate the model and illustrate

the implications of our model for impulse responses of aggregate variables to a monetary

shock, illustrating in particular how general equilibrium feedbacks affect our mechanisms in
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a world with and without price stickiness. The last section concludes.

1.1 Literature Review

Our modeling of the microeconomics of banks stands on the shoulders of a large literature

which formally started with Klein (1971) and Monti (1972). Santomero (1984) provides

a good survey of this early theoretical literature. Empirical work also justify our chosen

competitive structure. Sharpe (1997) suggests evidence of switching costs for depositors, and

Kim et al. (2003) of relationship costs for banks. We use these costs to justify the imperfect

competitive structure of our model – both papers offer micro-foundations for these costs.

Maudos and Fernandez de Guevara (2004), Saunders and Schumacher (2000), and Drechsler

et al. (2017b) offer evidence that imperfect competition affects the pass-through of rates.

In fact, Petersen and Rajan (1995), in an influential paper, suggest that a monopolistically

competitive banking structure better reflects reality, arguing that banks need some monopoly

power to sustain their businesses.

A separated strand of literature developed the concept “balance sheet” channel of mon-

etary policy, and the associated bank lending channel, emphasizing the importance of the

balance sheet structure and net worth of intermediaries for the transmission of monetary

policy (Bernanke and Blinder, 1988; Bernanke and Gertler, 1995; Van den Heuvel, 2007). In

our model, the structure of the balance sheet of banks, and how the net worth of the latter

is determined, are also key determinants of the transmission of monetary policy.

Other papers have documented that banks do not perfectly hedge their exposure to

interest rate movements. Abad et al. (2016) show that banks on net buy interest rate

protection on the derivatives market, although they do not cover themselves fully, and large

banks even increase their exposures due to their intermediation business. Begenau et al.

(2015) also document that although banks do participate on the markets for derivatives to

hedge their interest rate risk, banks cannot or do not fully hedge their interest rate exposure.

Landier et al. (2013a) focus directly on the real lending of banks. They document in a panel

study that the income gap – the sensitivity of banks’ profits to interest rates – has a causal

impact on their lending behavior. Landier et al. (2013b) offer a rationalization for this

absence of exposure in expectation: banks’ valuations going forward increase following a

rate hike, hence taking capital loss is an optimal hedging strategy. Drechsler et al. (2017a)

document that in both long-term aggregate series and the cross section of banks, realized

net interest income as well as return on assets varies little with the level of policy rates. As
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in our model, this happens because capital gains from maturity transmformation are offset

by changes in market power. However, these hedging strategies only works in expectation;

upon interest rate realizations the mark-to-market valuation of banks will fluctuate, and

the recent long-lasting low/negative interest rate environment was unexpectedly long, hence

damaging bank valuation significantly. At the micro level, English et al. (2012), Ampudia

and Van den Heuvel (2017), Eisenschmidt and Smets (2018), and Claessens et al. (2017)

provide evidence that banks’ NIIs and equity valuations substantially vary with the level of

interest rates, in a decisively non-linear way. For example, Claessens et al. (2017) find that

a one percentage point interest rate drop implies an 8 basis points lower net interest margin,

with this effect greater (20 basis points) at low rates. This effect carries through bank

profitability, and moreover, for each additional year of low rates, margins and profitability

fall further. Finally, Altavilla et al. (2017) find that the banks’ return on assets in the

recent negative interest rate environment in Europe has not fluctuated for too long; as they

document, the effect on net interest income was largely negative, but other factors helped

lift up bank profitability, in particular because other policies were in place in Europe at the

same time.

A related empirical literature has studied the pass-through of monetary policy interest

rates to banks’ net worth, and the economy. De Bondt (2005), using European data, shows

that the immediate pass-through to lending and deposit rates is at most 50 % at a three-

month horizon. Bech and Malkhozov (2016) show that the recent drop in reserve rates below

zero transmitted through all risk-free short term assets of the economy, but find that the

pass-through seemed imperfect for retail deposit rates. Mortgage rates in their data also

showed no response, or even increased in certain countries. Drechsler et al. (2017b) focus

on the transmission to deposit rates, and show in particular that mark-ups on deposits tend

to decrease with the reserve rate. Rognlie (2016)’s work suggest that, although there is no

effective zero lower bound on deposit rates, the elasticity of demand changes at zero and

sub-zero rates, which affects the pass-through.

Heider et al. (2017) employ a difference-in-difference analysis using syndicated loans

data to document that banks with a high deposit base suffered relatively more from the

decision of the European Central Bank to implement negative interest rates than low-deposit,

wholesale-funded banks. Eggertsson et al. (2017) document a collapse of the pass-through

of monetary policy rate when the latter hits sub-zero territory, because of cash competition

at the intensive margin.
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2 Two-Period Partial Equilibrium Setup

In this section, we analyze a two-period banking model in partial equilibrium. That is, we

hold prices and quantities that are not directly determined by banks’ decisions fixed.

Each of a continuum of (ex-ante) identical banks are initially endowed with equity funding

of E0. In addition, banks can raise liabilities D in form of bank deposits. On the asset side

of the balance sheet, banks have two investment opportunities: loans L to firms and safe

assets S. Banks will compete on the market for deposits from households and loans to firms,

while they take the return on safe assets as well as their initial equity as given. Figure 1

displays a stylized balance sheet of a bank.

2.1 Timing of events

Let i0 be the interest rate between time 0 and 1 that banks expected with probability 1.

We consider an experiment in which the central bank unexpectedly changes the level of the

interest rate to a new level i. This surprise yields capital gains for banks. Having realized

these gains, banks then set new interest rates and quantities for loans and deposits with the

objective to maximize their period 1 net worth.

2.2 Bank Assets

Safe Assets. Safe assets S are available in perfectly elastic supply. After the surprise

policy interest rate cut/hike they yield a nominal return equal to the new policy rate i in

period 1. There can be many such safe assets (i.e. bonds, reserves, cash etc.). By no

arbitrage, the yields of all these safe assets equal i. Hence, we only model the total quantity

S of safe assets yielding i.

Bank loans. Each bank grants loans L to a unit measure of its customer-firms. We

assume for simplicity that informational friction lock-in firms in house-bank relations. The

loan demand that bank j faces is denoted by L(iLj ), where iLj is the nominal rate on bank

loans that bank j offers. In our partial equilibrium analysis we consider L as a function of iLj

only, since banks control the nominal loan interest rate. In our general equilibrium section,

we micro-found firms’ loan demand and make them dependent on other prices and quantities

in the economy.
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2.3 Bank Liabilities

Deposits. Each bank is naturally associated with a continuum of depositor households.

Their deposit supply is sticky in the sense that the depositors shop around for better deposit

rates, iD, if the spread between i and the rate iDj from their associated bank j is larger than

some threshold, the “activation level”, ηD(i). Hence, banks compete on prices, but only if

the spread they charge relative to some baseline rate i is large enough.1

Importantly, we assume that the search “activation level” ηD(i) is decreasing in the

interest rate i. In other words, depositors become more sensitive to spreads when the policy

rate is low. This generates pressure on the extensive margin of banks’ deposit margins as

rates decrease. For example, depositors are more prone to switch the bank if the interest rate

is negative, as empirically documented in Hainz et al. (2017). In addition, banks deposit rate

choices are also driven by intensive margin considerations. That is, conditional on keeping

a customer, the bank might decide to offer an attractive interest rate to ensure that the

customer supplies a sufficient amount of deposits instead of simply consuming his income or

substituting to alternative savings vehicles, like cash.

Concretely, each depositor household h ∈ [0, 1] in the continuum associated with bank j

has an activation level ηD(i). He only considers looking at the rates offered by competing

bank j′ if the rate offered by his bank, iDj , is below i−ηD(i). We assume that ∂ηD(i)/∂i ≥ 0,

that is, the activation level is increasing in the level of interest rate, so that spreads are less

tolerated at low levels of the policy rate.

