Optimal Expectations

Markus K. Brunnermeier and Jonathan Parker

Princeton University

October 25, 2006
Optimal Expectations
Brunnermeier & Parker
Framework
Discussion
Literature
Applications
Portfolio Choice
General
Equilibrium
Consumption & Savings
Conclusion

- rational expectations
 - Lucas rationality

- Bayesian rationality
- Non-Bayesian rational view
Optimal Expectations
Brunnermeier & Parker

Framework
Discussion
Literature
Applications
Portfolio Choice
General Equilibrium
Consumption & Savings
Conclusion

biases: confirmation, optimism, overconfidence

rational expectations
Lucas rationality

Bayesian rationality

Non-Bayesian
Optimal Expectations

Brunnermeier & Parker

Framework
Discussion
Literature
Applications
Portfolio Choice
General Equilibrium
Consumption & Savings
Conclusion

biases: confirmation, optimism, overconfidence

rational expectations

Lucas rationality

common priors non-common priors

Harsanyi rationality

Bayesian rationality

Non-Bayesian

behavioral view

rational view
bias: confirmation, optimism, overconfidence....

rational expectations
- Lucas rationality
 - common priors
 - non-common priors

Harsanyi rationality

Bayesian rationality

Non-Bayesian

Critic: no disagreement
no-trade theorem
Brunnermeier & Parker

Rational Expectations

Framework

Discussion

Literature

Applications

Portfolio Choice

General Equilibrium

Consumption & Savings

Conclusion

Optimal Expectations

Bias: confirmation, optimism, overconfidence

Rational expectations

Lucas rationality

Common priors

Harsanyi rationality

Non-common priors

Bayesian rationality

Non-Bayesian

Critic:

no disagreement

no-trade theorem

everything goes

no structure
Overview: Three Main Elements

1. **Felicity at** t: $\hat{E}_t [U(c_1, \ldots, c_T)]$
 - Agents care about utility flow today and
 - expected utility flows in the future
 \Rightarrow happier if more optimistic

2. **No split personality**
 - Distorted beliefs distort actions
 \Rightarrow better outcomes if more rational

3. **Optimal beliefs balance these forces**
 - Beliefs maximize well-being $\frac{1}{T} E \left[\sum_{t=1}^{T} \hat{E}_t [U(c_1, \ldots, c_T)] \right]$
Overview: Three Main Elements

1. **Felicity at** t: $\hat{E}_t [U(c_1, \ldots, c_T)]$
 - Agents care about utility flow today and
 - expected utility flows in the future
 \Rightarrow happier if more optimistic

2. **No split personality**
 - Distorted beliefs distort actions
 \Rightarrow better outcomes if more rational

3. **Optimal beliefs balance these forces**
 - Beliefs maximize well-being $\frac{1}{T} E \left[\sum_{t=1}^{T} \hat{E}_t [U(c_1, \ldots, c_T)] \right]
Overview: Three Main Elements

1. **Felicity at \(t \):** \(\hat{E}_t [U(c_1, \ldots, c_T)] \)
 - Agents care about utility flow today and
 - expected utility flows in the future
 \(\Rightarrow \) happier if more optimistic

2. **No split personality**
 - Distorted beliefs distort actions
 \(\Rightarrow \) better outcomes if more rational

3. **Optimal beliefs balance these forces**
 - Beliefs maximize well-being \(\frac{1}{T} E \left[\sum_{t=1}^{T} \hat{E}_t [U(c_1, \ldots, c_T)] \right] \)
1. Optimal Expectations Framework
2. Discussion
3. Related Literature
4. Applications
 - Portfolio Choice
 - General Equilibrium
 - Consumption & Savings
5. Conclusion
The General Framework

Actions: At each t agent chooses c_t to maximize felicity t given subjective beliefs $\hat{\pi}(s_t|s_{t-1})$, and resource constraints.

