Local Projection Inference is Simpler and More Robust Than You Think

José Luis Montiel Olea Mikkel Plagborg-Møller
Columbia University Princeton University

Gary Chamberlain Seminar
April 24, 2020
Inference on impulse responses

- **Impulse responses** are central objects for causal/counterfactual analysis in macro.
 - Response of $y_{i,t}$ due to exogenous policy change, at horizons $h = 1, 2, \ldots$

- How to do frequentist inference?

1. **Vector Autoregression (VAR):** Iterate on
 \[
 y_t = \sum_{\ell=1}^{p} A_\ell y_{t-\ell} + u_t.
 \]
 Standard errors: delta method or bootstrap.

2. **Local Projection (LP):** Jordà (2005)
 \[
 y_{i,t+h} = \beta_i(h)' y_t + \text{controls} + \xi_{i,t}(h), \quad h = 1, 2, \ldots
 \]
 Standard errors: HAC/HAR, since $\xi_{i,t}(h)$ is serially correlated.
• **Common issues in applied work:**
 1. Persistent data.
 2. Interest in long impulse response horizons h.

• **VAR inference:** Standard procedures break down in parts of parameter space.
 - (Near-)unit roots. Phillips (1998); Inoue & Kilian (2020)
 - Asymptotics: fixed h. Non-normal limit when $h = h_T \propto \sqrt{T}$ or $\propto T$. Wright (2000); Pesavento & Rossi (2006, 2007); Mikusheva (2012)

• **LP inference:** Despite widespread use, no theoretical comparisons with VARs.
 - Jordà (2005); Kilian & Kim (2011); Brugnolini (2018)
Example: Ramey (2016) handbook chapter

Gertler-Karadi monetary shock, 90\% CI. Sample: 1990m1–2012m6.

Largest horizon $h = 18\%$ of sample size T.
Our contributions

- Assume VAR(p) model.

1. Lag-augmented LP inference:

$$y_{i,t+h} = \hat{\beta}_{i}(h)'y_{t} + \sum_{\ell=1}^{p} \hat{\gamma}_{i,\ell}(h)'y_{t-\ell} + \hat{\xi}_{i,t}(h), \quad h = 1, 2, \ldots$$

2. Lag-augmented LP inference is uniformly valid over both...

 i. DGP. Includes unit root.

 ii. Horizon h. Includes $h = h_{T} \propto T^{\eta}$ for $\eta \in [0, 1)$ (and $\propto T$ if no unit root).

3. Lag augmentation obviates need for HAC/HAR s.e.

 - Heteroskedasticity-robust (Eicker-Huber-White) s.e. suffice.

 - Simple. No need to choose HAR procedure, tuning parameters.
Related literature

- **LP vs. VAR: identification, estimation.** Plagborg-Møller & Wolf (2019)

- **VAR inference.**
 - Lag augmentation: Toda & Yamamoto (1995); Dolado & Lütkepohl (1996); Inoue & Kilian (2020)
 - Uniformity: Mikusheva (2007, 2012); I&K (2020)

- **LP inference.**
 - Pointwise asymptotics: Jordà (2005); Kilian & Lütkepohl (2017); Stock & Watson (2018)
 - Lag augmentation: Dufour, Pelletier & Renault (2006); Breitung & Brüggemann (2020)

This paper: uniform LP inference, long+short horizons, simple s.e.
Outline

1. Overview of results: AR(1) case
2. Comparison with alternative methods: theory and simulations
3. Formal uniformity result: AR(1) case
4. General VAR(p) case
5. Empirical illustration
6. Conclusion
Model

- Start with univariate AR(1) model for clarity:

\[y_t = \rho y_{t-1} + u_t, \quad t = 1, 2, \ldots, T, \quad y_0 = 0. \]

- Parameter of interest: impulse response at horizon \(h \).

\[\beta(\rho, h) \equiv \rho^h, \quad \rho \in [-1, 1], \quad h \in \mathbb{N}. \]

Assumption 1: Mean independence

\(\{u_t\} \) is strictly stationary, and \(E(u_t \mid \{u_s\}_{s \neq t}) = 0. \)

- Stronger than MDS: \(E(u_t \mid \{u_s\}_{s < t}) = 0. \)

- Satisfied for i.i.d. \(u_t \). Also allows many types of heteroskedasticity/SV.
Non-augmented local projection: fragile, HAR s.e.