Let us denote iD−j ≡ {iDj′}j′ 6=j to be the vector of competitors’ deposit rates. Hence, the

share of costumers ϑDj that actually stay with bank j is:

ϑDj (iDj ; iD−j, i) ≡ 1{i−iDj ≤ηD(i) ∨ iDj >maxj′ 6=j i
D
j′}

We can then decompose the residual deposit supply faced by bank j as consisting of an

extensive and an intensive margin:

Dj(i
D
j ; iD−j, i) = ϑDj (iDj ; iD−j, i)︸ ︷︷ ︸

extensive margin

× d(iDj )︸ ︷︷ ︸
intensive margin

1Varying mark-downs at the extensive margin can be modeled in numerous ways. A large literature
focuses on on switching costs (see e.g. Klemperer (1995) for a review), which is sometimes applied to
banking (as eg. in Sharpe (1997)). Our goal here is to have a realistic yet parsimoniously parametrized
model that easily fit in a large-scale New Keynesian model.
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In our calibration, the extensive margin will turn out to be the key driver of that residual

elasticity.

Equity. Let E0(i0) be the banks’ book equity before the surprise policy rate change.

We assume that banks’ book equity after the surprise change, E0(i), is a function of the

nominal policy interest rate i. This captures the fact that banks might make unexpected

capital gains on the portfolio with which it enters the initial period, after monetary policy

changes its stance. Formally, we decompose the equity after the monetary policy shock

into E0(i) = ē0 + e0(i), where ē0 is the interest-insensitive component of initial equity and

e0(i) the interest rate sensitive part. We assume throughout the paper that banks’ interest

exposure is such that ∂E0(i)/∂i = ∂e0(i)/∂i < 0. Banks’ duration risk will lead to capital

gains that are key determinants for the reversal interest rate.2

2.4 Financial Frictions

Banks face two forms of financial frictions. First, banks are subject to a capital constraint

of the form:

ψLL+ ψSS ≤ N1

where N1 denotes the bank’s (nominal) net worth (defined below). That is, a weighted

average of book assets must be covered by the value of the bank. We set the risk coefficient

on safe asset equal to ψS = 0. Two remarks are in order. First, the capital constraint

could be economic reasons or regulatory reasons. For simplicity we refrain from a full micro-

foundation. Second, one could replace N1 in the constraint by book equity E0, especially if

the constraint is motivated by regulatory purposes. Note that E0 does enter the constraint,

indirectly through N1, since ceteris paribus a larger E0 leads to higher net worth. Moreover,

this assumption is essentially inconsequential in our dynamic setting where net worth is

persistent.

2As a clarifying example, suppose that the portfolio of a bank at time −1 consisted on the asset side
of one-period loans L−1,0, one-period safe assets S−1,0, two-period (liquid) safe assets S−1,1 (with fixed
interest rate maturing at t = 1), and on the liability side, one-period deposits D−1,0. Upon entering period
0, all one-period safe assets and liabilities mature, and the two period assets generate interest income and
expense, yielding total earnings E0. A share δdiv of this E0 is paid out as dividend. Suppose the bank keeps
its long-term assets. The equity of the bank then is E0(i) = (1− δdiv)E0 + pS(i)S−1,1, where i is the interest
rate between time 0 and 1 and pS(i) is the price of the two-period bond after its time 0 coupon is paid.
Clearly, if there’s a surprise interest rate cut (hike) to i at time 0, the maturity mismatch generated by the
long-term bond will generate capital gains (losses) as ∂pS(i)/∂i < 0.
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Second, banks face a liquidity constraint of the form:

S ≥ ψDD

That is, each bank’s safe asset holding must cover a certain fraction of deposits. Such a

constraint could be micro-founded by ensuring that banks have sufficient funds to avoid run

risk.

2.5 Banks’ problem

Finally, let L+S = D+E0(i) be the balance sheet identity of the bank. Then, we can write

its problem as:

max
iL,iD,L,D,S,N1

N1 = (1 + iL)L+ (1 + i)S − (1 + iD)D

L+ S = D + E0(i)

ψDD ≤ S

ψLL ≤ N1

L = Lj(i
L
j )

D = Dj(i
D
j ; iD−j, i)

This problem offers no particular mathematical difficulties, and hence we omit conditions for

existence and uniqueness of a symmetric equilibrium. In our micro-foundations of D(·), L(·)
in later sections, existence and uniqueness are straightforward to show.

3 Partial Equilibrium Reversal Interest Rate

3.1 The reversal interest rate: Definition

We now explicitly define the “reversal interest rate” as the rate such that a decrease in the

nominal policy rate, i, stimulates lending if and only if the current level of the interest rate,

i, is above the reversal interest rate iRR.

Definition 1 (Reversal interest rate). Let iRR define the “reversal interest rate” such that

1. i > iRR implies dL∗

di
< 0;
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2. i = iRR implies dL∗

di
= 0;

3. i < iRR implies dL∗

di
> 0.

In what follows, we first derive the bank’s optimal setting rules. We then spell out

sufficient conditions under which a reversal interest rate obtains.

3.2 Banks’ rate setting rules

Monetary policy affects the marginal investment opportunity of banks. Given that a bank

can earn a return of i from holding a safe asset it considers the loan demand function only for

loan interest rates above i. Furthermore, i encodes the opportunity cost of granting loans,

and banks charges a mark-up above it. Similarly, for deposits it applies a mark-down.

The constraints limit this optimal behavior. When the capital constraint binds, banks

charge higher than desired lending rates in order to decrease their leverage. Similarly, when

the liquidity constraint binds, banks offer a higher than desired lending and deposit rates in

order to bring its liquidity ratio up.

Let εf∗ denote the semi-elasticity of the function f with respect to the relevant rate,

evaluated at the optimal pricing rules.3 The next lemma formally encodes these results.

Lemma 1 (Rate setting rules). The optimal rate on loans is given by

iL∗ = i︸︷︷︸
Marginal

opportunity cost

+
1

εL∗︸︷︷︸
Mark-up

+
ψL

1 + ψL
λL∗︸ ︷︷ ︸

capital constraint

. (3.1)

The optimal rate on deposits is given by

iD∗ = i︸︷︷︸
Marginal

benefit

− min

(
ηD(i),

1

εD∗
− ψD

1 + ψL
λD∗
)

︸ ︷︷ ︸
Mark-down

(3.2)

When constraints are slack the Lagrangian multipliers are simply zero; when they do

bind, the Lagrange multipliers are defined by the FOCs and actual rates are given by the

3That is, εL∗ = ∂ logL(iL)
∂iL

∣∣∣
iL=iL∗

. Although mathematically these are semi-elasticities, economically they

are elasticities, since the units of iL, iD are percentage points. An alternative is to work with log gross rates

and pure elasticities, in which case the log-mark-up takes the common form log
(

εL∗

εL∗−1

)
.
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constraints themselves.

3.3 Existence of iRR

We now show how the constraints lead to a reversal of the bank lending channel. Remember

that the capital constraint depends on how profitable the bank is. The next lemma shows

that profits of banks have two components: net interest income (NII) and capital gains (CG).

NII is defined as

NII = iL∗L∗ + i S∗︸ ︷︷ ︸
interest income

− iD∗D∗︸ ︷︷ ︸
interest expenses

Capital gains, on the other hand, are simply the change in initial equity (retained earnings)

created by the surprise change in interest rates:

CG = E0(i)− E0(i0)

The following lemma also shows that when there are no capital gains, that is CG = 0, then

the change in profits following a cut in interest rate is strictly negative. We focus on the

case in which the liquidity constraint does not bind.

Lemma 2 (Profit response). Assume the liquidity constraint does not bind. The change in

profits following a change in i is then given by:

dN∗1
di

= (1 + λL∗)︸ ︷︷ ︸
amplification

( dNII

di︸ ︷︷ ︸
NII

+ (1 + i)
dE0(i)

di︸ ︷︷ ︸
CG

)
(3.3)

Moreover, if dE0(i)
di

= 0, then
dN∗1
di

> 0.

This result is intuitive. An interest cut depresses the return on new investments in safe

assets. Because safe assets are always held by banks (whether the liquidity constraint binds

or not), this decreases net interest income and hence profits. That this is sufficient is a

consequence of the envelope theorem – the fact that the first-order conditions described

above apply. However, an interest rate cut also leads to capital gains, which boosts profits.

Without such gains, profits unambiguously decrease following an interest rate cut.