Felicity at t: $\hat{E}_t[U(c_1, \ldots, c_T)]$

with time-separable exponential discounting equals

$$
\sum_{\tau=1}^{t-1} \beta^\tau u(c_\tau) + \beta^t u(c_t) + \hat{E}_t \left[\sum_{\tau=t+1}^{T} \beta^\tau u(c_\tau) \right]
$$

- 'memory' utility
- 'expected' utility

Note: βs for past consumption could be replaced with δ.
Utility Flow, Felicity and Well-being

Felicity at $t = 1$

$$u(c_1) + \sum_{\tau = 1}^{T-t} \beta^\tau u(c_{1+\tau})$$
Utility Flow, Felicity and Well-being

\[u(c_1) + \sum_{\tau=1}^{T-t} \beta^{\tau} u(c_{1+\tau}) \]

- **Felicity at \(t = 1 \)**
- **Felicity at \(t = 2 \)**
- **Felicity at \(t = 3 \)**

Well-being
Beliefs: \(\text{At } t = 0 \text{ optimal beliefs are } \hat{\pi}^{OE}(s_t|s_{t-1}) \)

that maximize

Well-being: \(\mathcal{W} = \frac{1}{T} E \left[\sum_{t=1}^{T} \hat{E}_t [U(\cdot)] \right] \)

subject to:

- agent behavior given these beliefs
- \(\hat{\pi}^{OE}(s_t|s_{t-1}) \) are probabilities
- \(\hat{\pi}^{OE}(s_t|s_{t-1}) = 0 \) if \(\pi(s_t|s_{t-1}) = 0 \)
Two-period Example with Consumption at $t = 2$

<table>
<thead>
<tr>
<th></th>
<th>$t = 1$</th>
<th>$t = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>felicity in period 1</td>
<td>$\beta \hat{E}[u(c_2)]$</td>
<td>$\beta u(c_2)$</td>
</tr>
<tr>
<td>felicity in period 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actions maximize felicity: $\beta \hat{E}[u(c_2)]$

Beliefs maximize well-being:

$$\mathcal{W} = \frac{1}{2} \beta \hat{E}[u(c_2)] + \frac{1}{2} \beta E[u(c_2)]$$
Two-period Example with Consumption at $t = 2$

<table>
<thead>
<tr>
<th></th>
<th>$t = 1$</th>
<th>$t = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felicity in period 1</td>
<td>$\beta \hat{E}[u(c_2)]$</td>
<td>$\beta u(c_2)$</td>
</tr>
<tr>
<td>Felicity in period 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actions maximize felicity: $\beta \hat{E}[u(c_2)]$

Beliefs maximize well-being: $\mathcal{W} = \frac{1}{2} \beta \hat{E}[u(c_2)] + \frac{1}{2} \beta E[u(c_2)]$
1. Subjective probabilities are chosen once and forever
 - Bayes’ Rule (LIE) holds,
 - Can be interpreted as choice of priors
2. If beliefs are objective, wellbeing = felicity
 - Only incentive to distort beliefs is anticipatory utility gain
3. Rational expectations are optimal only if
 - anticipatory utility does enter felicities or
 - anticipatory utility does not enter well-being W.
4. Different memory discounting in felicity
 - Paper’s results hold qualitatively for any memory discounting
 - But can introduce additional incentives to bias beliefs
1. Subjective probabilities are chosen once and forever
 - Bayes’ Rule (LIE) holds,
 - Can be interpreted as choice of priors
2. If beliefs are objective, wellbeing = felicity
 - Only incentive to distort beliefs is anticipatory utility gain
3. Rational expectations are optimal only if
 - anticipatory utility does enter felicities or
 - anticipatory utility does not enter well-being W.
4. Different memory discounting in felicity
 - Paper’s results hold qualitatively for any memory discounting
 - But can introduce additional incentives to bias beliefs
1. Subjective probabilities are chosen once and forever
 • Bayes’ Rule (LIE) holds,
 • Can be interpreted as choice of priors
2. If beliefs are objective, wellbeing = felicity
 • Only incentive to distort beliefs is anticipatory utility gain
3. Rational expectations are optimal *only if*
 • anticipatory utility does enter felicities or
 • anticipatory utility does not enter well-being \(W. \)
4. Different memory discounting in felicity
 • Paper’s results hold qualitatively for any memory discounting
 • But can introduce additional incentives to bias beliefs
Discussion

1. Subjective probabilities are chosen once and forever
 - Bayes’ Rule (LIE) holds,
 - Can be interpreted as choice of priors

2. If beliefs are objective, wellbeing = felicity
 - Only incentive to distort beliefs is anticipatory utility gain

3. Rational expectations are optimal only if
 - anticipatory utility does enter felicities or
 - anticipatory utility does not enter well-being \mathcal{W}.