- **AR(1) model implies**
 \[y_{t+h} = \beta(\rho, h) y_t + \xi_t(\rho, h) \]
 \[\equiv \rho^h \quad \equiv \sum_{\ell=1}^{h} \rho^{h-\ell} u_{t+\ell} \]

- **Non-augmented LP estimator**: regress \(y_{t+h} \) on \(y_t \) (no controls).
 - Consistent and asy. normal when \(|\rho| \ll 1 \).
 - Non-normal limit when \(\rho \approx 1 \) since \(y_t \) non-stationary.
 - Requires HAR s.e. even when \(|\rho| \ll 1 \), since \(\xi_t(\rho, h) \) serially correlated. HAR inference challenging in small samples. Involves tuning parameters. Müller (2007, 2014); Lazarus, Lewis, Stock & Watson (2018)
Lag-augmented local projection: robust inference

• Lag-augmented LP:

\[
\begin{pmatrix}
\hat{\beta}(h) \\
\hat{\gamma}(h)
\end{pmatrix}
\equiv
\left(\sum_{t=1}^{T-h} x_t x_t'\right)^{-1} \sum_{t=1}^{T-h} x_t y_{t+h}, \quad x_t \equiv (y_t, y_{t-1})'.
\]

• Would get same \(\hat{\beta}(h)\) if we regressed on \((u_t, y_{t-1})\), since \(u_t = y_t - \rho y_{t-1}\).

• \(\hat{\beta}(h)\) has uniform normal limit, since

\[
y_{t+h} = \beta(\rho, h) u_t + \beta(\rho, h + 1) y_{t-1} + \xi_t(\rho, h).
\]

• \(\hat{\gamma}(h)\) non-normal when \(\rho \approx 1\), but we don’t care.
Lag-augmented local projection: simple standard errors

\[y_{t+h} = \beta(\rho, h)u_t + \beta(\rho, h+1)y_{t-1} + \xi_t(\rho, h) \equiv \sum_{\ell=1}^{h} \rho^{h-\ell} u_{t+\ell} \]

- **Bonus:** lag augmentation simplifies standard errors.

- **Leading term in asymptotic expansion:**

 \[\hat{\beta}(h) \approx \beta(\rho, h) + \frac{\sum_{t=1}^{T-h} \xi_t(\rho, h)u_t}{\sum_{t=1}^{T-h} u_t^2}. \]

- \(\xi_t(\rho, h) \) is serially correlated, but scores \(\xi_t(\rho, h)u_t \) are not: For \(s < t \),

 \[E[\xi_t(\rho, h)u_t \xi_s(\rho, h)u_s] = E[\xi_t(\rho, h)u_t \xi_s(\rho, h) E(u_s \mid u_{s+1}, u_{s+2}, \ldots)] = 0 \]

- Requires \(E(u_t \mid \{u_s\}_{s>t}) = 0 \). MDS is not enough.
Lag-augmented local projection: robust inference

- Heteroskedasticity-robust (Eicker-Huber-White) s.e. $\hat{s}(h)$ suffice. No tuning param’s.

- Define usual confidence interval:

$$\hat{C}(h, \alpha) \equiv \left[\hat{\beta}(h) - z_{1-\alpha/2} \hat{s}(h), \hat{\beta}(h) + z_{1-\alpha/2} \hat{s}(h) \right].$$

- Proposition: This CI is uniformly valid.

$$\inf_{\rho \in [-1,1]} \inf_{1 \leq h \leq \bar{h}_T} P_{\rho} \left(\beta(\rho, h) \in \hat{C}(h, \alpha) \right) \to 1 - \alpha,$$

for any seq \(\{\bar{h}_T\} \in \mathbb{N} \) such that $\bar{h}_T / T \to 0$.

- Further result: If we restrict $|\rho| \leq 1 - a$ for $a > 0$, then even $\bar{h}_T \propto T$ is OK.

- Non-normal limit for $\rho = 1$, $h = h_T \propto T$.
Outline

1. Overview of results: AR(1) case
2. Comparison with alternative methods: theory and simulations
3. Formal uniformity result: AR(1) case
4. General VAR(p) case
5. Empirical illustration
6. Conclusion
Fragility of AR inference

• Simple lag-aug LP inference robust to persistence ρ and horizon h. Not true for textbook AR delta method inference. Phillips (1998); Benkwitz et al. (2000); Pesavento & Rossi (2007)

• Lag-augmented AR: $\hat{\beta}_{\text{ARLA}}(h) \equiv \hat{\rho}_1^h$, where $y_t = \hat{\rho}_1 y_{t-1} + \hat{\rho}_2 y_{t-2} + \hat{u}_t$.

 • Uniformly \sqrt{T}-normal limit for fixed h.

 • Efron bootstrap CI valid at long horizons. Inoue & Kilian (2020)

 • But estimator is inconsistent at horzs $h = h_T \geq \kappa \sqrt{T}$ when $\rho \approx 1$. Confidence interval does not shrink with T (length can even explode), unlike LP.