Note, moreover, that an amplification occurs when the bank’s capital constraint binds

(implying that λL∗ > 0). From that point onwards the bank is forced to partly re-route its
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loan investment into safe asset investment. Ceteris paribus, that makes further cuts more

harmful to banks’ profits.

Returning to our main result, when the capital gains are sufficiently small – that is the

change in E0(i) is small enough – then the NII channel dominates. Hence profits decrease

with a decline in i. Moreover, as long as the capital constraint does not bind, diL∗/di > 0,

so that an interest rate cut lowers the loan interest rate leading to more loans. Both forces

tightens the constraint. Eventually, the constraint inevitably binds: at that point the policy

rate hits the reversal interest rate, because any further decrease in i will decrease profits

which through the constraint must decrease L∗, so that dL∗/di flips sign.

Proposition 1. (Existence of iRR) When capital gains E ′0(i) are uniformly bounded from

below and either (1) capital constraints are sufficiently tight or (2) initial equity is sufficiently

high, there exists a finite reversal interest rate iRR.

Furthermore, nothing guarantees the reversal interest rate to be zero, or any particular

number.

Corollary 1. Generically iRR 6= 0.

A numerical example. Figure 2 displays a numerical example of a reversal rate triggered

by a binding capital constraint for a baseline interest rate of i0 = 1.5%. An interest rate

cut lowers banks’ net worth (lower left panel), as the decline in net interest income exceeds

the increase in capital gains (lower right panel). The capital constraint tightens, until it

inevitably binds. At this stage, i falls below the reversal interest rate and a further decrease

in the policy rate lowers loan volume (top left panel). Interestingly, the loan interest rate

then rises below that interest rate (top right panel).

3.4 Comparative statics results

We now derive comparative statics result. Unsurprisingly, the reversal rate is lower when

capital constraints are looser or initial equity is low. This is consistent with Corbae and

D’Erasmo (2014), who find in a structurally estimated banking model that an increase in

capital requirements leads to a decline in aggregate loan supply and an increase in the loan
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interest rate.4,5 Our third result in the next proposition states that, everything else equal,

higher capital constraints on leverage makes subsequent interest rate cuts below the reversal

rate even more harmful for lending.

Proposition 2 (Capital constraint and Equity). The reversal interest rate iRR has the

following properties:

1. The reversal interest rate iRR increases in the risk-weight of the capital constraint ψL.

2. The reversal interest rate iRR decreases in the interest rate sensitivity of the initial

equity ∂e0(i)/∂i (keeping E0(i0) constant).

3. An interest rate cut below the reversal is more detrimental for lending for an economy

with a tighter capital constraint. Specifically, consider two economies A,B with the

same reversal interest rate iRRA = iRRB and that are identical in all expects except that

ē0,A < ē0,B and ψLA < ψLB. Then, for any i < iRRA = iRRB , L∗A(i) > L∗B(i).

Arguably, one of the most striking features of our reversal result is that it does not rely

on stickiness of the deposit rate. Deposit rate stickiness on its own can generate a reversal

due to the binding of the liquidity constraint. Intuitively, once the constraint binds, safe

assets simply become a burden that banks must hold in order to stay sufficiently liquid.

Decreasing the return on holding safe assets then decreases lending. Hence, in order to

generate a reversal, we only need assumptions guaranteeing that the liquidity constraint

eventually binds as i decreases. A lower bound on deposit rate – at the extensive or intensive

margin – does just that: as i goes below it, the liquidity constraint must bind. Proposition

?? shows that an increase in this lower bound, and more generally a decrease in mark-downs,

increase the reversal interest rate.

Proposition 3 (Liquidity constraint and deposit rate pass-through). The reversal interest

rate iRR has the following properties:

1. The reversal interest rate iRR increases in the tightness of the liquidity constraint ψD.

2. The reversal interest rate iRR increases with competition at the extensive margin ηD(i).

4It is important to keep in mind that we neglect potential risk-taking effects of decreasing interest rates,
which might be the basis for a constraint – see for example Di Tella (2013) or Klimenko et al. (2015). In
a theory encompassing both channels, a trade-off would emerge between the two; we are only modeling
one-side of a trade-off, and hence our results are unambiguous here.

5Note that for both Propositions 2 and 3 below the statements hold only weakly; however for some
reasonable constellations of parameters they hold strictly.
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3. For iD, such that d(iD) = 0 for all iD ≤ iD, where d(·) is the intensive margin of the

deposit supply from depositors, iRR is increasing in iD. In words, the reversal rate is

increasing with in the lower bound on deposits.

3.5 Optimal sequencing of QE

Our model also implies an optimal sequencing of interest rate policy and other monetary

operations such as Quantitative Easing (QE). QE changes the bond holdings of the banking

sector, and hence their interest rate risk exposure. QE reduces the banks’ holdings of long-

term bonds and hence after QE banks’ interest rate sensitivity of their equity ∂e(i)/∂i is

reduced. This increases the reversal interest rate.

Proposition 4 (QE and capital gains). Quantitative Easing which lowers the interest rate

sensitivity of banks’ initial equity ∂e(i)/∂i while leaving overall level of E0(i0) unchanged,

lowers potential capital gains from a subsequent interest rate cut and hence increases the

reversal interest rate iRR.

The optimal sequence of stimulating monetary policy is to cut the interest rate all the

way towards the reversal interest rate before conducting QE measures.

We emphasize that this is a partial equilibrium results – in general equilibrium, other

forces might pull towards an alternative sequencing.6

3.6 Additional results on deposit pass-through

Our results so far concern only the bank lending channel. In New Keynesian models, however,

monetary policy operates also through the intertemporal substitution channel. We show that

our simple banking model has important implications for this channel too. In particular, we

show that deposit flight – from the extensive or intensive margin – decreases the pass-through

of monetary policy into deposit rates, hence weakening the effects of an interest rate cut.7

This is true even without the liquidity constraint binding. Specifically, if semi-elasticity of

deposit supply is decreasing with the level of the deposit rate, then the pass-through is less

than 1, meaning that one basis point decrease in the gross rate results in a less than one basis

point decrease in the gross deposit rate. If, in contrast, the elasticity were constant, then

6In particular, the sequencing describes above stealthy recapitalizes banks, meaning that another sectors
– the government, households, foreigners, or others – could lose and hence distort the economy in undesirable
ways too.

7Note that the same can be true for the loan rates.
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the pass-through would be exactly 1; the last case is easy to guess. Note that the change

in the elasticity of residual deposit supply comes from either the extensive or the intensive

margin.

Proposition 5 (Deposit pass-through). Suppose that the liquidity constraint does not bind.

If the mark-down on deposits is given by the extensive margin parameter ηD(i), then:

diD∗

di
= 1− ∂ηD(i)

∂i

Hence if competition gets tougher as rates decrease, that is ∂ηD(i)/∂i > 0, then the pass-

through of monetary policy rates into deposit rates is less than one-for-one, i.e. diD∗

di
< 1.

If instead the mark-down is given by the intensive margin 1/εD∗, then:

diD∗

di
=

1

1 + ∂(1/εD)
∂iD

4 The “creeping-up” effect

In this section, we extend the model to a three-period setting. This allows us to study how

announcements about a path of policy rates impact the business of the bank, in particular

net interest margins in the future and their feedback on lending today. Our main result is

that the optimal length of interest rate cuts should be related to the maturity of the banks’

existing assets. The reason is as follows. as in the two-period model, a cut in an interest

rate in the future has two effects: fixed-income assets experience capital gains, while net

interest income will be depressed. Since the fixed income assets mature over time, the first

force slowly fades out, whereas the loss in margins on future business does not. Hence, the

interest rates that maximize lending “creep up” over time.

To make that intuition concrete, we consider banks in a similar setting than our two-

period model, except that banks enter the period with two assets on their books: a one-

period bond (that matures next period) and a two-period bond. Moreover, their equity in

the second-period is endogeneous and depends on profits that banks make in the first period.

We then ask: what is the path of interest rates that maximizes banks’ loan supply? Since

fixed-income holdings of the first period are larger than that of the second period, the case

for cutting the interest rate is stronger in the first period, where the capital gains are higher,

while the effect on net interest income is similar across both periods. In that sense, the
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optimal path of (reversal) interest rates is increasing, and an exceedingly long-lasting low

interest rate environment might hurt lending.