4. Different memory discounting in felicity
 - Paper’s results hold qualitatively for any memory discounting
 - But can introduce additional incentives to bias beliefs
Frictionless Extreme

Why optimal expectations?

- It is optimal: “as if” interpretation
- Parents/Upbringing affects (prior) beliefs
- Neuroscientific “story”:

 prefrontal cortex exerts effort to reduce overoptimism

 (subconscious process)

Payoff: biases are endogenous

- biases are small when distort behavior a lot
- large when provide the most expected future utility
Frictionless Extreme

Why optimal expectations?
- It is optimal: “as if” interpretation
- Parents/Upbringing affects (prior) beliefs
- Neuroscientific “story”:

 prefrontal cortex exerts effort to reduce overoptimism

(subconscious process)

Payoff: biases are endogenous
- biases are small when distort behavior a lot
- large when provide the most expected future utility
Frictionless Extreme

Why optimal expectations?
- It is optimal: “as if” interpretation
- Parents/Upbringing affects (prior) beliefs
- Neuroscientific “story”:

 prefrontal cortex exerts effort to reduce overoptimism

 (subconscious process)

Payoff: biases are endogenous
- biases are small when distort behavior a lot
- large when provide the most expected future utility
Related Literature

1. Adam Smith (1776)
 “That the chance of gain is naturally overvalued, ...”
 “That the chance of loss is frequently undervalued, ...”

2. Anticipatory utility (‘Pleasure of Expectation’):
 - Bentham, Hume, Böhm-Barwerk, Marshall, Loewenstein,
 - Geanakopolis-Pearce-Stacchetti, Caplin-Leahy

3. Models of belief distortions:
 - cognitive dissonance (Akerlof-Dickens),
 - agents choose beliefs (Yariv and Landier),
 - intrapersonal (confidence) games (Bénabou-Tirole),
 - cognitive dissonance and overconfidence (Gervais-O’Dean),
 - procrastination (O’Donoghue-Rabin),...
 - follow up: link to prospect theory (Gollier), (Glaeser)
1 Adam Smith (1776)
 “That the chance of gain is naturally overvalued, ...”
 “That the chance of loss is frequently undervalued, ...”

2 Anticipatory utility (‘Pleasure of Expectation’):
 • Bentham, Hume, Böhm-Barwerk, Marshall, Loewenstein,
 • Geanakopolis-Pearce-Stacchetti, Caplin-Leahy

3 Models of belief distortions:
 • cognitive dissonance (Akerlof-Dickens),
 • agents choose beliefs (Yariv and Landier),
 • intrapersonal (confidence) games (Bénabou-Tirole),
 • cognitive dissonance and overconfidence (Gervais-O’Dean),
 • procrastination (O’Donoghue-Rabin),...
 • follow up: link to prospect theory (Gollier), (Glaeser)
1. Adam Smith (1776)
 “That the chance of gain is naturally overvalued, ...”
 “That the chance of loss is frequently undervalued, ...”

2. Anticipatory utility (‘Pleasure of Expectation’):
 - Bentham, Hume, Böhm-Barwerk, Marshall, Loewenstein,
 - Geanakopolis-Pearce-Stacchetti, Caplin-Leahy

3. Models of belief distortions:
 - cognitive dissonance (Akerlof-Dickens),
 - agents choose beliefs (Yariv and Landier),
 - intrapersonal (confidence) games (Bénabou-Tirole),
 - cognitive dissonance and overconfidence (Gervais-O’Dean),
 - procrastination (O’Donoghue-Rabin),...
 - follow up: link to prospect theory (Gollier), (Glaeser)
Applications

• Portfolio choice
 ⇒ preference for skewed returns

• General equilibrium
 ⇒ endogenous heterogeneous prior beliefs
 ⇒ equity premium puzzle versus long shot phenomena

• Consumption-savings problem with stochastic income
 ⇒ optimism and overconfidence in future income
 ⇒ consumption profiles concave due to “news”
 ⇒ choose incomplete consumption insurance

• Optimal timing of a single task
 ⇒ procrastination, planning fallacy, context effect
Applications