4.1 Three-period model extension

In our three-period model the monetary authority controls a path of one-period interest

rates {i0,1, i1,2}: the rate between the first two periods, i0,1, and the rate between the last

two periods, i1,2. Banks enter the period with their past book, consisting of equity ē0, one-

period bonds B0,1 and two-period zero-coupon bonds B0,2.
8 Bonds are priced competitively

at prices pB0,1 = 1
1+i0,1

and pB0,2 = 1
(1+i0,1)(1+i1,2)

. Hence the bank’s equity entering the period is

E0(i0,1, i1,2) = ē0 + pB0,1B0,1 + pB0,2B0,2: when rates and therefore price changes, so does equity

entering the new period.

Each period, the bank is able to grant loans and deposits, and invest in safe assets. The

demand for loans L(·) and supply of deposits D(·) is the same both periods. We also assume

that before the policy experiment, the interest rates are equal in both periods, denoted by

i∗. Hence, the two periods are identical in every aspect to repeating our two-period model

twice, except that we have one- and two-period bonds and that the equity level in the second

period is now endogenously specified. As before, let N1 be the net worth of the bank after

optimization in the first period. We assume that part of the earning are retained. Specifically,

we assume a dividend (payout) rate υ ∈ (0, 1) of the net worth, so that E1 = (1 − υ)N1.

We further assume that υ is such that E0(i
∗, i∗) = E1. In sum, the environment is totally

stationary when there are no policy changes, and the bank makes similar decisions in both

periods should rates stay at i∗. Finally, we keep the analysis in partial equilibrium, so that

there are no general equilibrium feedbacks from the policy changes and banks’ endogenous

responses.

4.2 Loan-maximizing policies

We define the loan-maximizing policies iP0,1, i
P
1,2 as those that maximize the discounted sum

of loans:

(iP0,1, i
P
1,2) = arg max

i0,1,i1,2

L∗0,1(i0,1, i1,2) + βPL∗1,2(i0,1, i1,2),

8More generally, these bonds should represent the duration structure of banks’ balance sheet as they
enter the period, in the spirit of Begenau et al. (2015).
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where L∗0,1, L
∗
1,2 are the optimal choices of banks’ loan supply given the interest rates, and

βP is a “policy-specific” discount factor (of the social planner). We assume that βP ≤ 1,

that is the policy cares more about present loans than future loans.

Our goal in this section is to characterize the choices iP0,1, i
P
1,2.

4.3 “Creeping-up” result

Our main result is that under mild conditions, iP0,1 < iP1,2, that is the interest rate path

“creeps up”. The key reason for this result is that although the loss in net interest income

following an interest rate cut is similar in both periods, the capital gains from cutting the

short-term rate are larger than cutting the long-term rates, since assets mature. In other

words, a long-lasting low interest rate environment is going to hurt banks’ flow profits every

period, while generating low capital gains in the later periods since assets have matured

by then. As a consequence, it is optimal to cut the short-term rate more deeply than the

long-term one.

One condition that we need when capital gains on long-term assets are present, however,

is that the policy makers care about loans in the second period. To see this, suppose that

βP = 0, that is, the policy maker is myopic and only cares about current loan volume.

Suppose moreover that B0,2 > 0, that is, there are capital gains to be made on long-term

assets. Then, the policy response will naturally be to cut the long rate as deep as possible,

as to maximally boost capital gains on long-term assets. This will drive down long-term

loans to very low levels, and bank net worth tanks and with it loan volume in the second

period. Hence, to avoid these “myopic” cases, we need that βP is sufficiently close to one

whenever B0,2 > 0.

Proposition 6. Assume that B0,1, B0,2 are small enough that the loan-maximizing rates

iP0,1, i
P
1,2 are well defined. Then iP0,1 < iP1,2.

Note that we have not assumed that a low bank net worth in the long-term feeds back

on the ability of the bank to lend in the first period.9 This would make the case for cutting

the long-rate even weaker, as there would be an additional motive to raise the long-term

rate further in order to avoid the drop in long-term net worth to feed back on the bank’s

risk-taking ability.

9That is, we could have assumed that ψLL0,1 ≤ N1 + βN2, where β is some discount factor relevant to
evaluate how much long-term net worth impact a bank’s ability to take on risk.
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5 Reversal in a New Keynesian DSGE

We now asks whether our existence result derived in Proposition 1 still hold in a quanti-

tatively realistic general equilibrium setting where changes in the policy rate can stimulate

aggregate demand through the inter-temporal substitution channel. The answer is a quali-

fied yes. As in our partial equilibrium model, a fall in net interest rate income of banks not

adequately compensated by capital gains decreases banks’ profitability and hence threatens

their ability to provide risky but productive lending to the economy. However, standard

New Keynesian forces operating through the inter-temporal substitution channel of house-

holds’ optimization problem are still able to generate a boom and even lift bank profitability.

Hence, as long as standard New Keynesian forces operate, our partial equilibrium results do

not apply for aggregate variables.

However, as policy rates enter low level territories, the pass-through to deposit rates

worsens because depositors become more and more aware of the spreads that banks charge,

amid concerns of low nominal returns on their deposits. Banks respond by decreasing their

mark-downs and hence decrease the pass-through. This in turn weakens the standard New

Keynesian forces, very much like an economy entering a liquidity trap. That weakens loan

demand and the associated intermediation boom undertaken by banks. Now, problems

would not occur if bank lending did not suffer from any further frictions, as the bank lending

channel of monetary policy would remain active. However, the combination of both problems

generates the conditions for a reversal rate.10 Moreover, even before the reversal rate is

reached, the effectiveness of monetary policy can be severely dampened by the weakening of

both the bank lending and inter-temporal substitution channels.

5.1 Environment

Time is discrete and the horizon is infinite. Households choose consumption, savings and

labour supply to maximize their lifetime utility over consumption and leisure. Homogeneous

intermediate goods producers competitively sell goods to retailers. These retailers differen-

tiate these goods at no cost and sell them to competitive final good producers. Retailers are

subject to price frictions, in a New Keynesian fashion. Final good producers then bundle

retail goods into final goods usable for consumption and capital. Finally, a monetary au-

thority (government) supplies nominal safe assets to banks elastically at a decided interest

10With flexible prices, general equilibrium forces will work to alleviate the negative consequences of a
reversal rate, but cannot question its existence.
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rate, taxing (or redistributing gains to) households lump-sum to finance such assets.

Households. A unit continuum of identical households with separable preferences over

consumption and labor choose consumption Ct, labour supply Ht, and deposits Dt in order

to maximize their lifetime utility:

max
{Ct,Nt,Dt+1}

E0

∞∑
t=0

βt
(

(Ct −Xt)
1−γ

1− γ
− χ l1+ϕt

1 + ϕ

)

subject to their budget constraint

ptCt +Dt+1 = ptwtlt + (1 + iDt−1)Dt + ptΠ
R
t + ptΠ

B
t − ptTt,

where Xt = hCt−1 denotes the external habit, ΠR
t denotes profits of retail good producers,

ΠB
t denote dividend payments from the banks, and Tt are government lump-sum transfers.

Final good producers. Final good producers purchase retail goods j ∈ [0, 1] at price

pt(j) and aggregates them into the final good, with production function

Yt =

[∫ 1

0

Yt(j)
ε−1
ε dj

] ε
ε−1

They then sell these final goods on competitive markets on competitive markets to households

for consumption and intermediate firms for capital investment.

Retailers. A unit continuum of retailers indexed by j ∈ [0, 1] each produces its own retail

good variety j by costlessly transforming intermediate goods. They face the demand function

for their retail variety derived from the problem of the final good producers. Retailers are

subject to Rotemberg adjustment costs to price adjustments. The problem of a single retailer

j is then summarized by:

max
{pt+s(j)}

Et

[
∞∑
s=0

Λt+s

[
pt+s(j)

1−εpε−1t+sYt+s −mct+spt+s(j)−εpεt+sYt+s

−θ
2

[
pt+s(j)

pt+s−1(j)
− 1

]2
pt+s(j)

1−εpε−1t+sYt+s

]]
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where real marginal costs mct are equal to pIt , the price of intermediate goods.