- Portfolio choice
 ⇒ preference for skewed returns

- General equilibrium
 ⇒ endogenous heterogeneous prior beliefs
 ⇒ equity premium puzzle versus long shot phenomena

- Consumption-savings problem with stochastic income
 ⇒ optimism and overconfidence in future income
 ⇒ consumption profiles concave due to “news”
 ⇒ choose incomplete consumption insurance

- Optimal timing of a single task
 ⇒ procrastination, planning fallacy, context effect
Applications

• Portfolio choice
 ⇒ preference for skewed returns

• General equilibrium
 ⇒ endogenous heterogeneous prior beliefs
 ⇒ equity premium puzzle versus long shot phenomena

• Consumption-savings problem with stochastic income
 ⇒ optimism and overconfidence in future income
 ⇒ consumption profiles concave due to “news”
 ⇒ choose incomplete consumption insurance

• Optimal timing of a single task
 ⇒ procrastination, planning fallacy, context effect
Applications

- Portfolio choice
 \(\Rightarrow \) preference for skewed returns

- General equilibrium
 \(\Rightarrow \) endogenous heterogenous prior beliefs
 \(\Rightarrow \) equity premium puzzle versus long shot phenomena

- Consumption-savings problem with stochastic income
 \(\Rightarrow \) optimism and overconfidence in future income
 \(\Rightarrow \) consumption profiles concave due to “news”
 \(\Rightarrow \) choose incomplete consumption insurance

- Optimal timing of a single task
 \(\Rightarrow \) procrastination, planning fallacy, context effect
Portfolio Choice

- Setup

1. **Two period problem:**
 - invest in period 1, consume in period 2

2. **Two assets:**
 - a risk-free asset, return R; a risky asset, return $R + Z$

3. **Uncertainty:**
 - $S > 2$ states, $\pi_s > 0$ for $s = 1$ to S,
 - $Z_s < Z_{s+1}$, $Z_1 < 0 < Z_S$

4. $c \geq 0$ in all states
Portfolio Choice

• Setup

1. Two period problem:
 invest in period 1, consume in period 2
2. Two assets:
 a risk-free asset, return R; a risky asset, return $R + Z$
3. Uncertainty:
 $S > 2$ states, $\pi_s > 0$ for $s = 1$ to S,
 $Z_s < Z_{s+1}$, $Z_1 < 0 < Z_S$
4. $c \geq 0$ in all states
Portfolio Choice

• Setup

1. Two period problem:
 invest in period 1, consume in period 2

2. Two assets:
 a risk-free asset, return \(R \); a risky asset, return \(R + Z \)

3. Uncertainty:
 \(S > 2 \) states, \(\pi_s > 0 \) for \(s = 1 \) to \(S \),
 \(Z_s < Z_{s+1}, Z_1 < 0 < Z_S \)

4. \(c \geq 0 \) in all states
Portfolio Choice

• Setup

1. Two period problem: invest in period 1, consume in period 2
2. Two assets: a risk-free asset, return R; a risky asset, return $R + Z$
3. Uncertainty: $S > 2$ states, $\pi_s > 0$ for $s = 1$ to S, $Z_s < Z_{s+1}$, $Z_1 < 0 < Z_S$
4. $c \geq 0$ in all states
Portfolio Choice

Stage 2: Agent

\[\max_{\alpha, \beta} \beta \sum_{s=1}^{S} \hat{\pi}_s u \left(R + \alpha Z_s \right) \]

FOC:
\[0 = \sum_{s=1}^{S} \hat{\pi}_s u' \left(R + \alpha Z_s \right) Z_s \quad \Rightarrow \alpha^*(\hat{\pi}) \]

Stage 1: Choose \(\hat{\pi}_s \) to maximize well-being

\[\frac{1}{2} \beta \sum_{s=1}^{S} \hat{\pi}_s u \left(R + \alpha^* Z_s \right) + \frac{1}{2} \beta \sum_{s=1}^{S} \pi_s u \left(R + \alpha^* Z_s \right) \]

\(\underline{\text{felicity at } t = 1} \)

\(\underline{\text{‘average’ utility at } t = 2} \)