Intermediate firms. Labour and capital are combined using a Cobb-Douglas production

function to produce intermediate goods. These goods are then sold competitively to retailers.

Labor is hired competitively on labor markets. Capital is purchased a period in advance from

final goods producers, and depreciates slowly. Every period, a share ξ of incumbent firms

exogenously close after having produced, and are replaced by an equivalent share of new

firms.11 These new firms are subject to financial frictions in that they can only obtain

funding from banks.12

Specifically, the problem of an incumbent firm is to maximize its profits, given that it

rents labour at the real wage wt and acquires capital a period in advance. In so doing it

values the opportunity cost of its capital acquisition at the effective rental rate rt defined

by:

rt = Λt−1 − 1 + δ (5.1)

where Λt−1 is the real discount factor of households between period t− 1 and period t, and

δ is the depreciation rate of capital. It then produces output and sells it at the given price

pIt .

Next, to obtain realistic capital demand we introduce costs of investment rate deviations

from its steady state value given by the quadratic formulation κAC

2
(ιt − ι∗)2Kt−1, where

ιt = kt−(1−δ)Kt−1

Kt−1
, Kt−1 is the past capital value of incumbent firms, and ι∗ is the steady

state value of investment for incumbent firms. Note that the usage of the average previous

capital to compute investment costs keeps the problem static while keeping the economics

similar. This is important since our constrained firms will face the same frictions, and

an easy computation of the elasticity of their demand for capital is crucial to keep the

model analytically tractable, a feature that would be lost should the adjustment costs take

a dynamic form.

We also introduce decreasing returns to scale in the production function, parametrized by

ν. This is important for two reasons: (1) it hinders the financially unconstrained production

sector from taking over production, and creates a well defined capital demand schedule for

financially constrained firms, a necessary object to banks’ problems.

11Alternatively, one can justify this setting by saying that firms’ projects eventually needs to be replaced,
and new projects require funding only available through banks because of financial frictions – for example
because new projects are created by entrepreneurs without funding and then sold to production firms.

12ξ will hence parametrize the reliance of the economy on bank loans. Albeit simplistic, this way of
introducing financial frictions is both transparent and tractable.
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Hence the problem of an incumbent reads:13

max
yt,`t,kt,ιt

pIt yt − wt`t − rtkt −
κAC

2
(ιt − ι∗)2Kt−1 s/t

yt = At
(
kαt `

1−α
t

)ν
ιt =

kt − (1− δ)Kt−1

Kt−1

As said, every period a share ξ of incumbents are replaced by an equivalent share of new

firms. New firms must obtain a specialized bank loan to finance their first capital pur-

chases, meaning that they cannot directly issue equity to households in order to finance such

purchases.14 For such a firm, hence, the rental rate is:

r̃t =
1 + iLt−1
1 + πt

− 1 + δ

Where iLt−1, πt are respectively the bank loan rate and inflation rates between t − 1 and t.

Note that since Λt−1 will be given by the deposit rate, and the latter will usually be smaller

than the loan rate, we obtain that r̃t > rt in general, meaning that it is more expensive

for new firms to obtain capital. Finally, we assume that after their initial investment in

the first period, new firms can freely access equity markets and hence directly borrow from

households. The production function is identical to that of incumbents, as is the structure

of adjustment costs. The problem of a new firm hence reads:

max
ỹt,˜̀t,k̃t

pIt ỹt − wt ˜̀t − r̃tk̃t −
κAC

2
(ι̃t − ι̃∗)2K̃t−1 s/t

ỹt = At

(
k̃αt

˜̀1−α
t

)ν
ι̃t =

k̃t − (1− δ)K̃t−1

K̃t−1

Banks. There is a continuum of identical banks that are infinitely lived. The problem of

each bank is identical to the one described in our two-period model, with one exception: to

keep the equilibrium differentiable, we replace our capital and liquidity inequality constraints

with smooth leverage costs. Specifically, adjustment costs for capital leverage are given by

13Note that kt is effectively chosen at t− 1.
14Hence, and in accordance with our assumption of perfect market power of banks on their loan size, only

one particular bank j is able to give such loans.
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κL

2

(
ψLLt
Nt+1
− 1
)2
+

, where Lt are the loans given between t and t+ 1 and Nt+1 is the net worth

of the banks in t+ 1, before dividend payments. Similarly, liquidity leverage costs are set to
κD

2

(
ψDDt
St
− 1
)2
+

.

We need to describe the capital accumulation process of banks between perios. We

assume that banks accumulate equity according to the following formula:

Et+1 = (1− υ)
1

1 + πt+1

Nt+1

Where υ is a fixed dividend rate, and Nt+1 is the nominal (in period t terms) net worth of

net banks, appropriately deflated. Dividends are rebated directly to households. The fixed

dividend assumption makes certain that firms do not grow out of their financial frictions. It

can be viewed as a financial friction, since banks will not be able to raise capital when most

needed. This however is consistent with the empirical evidence in Gropp et al. (2016): when

under-capitalized, banks tend to deleverage by decreasing the size of their balance sheets or

rebalance their assets towards less risky ones, instead of increasing their capitalization. One

theoretical underpinning for this behaviour is debt overhang (Admati et al., 2017).

Next, we assume that the deposit rate in the model is given by the extensive margin

competition between banks given their consumers’ preferences (Equation 3.2), that is iDt =

it − ηD(it) for all t, and assume that ηD(i) =
(

1− η1
η1+exp(−η2i)

)
i. With η2 > 0, the pass-

through of changes in i into iD becomes worse as the level of i decreases, consistent with

empirical evidence.

Finally, we need to model capital gains. There are none in the steady state, by assumption

of perfect foresight. Let E0,SS then be the steady state level of equity of banks, and assume

that after an interest rate cut, banks’ capital gains are linear in the level of the interest rate.

Using the notation of Section 2.3, we set ē0 = E0,SS and e0(i) = ζ0(i − iSS)ē0, with ζ0 < 0

since a decrease in the policy rate yields capital gains, and i the surprise new rate after the

interest rate cut.15

Government. The government lump-sum taxes (or transfers) an amount Tt to house-

holds, which allows it to pay the nominal interest rates it on safe assets. The Taylor rule is

15Note that in the steady state, banks are indifferent between holding short-term or long-term safe assets.
Hence, calibrating ζ0 can be thought as calibrating the share of safe assets that are long-term – on which
capital gains will be made when i moves. For simplicity we model these gains as only being functions of the
rate between period 0 and 1 – as if banks only had at most two-period bonds – which will be the rate that
moves the most given that our shock lacks persistence.
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assumed to take the following common form:

1 + it = (1 + i∗)

(
1 + πt
1 + π∗

)φπ
eε
m
t

Where i∗ is the steady state policy rate, π∗ is the steady state inflation rate and εmt is a

monetary policy shock.

5.2 Solution concept

We assume that every agent in the economy has perfect foresight over the future, and solve

the deterministic equilibrium after a one-time unexpected monetary policy shock εmt hits the

economy. Our computational algorithm solves for the full non-linear system of equations,

and hence does not rely on perturbation techniques. This is important since our economy

inherently features non-linearities and state dependence.

5.3 Calibration

The calibration of the New Keynesian block of the model is standard and the parameters are

summarized in Table 1. The value of these parameters affect the estimate of the Reversal In-

terest Rate quantitatively; however, they do not affect its existence qualitatively, for reasons

discussed below. One noteworthy difference is that we set no persistence of the monetary

policy shock – real persistence is given by habit formation and the various frictions of our

model. This allows us to focus on the transmission mechanism of a single monetary shock

and abstract from forward guidance.16 Given the absence of persistence, we calibrate the

model annually.

We calibrate interest rates as well as the banking part of the model. We choose the

steady state nominal rate to be 2.12%, the average value of the annualized yield on 3-

months treasury bills for the period 1997-2016. From aggregated banks’ balance sheet and

income statements obtained from the FDIC, we compute the average deposit rate during the

same period to be 1.82%. So far, the U.S. has never implemented negative interest rates,

where the non-linearity in the deposit pass-through is strongest. We therefore calibrate the

deposit pass-through parameters, η1 and η2, jointly to match the spread between the two

16Moreover, when shocks are persistent, even in the presence of a lower bound (or a reversal) in the first
period shock will not prevent the second-period shock from affecting the economy positively, and so on. Our
goal here is not to study the effects of forward guidance, so we focus on one-period-only shocks.
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Table 1: Parameters: New Keynesian Block.