FOC:
\[\frac{\beta}{2} (u_s - u_s') = \frac{\beta}{2} \sum_{s=1}^{S} \pi_s u' \left(R + \alpha^* Z_s \right) Z_s \frac{d\alpha^*}{d\hat{\pi}_s'} \]

\(\underline{\text{benefits of anticipation}} \)

\(\underline{\text{costs of changed behavior}} \)
Portfolio Choice

Stage 2: Agent \(\max_{\alpha \beta} \sum_{s=1}^{S} \hat{\pi}_s u (R + \alpha Z_s) \)

\[
\text{FOC: } 0 = \sum_{s=1}^{S} \hat{\pi}_s u' (R + \alpha Z_s) Z_s \Rightarrow \alpha^*(\hat{\pi})
\]

Stage 1: Choose \(\hat{\pi}_s \) to maximize well-being

\[
\frac{1}{2} \beta \sum_{s=1}^{S} \hat{\pi}_s u (R + \alpha^* Z_s) \quad \frac{1}{2} \beta \sum_{s=1}^{S} \pi_s u (R + \alpha^* Z_s)
\]

- \(\frac{1}{2} \beta \sum_{s=1}^{S} \hat{\pi}_s u (R + \alpha^* Z_s) \): felicity at \(t = 1 \)
- \(\frac{1}{2} \beta \sum_{s=1}^{S} \pi_s u (R + \alpha^* Z_s) \): ‘average’ utility at \(t = 2 \)

\[
\text{FOC: } \frac{\beta}{2} (u_s - u_{s'}) = \frac{\beta}{2} \sum_{s=1}^{S} \pi_s u' (R + \alpha^* Z_s) Z_s \frac{d\alpha^*}{d\hat{\pi}_s'}
\]

- \(\frac{\beta}{2} (u_s - u_{s'}) \): benefits of anticipation
- \(\frac{\beta}{2} \sum_{s=1}^{S} \pi_s u' (R + \alpha^* Z_s) Z_s \frac{d\alpha^*}{d\hat{\pi}_s'} \): costs of changed behavior
Portfolio Choice

Stage 2: Agent \[\max_{\alpha} \beta \sum_{s=1}^{S} \hat{\pi}_s u(R + \alpha Z_s) \]

FOC: \[0 = \sum_{s=1}^{S} \hat{\pi}_s u'(R + \alpha Z_s) Z_s \Rightarrow \alpha^*(\hat{\pi}) \]

Stage 1: Choose \(\hat{\pi}_s \) to maximize well-being

\[
\frac{1}{2} \beta \sum_{s=1}^{S} \hat{\pi}_s u(R + \alpha^* Z_s) + \frac{1}{2} \beta \sum_{s=1}^{S} \pi_s u(R + \alpha^* Z_s)
\]

- felicity at \(t = 1 \)
- ‘average’ utility at \(t = 2 \)

FOC:

\[
\frac{\beta}{2} (u_s - u_{s'}) = \frac{\beta}{2} \sum_{s=1}^{S} \pi_s u'(R + \alpha^* Z_s) Z_s \frac{d\alpha^*}{d\hat{\pi}_{s'}}
\]

- benefits of anticipation
- costs of changed behavior
Proposition Excess risk taking due to optimism

(i) Agents are optimistic about states with high portfolio payout

\[
\text{if } \alpha^* > 0, \sum_{s=1}^{S} (\hat{\pi}_s - \pi_s) u'(R + \alpha^* Z_s) Z_s > 0;
\]
\[
\text{if } \alpha^* < 0, \sum_{s=1}^{S} (\hat{\pi}_s - \pi_s) u'(R + \alpha^* Z_s) Z_s < 0.
\]

(ii) Agents go even more long (short) than agent with RE or in the opposite direction

\[
\text{if } E[Z] > 0, \text{ then } \alpha^* > \alpha^{RE} > 0 \text{ or } \alpha^* < 0;
\]
\[
\text{if } E[Z] < 0, \text{ then } \alpha^* < \alpha^{RE} < 0 \text{ or } \alpha^* > 0;
\]
Preference for Skewed Returns

- **Empirical Phenomena:**
 - Horse race long shots: Golec and Tamarkin (1998)
 - Lottery demand: Garrett and Sobel (1999)
 - Security design? Swedish lottery bonds, PS-Lotteriesparen