γ CRRA parameter 2
h Habit Formation 0.6
φ Frisch Elasticity 1
δ Cap. Deprec. 0.065
α Capital share 0.33
ν Scale parameter 0.81
κAC Adj. costs parameter 0.05
ε Retail Price Elastic. 6
θ Rotemberg cost param. 60
φπ Taylor Rule Coeff. 1.2

interest rates given above, as well as the negative spread recently observed in Europe, where

the nominal rate stood at −0.31% while the deposit rate was 0.08%.17 Next, our loan rate

spreads in the model comes from two sources: leverage costs coming from capital or liquidity

constraints as well as market power held by banks. For simplicity, we assume that the former

do not bite in the steady state, so that market power fully explains the spread: using our

values for α, ν, the spread obtained yields a loan rate of 6.54%, as in the data.18,19 We set

the risk-weight on loans ψL such that its inverse matches the steady state capital leverage

ratio of banks, which stands at 4.5. The liquidity ratio target ψD is also set to match the

inverse steady state liquidity ratio, which is directly calibrated from the data.20 The capital

leverage cost parameter κL is chosen to match the elasticity of rates to changes in capital

leverage in the MAG report of the Financial Stability Board (Macroeconomic Assessment

Group, 2010), as in Alpanda et al. (2014). This report estimates that a one percentage point

increase in capital leverage results in a 0.28 percentage point increase in capital funding

costs. Absent a good estimate, we calibrate κD to the same value. Next, we calibrate the

dividend rate υ such that the net interest income to equity matches that of the data in

17Our calibration implies that, possibly, η(i) < 0 and hence iD > i. Banks are still profitable overall, only
less so, which is why they are still willing to keep their costumers despite earning negative margins on safe
assets.

18Specifically, we take a weighted-average of the new rates for aggregate banks’ main assets categories
deemed non-safe, which mainly consist of mortgages, commercial & industrial loans, as well as personal
credit loans. Computing the average of that loan rate for the 1997-2016 time period, we obtain 6.82%.

19An alternative would be to make firms more elastic in their choices, reducing banks’ mark-ups, for
example by assuming monopolistic competition on the loan side of banks’ balance sheet. This would rise the
reversal rate, as leverage costs would not be second-order in the neighbourhood of the steady state.

20The ratio of deposits to safe assets is not identified in the steady state. Creation of nominal safe assets
will only work to inflate banks’ balance sheets, without changing any real quantities, since safe assets are
indirectly held by households through the government and banks’ are owned by households.
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Table 2: Calibrated parameters

iSS Steady-state policy rate 2.12%
β Implied discount factor of households 0.985%
η1 Deposit pass-through slope 25.3
η2 Deposit pass-through shape 198.7
ψL Inverse capital leverage 0.2740
ψD Inverse liquidity leverage 0.3440
κL Capital leverage cost elasticity 0.28
κD Liquidity leverage cost elasticity 0.28
ζ0 Capital gains elasticity -0.44
ξ Share of bank-dependent firms 0.41

1996-2017, which equals approximately 25%. Finally, we model adjustment costs linearly,

that is E0(i) = E0,SS + E0,SSζ0i, where ζ0 = −0.44 matches the empirical evidence on our

definition of capital gains.21 This parametrization implies that banks’ equity increases by

0.44% after a one-percent decrease in interest rates.

We next calibrate the share ξ of firm in need for loans to match the aggregate bank

debt as a fraction of firms’ liabilities and net worth, which is approximately 19%. This

yields ξ = 41%, which is implies that bank-dependent firms are relatively smaller firms with

equity-markets access in the model (as in the data), because they face higher funding costs.

5.4 Results

We find that a reversal not only in loans but also aggregate capital and consumption arises

in our economy. To substantiate this statement, we conduct the following exercise. First, we

study the effects of a marginal monetary policy shock in the vicinity of the steady state and

report the resulting impulse response function. Then, we generate at first a large monetary

policy shock, which brings the economy far away from the steady state, and study the impulse

response functions (IRFs) of the system of an additional marginal shock in that new vicinity.

Note that if the system were to be log-linearized, the then-obtained impulse responses would

21In our model, we only have short-term assets. Capital gains can be thought as long-term assets (and
liabilities) being re-priced at new short-term rates after an interest rate change. Since we only consider a
one-time change, we only need to know capital gains (long-term assets/liabilities) on impact.
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be identical.22 23

Figures 3, 4, 5, 6 show different IRFs to marginal monetary policy shocks: (i) from the

steady state level of interest rate (2.12%); (ii) after previous monetary shocks have already

brought the interest rate down by 1% (that is, around 1.12%); (iii) after the rate is down by

2% below it’s steady-state value; and (iv) after it is down by 4%, which is deep into negative

territory.

Figure 3 displays the marginal response of consumption and capital to a monetary shock

in each of these economies. In the vicinity of the steady state – where interest rates are at

normal levels – the response of consumption takes the usual hump-shape form, while capital

jumps on impact and then slowly decreases as households consume. However, things change

when the shock occurs in a lower-rate environment. After monetary shocks have brought

down the current interest level two percent below the its steady-state value, the effectiveness

of monetary policy is already severely dampened, as the consumption and capital responses

are both about three times as lower. After shocks have brought the policy rate down by

4%, we have crossed the “general equilibrium” reversal rate and the effects of a marginal

monetary policy shock are contractionary – not only for bank lending but also consumption.

Figure 4 confirms that the weakening and then reversal of the effects of monetary policy

shocks are due to imperfect pass-through to deposit and loan rates. The left panel shows

that, as rates get into lower territory, the effect on deposit rates gets lower to then vanishes

when we reach negative territory. The right panel shows that the loan responses follows a

similar pattern, except that it eventually reverses in that a monetary policy shocks raise

lending rates. Figure 5 confirms that this is due to poor bank profitability and raising

leverage costs, apparent in the right panel. Note that bank net worth actually increases

following a shock around the steady state, due to the boom on quantities that lift banks’ net

interest income. In contrast, a cut into negative territory deeply depresses the net worth of

banks. This is consistent with the evidence documented in Ampudia and Van den Heuvel

(2017), who document that banks’ stock market valuations’ responses to monetary policy

shocks changes sign as the level of interest rates decreases.

22When the system is close to linear – when the pass-through of policy rates into deposit rates and loan
rates is perfect – they are close to identical. We check that this is indeed the case. The only main source
of non-linearity far from the steady state are adjustment costs, but they do not explain the differences in
magnitude that we observe in the figures.

23In practice, we compute three impulse responses: that of a small shock in the vicinity of the steady
state, that of a large shock, and finally a small shock in addition to the large one; we then compare the first
IRFs with the difference between the last two IRFs. To be clear, these impulse responses include all general
equilibrium feedbacks.
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Finally, Figure 6 shows what happens to the capital of the two groups of firms separately.

Banks loans and hence the capital of constrained firms respond ambiguously to monetary

shocks. This reflects the fact that, even near the steady state, the two groups of firms face

different elasticities to interest rate changes; and the rates they face have different elasticities

with respect to the monetary policy rate. The deposit rate is cut slightly more than the

loan rate, due to endogenous mark-up changes by banks (Figure 3). General equilibrium

changes then make constrained firms slightly decrease their physical capital holdings. This

reverses as the deposit rate pass-through worsens more than the loan rate pass-through; but

eventually, the rise in leverage costs and hence loan rates following the shock in negative

territory eventually makes bank-dependent firms sharply decrease their investment. Note

that despite that, unconstrained firms’ investment continue to be stimulated even when the

overall capital response is negative: this is because general equilibrium changes in prices

incentivize them to partially compensate the lost investment capacity of bank dependent

firms. That substitution is imperfect, though, as firms face decreasing returns to scale.

Note that the presence of decreasing returns-to-scale means that measured aggregate TFP

endogenously decreases in this economy.