- **Setup**
 - 2 states with payoffs: $Z_1 < 0 < Z_2$,
 - hold variance and mean fixed and $E[Z] < 0$
Preference for Skewed Returns

- **Empirical Phenomena:**
 - Horse race long shots: Golec and Tamarkin (1998)
 - Lottery demand: Garrett and Sobel (1999)
 - Security design? Swedish lottery bonds, PS-Lotteriesparen

- **Setup**
 - 2 states with payoffs: $Z_1 < 0 < Z_2$,
 - hold variance and mean fixed and $E[Z] < 0$

 increase skewness
Proposition Skewness

An agent with an unbounded utility function holds some of the asset even though its mean payoff is negative if the payoff is sufficiently skewed.

• Remark:
 • Agent goes long for large π_1 even though $E[Z] < 0$, since
 • there is not much room to short and distort beliefs
 • shorting becomes very risky
General Equilibrium

- **Empirical Phenomena:**
 - betting & gambling
 - high trading volume (stock and FX market)
 - home bias
 ➜ *endogenous* heterogenous prior beliefs?
 - negatively skewed: equity premium puzzle
 - positively skewed: IPO underperformance, long-shots

- **Setup:**
 The portfolio choice problem with
 - A continuum of agents with identical endowments
 - A fixed supply of ‘bonds’ with normalization $R = 1$
 - The risky asset in zero net supply: $1 + Z_s = \frac{1+\varepsilon_s}{P_e}$
Empirical Phenomena:
- betting & gambling
- high trading volume (stock and FX market)
- home bias
\[\Leftarrow \text{endogenous heterogenous prior beliefs?} \]
- negatively skewed: equity premium puzzle
- positively skewed: IPO underperformance, long-shots

Setup:
The portfolio choice problem with
- A continuum of agents with identical endowments
- A fixed supply of ‘bonds’ with normalization \(R = 1 \)
- The risky asset in zero net supply: \(1 + Z_s = \frac{1+e_s}{P_e} \)
Proposition Heterogeneous Priors

For $S > 2$ agents split into two groups with different beliefs

(i) Optimists with $\hat{E}^i [Z^{OE}] > 0$ and $\alpha^{OE,i} > 0 = \alpha^{RE}$

(ii) Pessimists with $\hat{E}^j [Z^{OE}] < 0$ and $\alpha^{OE,j} < 0$

both groups trade against each other and $\{\hat{\pi}^i\} \neq \{\pi\} \neq \{\hat{\pi}^j\}$.

• Example
 • $u(c) = \frac{1}{1-\gamma} c^{1-\gamma}$ with $\gamma = 3$,
 • $\pi_1 = 0.25$, $\pi_2 = 0.75$,
 • $\varepsilon_1 = -0.6$, $\varepsilon_2 = 0.2$ so $P^{RE} = 1$.
Proposition Heterogeneous Priors

For \(S > 2 \) agents split into two groups with different beliefs

(i) Optimists with \(\hat{E}^i [Z^{OE}] > 0 \) and \(\alpha^{OE,i} > 0 = \alpha^{RE} \)

(ii) Pessimists with \(\hat{E}^j [Z^{OE}] < 0 \) and \(\alpha^{OE,j} < 0 \)

both groups trade against each other and \(\{\hat{\pi}^i\} \neq \{\pi\} \neq \{\hat{\pi}^j\} \).

- Example
 - \(u(c) = \frac{1}{1-\gamma} c^{1-\gamma} \) with \(\gamma = 3 \),
 - \(\pi_1 = 0.25, \pi_2 = 0.75, \)
 - \(\varepsilon_1 = -0.6, \varepsilon_2 = 0.2 \) so \(P^{RE} = 1 \).
Figure: Wellbeing as a function of subjective beliefs, $\hat{\pi}_2$
In this example, as we vary the economic environment, beliefs change . . .

\[P^{OE} > P^{RE} = 1 \] if payoff is positively skewed (long-shots, IPO)

\[P^{OE} < P^{RE} = 1 \] if payoff is negatively skewed (stock market).

Conjecture

For multi-asset case with positive net supply:

- Heterogeneity in beliefs is less pronounced.
- Agents invest in different skewed assets (forgo diversification benefits to hold skewed assets.)

Complicates Aggregation:

Representative agent has different preference structure from individual (possibly identical) investors.
In this example, as we vary the economic environment, beliefs change . . .

\[P^{OE} > P^{RE} = 1 \] if payoff is positively skewed (long-shots, IPO)

\[P^{OE} < P^{RE} = 1 \] if payoff is negatively skewed (stock market).

Conjecture

For multi-asset case with positive net supply:

- Heterogeneity in beliefs is less pronounced.
- Agents invest in different skewed assets
 (forgo diversification benefits to hold skewed assets.)

Complicates Aggregation:
Representative agent has different preference structure from individual (possibly identical) investors.
Consumption & Savings

- **Empirical Phenomena:**
 - households *expect* upward sloping consumption profile (Barsky et al. (1997))
 - *actual* average consumption growth is non-positive and profiles are concave (Gourinchas & Parker (2002))

- **Setup:**
 - Finite-lived agent, quadratic utility $u(c_t) = ac_t - \frac{1}{2} bc_t^2$
 - one risk-free asset, $R\beta = 1$
 - i.i.d. income:
 - *Objective prob.* y_t independent over time $\Pi(y_t \mid y_{t-1})$
 - $d\Pi(y_t) > 0$ for all $y \in [\underline{y}, \bar{y}]$
 - *Subjective prob.* $\hat{\Pi}(y_t \mid y_{t-1}) \geq 0$ for all $y \in [\underline{y}, \bar{y}]$
Optimal Consumption

Euler equation:

\[c_t \left(A_t, y_t \right) = \hat{E} \left[c_{t+1} \left(A_{t+1}, y_{t+1} \right) \mid y_t \right] \]

Consumption rule:

\[c_t^* \left(y_t \right) = \frac{1 - R^{-1}}{1 - R^{-(T-t)}} \left(A_t + y_t + \sum_{\tau=1}^{T-t} R^{-\tau} \hat{E} \left[y_{t+\tau} \mid y_t \right] \right) \]

Note: \(c_t^* \) depends only on \(\hat{E} \left[y_{t+\tau} \mid y_t \right] \) (not higher moments)
Optimal Consumption

Euler equation:

\[c_t \left(A_t, y_t \right) = \hat{E} \left[c_{t+1} \left(A_{t+1}, y_{t+1} \right) \mid y_t \right] \]

Consumption rule:

\[c_t^* \left(y_t \right) = \frac{1 - R^{-1}}{1 - R^{-(T-t)}} \left(A_t + y_t + \sum_{\tau=1}^{T-t} R^{-\tau} \hat{E} \left[y_{t+\tau} \mid y_t \right] \right) \]

Note: \(c_t^* \) depends only on \(\hat{E} \left[y_{t+\tau} \mid y_t \right] \) (not higher moments)
So \Rightarrow Variance only lowers anticipatory utility, but does not affect c

\Rightarrow OE exhibit no uncertainty for quadratic utility.

Therefore

$$\hat{E} \left[u (c_{t+\tau}^*) | y_t \right] = u \left(\hat{E} \left[c_{t+\tau}^* | y_t \right] \right)$$

Note: agents who expect risk have the same behavior and lower felicity
So \Rightarrow Variance only lowers anticipatory utility, but does not affect c

\Rightarrow OE exhibit no uncertainty for quadratic utility.

Therefore

$$\hat{E} \left[u \left(c_{t+\tau}^* \right) | y_t \right] = u \left(\hat{E} \left[c_{t+\tau}^* | y_t \right] \right)$$

Note: agents who expect risk have the same behavior and lower felicity
Certainty + Euler equation ⇒ wellbeing simplifies to

\[\frac{1}{T} \sum_{t=1}^{T} \psi_t E \left[u \left(c_t^* (y_t) \right) \right] \]

and FOC implies an actual consumption path of

\[c_t^* (y_t) = \frac{a}{b} - \frac{\psi_{t+\tau}}{\psi_t} R^\tau \left(\frac{a}{b} - E \left[c_{t+\tau}^* (y_{t+\tau}) \mid y_t \right] \right) \]

where \(\psi_t = \beta^{t-1} \left(1 + \sum_{\tau=1}^{T-t} (\beta^\tau + (\beta \delta)^\tau) \right) \)
average consumption path for agent with rational expectations