5.5 Forward Guidance

In Section 4, we showed that as long as the loan supply is concerned, it might be desirable

under some conditions to make the path of interest rates to slope upward. This is because

a cut in long rates generate sizeable losses in net interest income, while generating little

capital gains. However, in general equilibrium, forward guidance is implausibly powerful in

New Keynesian models, a fact labeled as the “forward guidance puzzle” (Del Negro et al.,

2012). For this reason, our partial equilibrium result is largely overturned in our current

general setting, although we believe that this might change in a model in which forward

guidance is more timid, as for example is the case in Angeletos and Lian (2016).

6 Conclusion

We have shown the possible existence of a Reversal Interest Rate, the rate at which standard

monetary policy stimulus reverses its intended effect and becomes contractionary. Its exis-

tence relies on the net interest income of banks decreasing faster than recapitalization gains

from banks’ balance sheets. We showed that its level depends on the magnitudes of these
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capital gains, the overall capitalization of banks, and the strength of the various leverage

constrains faced by banks. Moreover, we have shown that occurrence of a reversal also de-

pends on a weakening of a pass-through of monetary rates to deposit rates, which our theory

rationalizes through higher depositor’ spread awareness in low-rate environments. Without

this weakening, our mechanisms might participate only in weakening the overall response to

monetary policy shocks, without necessarily overturning it.

For the sake of tractability, we have omitted other channels through which monetary

policy can affect banks’ as well as the real economy. In particular, we believe that policies

such as ECB’s Long Term Refinancing Operations could reduce some of the consequences of

low interest rates environments on banks’ margins, hence alleviating concerns about banks’

margins. Moreover, we have omitted the explicit modelling of risk; hence we have remained

agnostic on how low rates change non-performing loans and the associated provisions. We

believe including these forces and quantifying them in a bank-augmented general equilibrium

model is an important area for future research.
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A Proofs

Lemma 1

Proof. The Lagrangian of this problem is

L =(1 + iL)L+ (1 + i)S − (1 + iD)D − µ(L+ S −D − E0(i)) + λD(ψDD − S)

− λL(ψLL− (1 + iL)L− (1 + i)S + (1 + iD)D) + ζL(iD − (i− ηD(i)))

This formulation uses the fact that it is never optimal for a bank to set iD below i− ηi(D),
since it then receives no deposits, whereas it can earn a positive spread above the deposit
rate if it sets iD = i− ηi(D).

The first-order conditions with respect to S, iL and iD are (ignoring the lower bound
constraint on iD)

µ = (1 + λL)(1 + i)

1 + iL =
1

1 + λL

(
µ− (1 + λL)

L

L′
+ λLψL

)
1 + iD =

1

1 + λL

(
µ− (1 + λL)

D

D′
+ λDψD

)
Define D′

D
= εD, L′

L
= −εL. Then rearrangement of these first-order conditions yields the

equations in Lemma 1.

Lemma 2

Proof. Ignoring the extensive margin constraint on deposits, we can write a bank’s problem
as

N(i) = max
iL,iD,S

(1 + iL)L+ (1 + i)S − (1 + iD)D

s.t. L+ S = D + E0(i), ψLL ≤ (1 + iL)L+ (1 + i)S − (1 + iD)D, ψDD ≤ S

The envelope condition of this problem implies

dN

di
= µE ′0(i) + (1 + λL)S
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where the Lagrange multipliers µ and λL are as defined in Lemma 1. This yields

dN

di
= (1 + λL)(S + (1 + i)E ′0(i))

Write
CG = E ′0(i), NII = iLL+ iS − iDD

Combining these definitions with the expression for dN
di

, we obtain

dN

di
= (1 + λL)

(
dNII

di
+ (1 + i)CG

)
as desired

Proposition 1

Proof. Define N(i) as in the proof of Lemma 2. We outline sufficient conditions for N(i) to
be an increasing function:

1. iLL(iL) ≤ K for some K ≥ 0.

2. E ′0(i) > −ε for sufficiently small ε > 0.

3. Either ψL or e0 is sufficiently large.

We now show these conditions are sufficient. As shown in the proof of Lemma 2,

dN

di
= (1 + λL)(S + (1 + i)E ′0(i)) ≥ (1 + λL)(S − (1 + i)ε)

In order to show N(i) is increasing, we must uniformly bound S from below. We have

S = E +D − L

≥ E − 1

ψL
N

= (1− 1

ψL
)E − 1

ψL
NII

= (1− 1

ψL
)E − 1

ψL
(iLL+ iS)

⇒ S ≥ 1

1 + i
ψL

(
(1− 1

ψL
)E − 1

ψL
iLL

)
By assumption, iLL ≤ K. Then

S ≥ 1

1 + i
ψL

(
(1− 1

ψL
)E − 1

ψL
K

)
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Examination of the expression on the right-hand side shows that for E or ψL sufficiently
large, the right-hand side will be larger than (1 + i)ε, so dN

di
> 0.

For i < i0, then, we have

dN

di
≥ 1 + λL

1 + i
ψL

(
(1− 1

ψL
)E(i)− 1

ψL
K − (1 + i)ε

)
≥ 1

1 + i0
ψL

(
(1− 1

ψL
)E(i0)−

1

ψL
K − (1 + i0)ε

)
= G(i0)

Thus the derivative of N(i) is bounded from below for i < i0, and

N(i) ≤ N(i0)−G(i0)(i0 − i)

When the capital constraint does not bind, the quantity of loans made by the bank is given
by L(iL∗), where iL∗ satisfies the equation

iL∗ = i+
1

εL(iL∗)

Note that L(iL∗) is decreasing in i. For sufficiently low i, then,

ψLL(iL∗) ≥ N(i0)−G(i0)(i0 − i) ≥ N(i)

meaning there exists a largest interest rate î such that the capital constraint binds for all
i < î. In this region, L(iL) = 1

ψL
N(i), so dL

di
= 1

ψL
dN
di
< 0. Therefore iRR = î, since dL

di
< 0

for all i < î and dL
di
> 0 for i > î.

Main Lemma

Suppose i0 > iRR when the parameters of the bank’s problem are θ = (ψL, ψD, e0, e0(i)).
Under an alternative set of parameters θ̂ = (ψ̂L, ψ̂D, ê0, ê0(i)) such that N(i, θ) > N(i, θ̂) for
i ≤ i0, the reversal interest rate is lower under parameters θ than under θ′ (so long as it is
unique under both sets of parameters).

Proof. Define iL∗(i) implicitly as the solution to the equation

iL − L(iL)

L′(iL)
= i

Note that iL∗(i) is increasing in i, so L(iL∗(i)) is decreasing in i. Furthermore, iL∗ does not
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depend on parameters. The reversal interest rate iRR is the solution to the equation

ψLL(iL∗(i)) = N(i, θ)

Let iRR(θ) be the reversal interest rate under parameters θ. With parameters θ′, for any
i ≤ iRR(θ) we have

ψLL(iL∗(i)) ≥ N(i, θ) > N(i, θ′)

This is because by the definition of the reversal interest rate, the function N(i, θ) must be
increasing in i in the region i ≤ iRR(θ). Thus it cannot be that iRR(θ′) ≤ iRR(θ).

Proposition 2

Proof.

1. Clearly, an increase in the capital constraint ψL weakly decreases N(i) for all i. Then
by the main lemma, the reversal interest rate must increase.

2. Consider a shift in the interest rate sensitivity of equity such that E0(i0) remains
constant but de0

di
is uniformly increased for all i. Then N(i) is uniformly increased for

all i ≤ i0, since capital gains following an interest rate cut are larger. By the main
lemma, the reversal interest rate must decrease.

3. Note that the first-order condition for iD implies that iD is the same in both economies
for a given level of i < iRR, so DA(i) = DB(i). Then the equation

Lj(i) + Sj(i) = Dj(i) + Ej
0(i)

for j ∈ {A,B} implies LA(i) + SA(i) < LB(i) + SB(i), since EA
0 (i) < EB

0 (i) for all i.
Furthermore, note that when i = iRR, iL is the same in both economies, so it must be
that SA(i) < SB(i). Thus

dN

di
= (1 + λL)(S(i) + (1 + i)E ′0(i))

must be larger in economy B when evaluated at iRR because S(iRR) is larger. Thus

dLA(i)

di
= ψLA

dNA(i)

di
< ψLB

dNB(i)

di
=
dLB(i)

di

at iRR, so the balance sheet constraints Lj(i) + Sj(i) = D(i) + Ej
0(i) yield dSA(i)

di
>

dSB(i)
di

at i = iRR. But clearly, then, we can keep iterating this argument to obtain
SA(i) < SB(i) for all i < iRR, which then implies LA(i) > LB(i) for all i < iRR through
the equation for dN

di
above (using the fact that the constraint is tighter in economy B).
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Proposition 3

Proof.