Figure: Consumption Path
Figure: Consumption Path

average consumption path

overconsumption (overoptimism)

consumption at $t = 1$
for agent with optimal expectations
Optimal Expectations

Brunnermeier & Parker

Framework
Discussion
Literature
Applications
Portfolio Choice
General Equilibrium
Consumption & Savings

Conclusion

Figure: Consumption Path

overconsumption (overoptimism)

average consumption path

consumption at $t = 1$
for agent with optimal expectations

expected consumption path for agent with optimal expectations at $t = 1$
Reduce consumption since income in $t=2$ was lower than expected. Average consumption path for an agent with optimal expectations is shown. The expected consumption path at $t=2$ is also indicated.
Optimal Expectations

Brunnermeier & Parker

Framework
Discussion
Literature
Applications
Portfolio Choice
General Equilibrium
Consumption & Savings
Conclusion

Figure: Consumption Path
Figure: Consumption Path

Initial over-consumption (overoptimism)
Figure: Consumption Path

- Initial over-consumption (overoptimism)
- Average consumption path
- $c^{RE}(t)$
- $c^{OE}(t)$
Proposition Undersaving

For all $t < T$

(i) $\hat{E} \left[\sum_{\tau=0}^{T-t-1} R^{-\tau} y_{t+1+\tau} \mid y_t \right] > E \left[\hat{E} \left[\sum_{\tau=0}^{T-t-1} R^{-\tau} y_{t+1+\tau} \mid y_t \right] \right]$

(ii) $c^*_t (y_{t}) > E \left[c^*_{t+1} (y_{t+1}) \mid y_t \right]$

(iii) $\hat{E} \left[c^*_{t+1} (y_{t+1}) \mid y_t \right] > E \left[c^*_{t+1} (y_{t+1}) \mid y_t \right]$

(iv) as $T \to \infty$, $c^*_t (y_{t}) \to c^{RE}_t (y_{t})$

- Model predictions
 - optimism and overconfidence
 - consumption profile hump-shaped
 - agent surprised by declining consumption on average
 - “overconsumption” declines with costs (length of life)
Proposition Undersaving

For all $t < T$

(i) $\hat{E} \left[\sum_{\tau=0}^{T-t-1} R^{-\tau} y_{t+1+\tau} | y_t \right] > E \left[\hat{E} \left[\sum_{\tau=0}^{T-t-1} R^{-\tau} y_{t+1+\tau} | y_t \right] \right]$

(ii) $c^*_t (y_t) > E \left[c^*_{t+1} (y_{t+1}) | y_t \right]$

(iii) $\hat{E} \left[c^*_{t+1} (y_{t+1}) | y_t \right] > E \left[c^*_{t+1} (y_{t+1}) | y_t \right]$

(iv) as $T \to \infty$, $c^*_t (y_t) \to c^{RE}_t (y_t)$

- Model predictions
 - optimism and overconfidence
 - consumption profile hump-shaped
 - agent surprised by declining consumption on average
 - “overconsumption” declines with costs (length of life)
• Rational expectations are sub-optimal:
 • Agents with rational beliefs makes the ex post best decisions
 • but agents that care about the future can be happier with some optimism
 • Utility gain determines biases

• Optimal expectations is a structural model of non-rational beliefs
 • beliefs are most distorted when decision errors are small
 • beliefs are most distorted when “dream” benefits are largest
 • excess risk taking due to optimism, preference for skewness
 • endogenous heterogenous beliefs; agreeing to disagree
 • overconfidence, optimism, and lack of consumption insurance
 • subjective procrastination, planning fallacy, context effect
Conclusion

• Rational expectations are sub-optimal:
 • Agents with rational beliefs makes the ex post best decisions
 • but agents that care about the future can be happier with some optimism
 • Utility gain determines biases

• Optimal expectations is a structural model of non-rational beliefs
 • beliefs are most distorted when decision errors are small
 • beliefs are most distorted when “dream” benefits are largest
 • excess risk taking due to optimism, preference for skewness
 • endogenous heterogenous beliefs; agreeing to disagree
 • overconfidence, optimism, and lack of consumption insurance
 • subjective procrastination, planning fallacy, context effect