1. An increase in the liquidity coefficient ψD can only decrease N(i). Therefore, iRR must
increase by the main lemma.

2. A larger ηD(i) must make N(i) (weakly) decrease, so iRR must weakly increase by the
main lemma.

3. A higher lower bound on the deposit rate also decreases N(i), so the main lemma
implies that iRR increases.

Proposition 4

Proof. Here we consider a perturbation E0(i)→ Ẽ0(i) such that Ẽ0(i) ≥ E0(i) if and only if
i ≥ i0. In particular, for i < i0, Ẽ0(i) < E0(i), so N(i) is shifted uniformly downwards below
i0. Hence, by the main lemma, iRR must increase.

Proposition 5

Proof. Differentiating the expression for deposit rate yields the results. This expression is

iD = i−min{ηD(i),
1

εD
− λD

1 + λL
ψD}

and the liquidity constraint is assumed to be slack, so λD = 0.

Proposition 6

Proof. There are four possible cases: (1) the capital constraint does not bind in either period
at an optimum, (2) the capital constraint binds in both periods, (3) the capital constraint
binds only in the first period, and (4) the capital constraint binds only in the second period.
I consider these cases in turn.

1. If the bank is unconstrained in both periods, iLt = it−1,t + 1
εLt

for t = 1, 2. Thus it is

possible to increase the quantity of loans made in both periods by decreasing both i0,1
and i1,2 by a small constant ε > 0. Therefore, case (1) is never optimal for the central
bank.

2. If the capital constraint binds in both periods, it is possible to increase the bank’s net
worth in both periods by increasing i0,1 as long as B0,1 and B0,2 are sufficiently low
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that dNII1
di0,1

> d
di0,1

( B0,1

1+i0,1
+ B0,2

(1+i0,1)(1+i1,2)
). This increase in interest rates at t = 1 then

increases the quantity of loans made at t = 1 and t = 2, so it is never optimal for the
constraint to bind in both periods.

3. When the capital constraint binds only in the first period, the central bank can increase
the net worth of the bank (and thus the quantity of loans made) by cutting i1,2, since

this increases the value of equity E0(i0,1, i1,2) = B0,1

1+i0,1
+ B0,2

(1+i0,1)(1+i1,2)
andN1 is increasing

in equity. This cut in i1,2 does not change the quantity of loans made at t = 2 because
the bank’s choice of iL2 is unconstrained by assumption. Hence it cannot be that the
capital constraint binds only in the first period.

4. Given the analysis of the three cases above, it must be that the capital constraint binds
only in the second period. We now argue that it must be exactly binding (in the sense
that λL2 = 0) when B0,2 is sufficiently low. Suppose λL2 > 0. Then the quantity of
loans made in the second period is increasing in the bank’s net worth N2 in period 2,
as ψLL2 = N2. A change in the interest rate at t = 2 has two effects: it changes the
value of bank equity at t = 1, which feeds into t = 2 net worth, and it directly impacts
net interest income at t = 2. Formally,

N2(i0,1, i1,2) = max
iL,iD,S

(1 + iL)L+ (1 + i1,2)S − (1 + iD)D

s.t. L+ S = D + E1(i0,1, i1,2), ψ
LL ≤ N2, ψ

DD ≤ S

Then the envelope theorem implies

dN2

di1,2
= (1 + λL)

(
S∗ + (1 + i1,2)

dE1

di1,2

)
Note that using the formula E1 = (1− ν)N1, we can write

dE1

di1,2
= (1− ν)

dN1

dE0

dE0

di1,2

= −(1− ν)
dN1

dE0

B0,2

(1 + i0,1)(1 + i1,2)2

Recall from the proof of Lemma 1 that dN1

dE0
= 1 + i0,1 when the capital constraint does

not bind. Thus
dN2

di1,2
= (1 + λL)

(
S∗ − (1− ν)

B0,2

1 + i1,2

)
so net worth is increasing in i1,2 when B0,2 is sufficiently small. Therefore, when B0,2 is
small and the constraint in the second period binds, loans are increasing in i1,2. Loans
in the first period do not depend on i1,2 because the capital constraint is slack at t = 1.
The capital constraint must then bind exactly at t = 2.
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The proof in part (1) shows that when λL2 = 0, it is strictly suboptimal to raise interest
rates in the first period as long as the constraint in the first period is slack as well.
Consider setting i0,1 = i0,2 = î such that î is the highest interest rate for which the
constraint binds in the second period. We now show that under these interest rates,
the constraint in the first period will be slack. By assumption, B0,1 and B0,2 are small
enough that N1(̂i, î) < N1(i

∗, i∗). Then

E1(̂i, î) = (1− ν)N1(̂i, î) < (1− ν)N1(i
∗, i∗) = E1(i

∗, i∗) = E0(i
∗, i∗)

so equity in the second period is lower than in the first. By the main lemma, the
reversal rate must be higher in the second period because net worth is increasing in
equity. Hence at î, the capital constraint in the first period must be slack, so by the
argument above it is never optimal to increase i0,1 from î, meaning that at an optimum
i0,1 ≤ i1,2.
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Figure 1: Bank’s balance sheet: two-period model.
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Figure 2: A numerical example of a reversal rate (dashed vertical line) due to a binding
capital constraint. The constraint binds since the losses on net interest income (NII) are not
sufficiently compensated by capital gains (CG). The ∆CG, ∆NII refer to changes relative
to their respective value at a baseline rate of i0 = 1.5%.
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Figure 3: Marginal impulse responses of consumption and capital to a monetary policy
shock in four economies. In the baseline economy (plain line), the shock occurs in the vicinity
of the steady state, implying a perfect pass-through. In the second economy (dashed line),
the marginal shock occurs after monetary shock depressing the policy rate by -1% have
already occured. In the third economy (dashed-dotted line), the marginal shock occurs after
shocks depressing the policy rate by -2% have already occured. In the fourth economy
(dashed-dotted line), the marginal shock occurs after shocks depressing the policy rate by
-4% have already occured. The reversal rate has been crossed at this stage, as the effects
are recessionary.
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Figure 4: Marginal impulse responses of deposit and loan rates to a monetary policy shock
in four economies. In the baseline economy (plain line), the shock occurs in the vicinity of
the steady state, implying a perfect pass-through. In the second economy (dashed line), the
marginal shock occurs after monetary shock depressing the policy rate by -1% have already
occured. In the third economy (dashed-dotted line), the marginal shock occurs after shocks
depressing the policy rate by -2% have already occured. In the fourth economy (dashed-
dotted line), the marginal shock occurs after shocks depressing the policy rate by -4% have
already occured.

Figure 5: Marginal impulse responses of bank net worth and leverage costs to a monetary
policy shock in four economies. In the baseline economy (plain line), the shock occurs in
the vicinity of the steady state, implying a perfect pass-through. In the second economy
(dashed line), the marginal shock occurs after monetary shock depressing the policy rate by
-1% have already occured. In the third economy (dashed-dotted line), the marginal shock
occurs after shocks depressing the policy rate by -2% have already occured. In the fourth
economy (dashed-dotted line), the marginal shock occurs after shocks depressing the policy
rate by -4% have already occured.
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Figure 6: Marginal impulse responses of bank net worth and capital funding outside the
banking system to a monetary policy shock in four economies. In the baseline economy
(plain line), the shock occurs in the vicinity of the steady state, implying a perfect pass-
through. In the second economy (dashed line), the marginal shock occurs after monetary
shock depressing the policy rate by -1% have already occured. In the third economy (dashed-
dotted line), the marginal shock occurs after shocks depressing the policy rate by -2% have
already occured. In the fourth economy (dashed-dotted line), the marginal shock occurs
after shocks depressing the policy rate by -4% have already occured.
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