• AR grid bootstrap valid at short+long horizons, but not intermediate. Computationally intensive. Hansen (1999); Mikusheva (2012)
Relative efficiency in stationary, fixed-horizon case

- Consider a stationary, homoskedastic VAR model. Fix the horizon h.
- Then textbook non-augmented AR estimator achieves semiparametric efficiency bound.
- **Ambiguous** ranking of asymptotic variances of inefficient procedures:
 1. Lag-augmented AR.
 2. Lag-augmented LP.
 3. Non-augmented LP (requires HAC standard errors).
- In paper: Ranking in homoskedastic AR(1) model, as function of (ρ, h).

Simulation study

• Confidence interval procedures:
 1. Non-augmented AR, delta method s.e. (straw man).
 2. Lag-augmented AR, Efron bootstrap CI. Inoue & Kilian (2020)
 3. Non-augmented LP, percentile-t bootstrap CI, HAR s.e.
 4. Lag-augmented LP, percentile-t bootstrap CI, EHW s.e.

• Bootstrap: wild recursive AR design.

• AR(1) model. \(T = 240 \). Nominal confidence level: 90%.

• \(u_t \sim N(0, 1) \) i.i.d. (ARCH innovations qualitatively similar.)
<table>
<thead>
<tr>
<th>h</th>
<th>Coverage</th>
<th>Median length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AR_d</td>
<td>AR^*_b</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.897</td>
<td>0.899</td>
</tr>
<tr>
<td>6</td>
<td>0.829</td>
<td>0.899</td>
</tr>
<tr>
<td>12</td>
<td>0.758</td>
<td>0.899</td>
</tr>
<tr>
<td>36</td>
<td>0.628</td>
<td>0.899</td>
</tr>
<tr>
<td>60</td>
<td>0.581</td>
<td>0.899</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.848</td>
<td>0.902</td>
</tr>
<tr>
<td>6</td>
<td>0.808</td>
<td>0.902</td>
</tr>
<tr>
<td>12</td>
<td>0.765</td>
<td>0.902</td>
</tr>
<tr>
<td>36</td>
<td>0.655</td>
<td>0.902</td>
</tr>
<tr>
<td>60</td>
<td>0.585</td>
<td>0.902</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.532</td>
<td>0.882</td>
</tr>
<tr>
<td>6</td>
<td>0.494</td>
<td>0.882</td>
</tr>
<tr>
<td>12</td>
<td>0.454</td>
<td>0.882</td>
</tr>
<tr>
<td>36</td>
<td>0.348</td>
<td>0.882</td>
</tr>
<tr>
<td>60</td>
<td>0.288</td>
<td>0.882</td>
</tr>
</tbody>
</table>

$\rho = 0.50$

$\rho = 0.95$

$\rho = 1.00$
Outline

1. Overview of results: AR(1) case
2. Comparison with alternative methods: theory and simulations
3. Formal uniformity result: AR(1) case
4. General VAR(\(p\)) case
5. Empirical illustration
6. Conclusion
Additional regularity assumptions

Assumption 2: Moments

\(E(u_t^8) < \infty \), and \(E(u_t^2 \mid \{u_s\}_{s<t}) \geq \delta > 0 \).

\(\{u_t^2\} \) has absolutely summable cumulants up to 4th order.

Assumption 3: Contiguity

For any sequence \(\{\rho_T\} \in [-1, 1] \) such that \(\lim_{T \to \infty} T(1 - \rho_T) < \infty \), the sequence of probability measures \(\{P_{\rho_T}\} \) is contiguous to \(P_1 \).

- Used to derive OLS convergence rates when \(\rho \approx 1 \). Requires smoothness of conditional density. Jeganathan (1995); Jansson (2008)
Proposition 1: Uniform inference

Let Ass’t “Mean independence” & “Moments” hold. Let \(a \in (0, 1) \).

i) For all \(x \in \mathbb{R} \),

\[
\sup_{\rho \in [-1+a, 1-a]} \sup_{1 \leq h \leq (1-a)T} \left| P_{\rho} \left(\frac{\hat{\beta}(h) - \beta(\rho, h)}{\hat{s}(h)} \leq x \right) - \Phi(x) \right| \rightarrow 0.
\]

ii) Let additionally Ass’n “Contiguity” hold. Consider any sequence \(\{\tilde{h}_T\} \in \mathbb{N} \) such that \(\tilde{h}_T / T \rightarrow 0 \). Then for all \(x \in \mathbb{R} \),

\[
\sup_{\rho \in [-1+a, 1]} \sup_{1 \leq h \leq \tilde{h}_T} \left| P_{\rho} \left(\frac{\hat{\beta}(h) - \beta(\rho, h)}{\hat{s}(h)} \leq x \right) - \Phi(x) \right| \rightarrow 0.
\]

Remark: Non-normal limit when \(\rho = 1 \) and \(h = h_T \propto T \) (like AR).
Uniformly valid LP inference: key proof challenges

- Study all drifting sequences \{\rho_T, h_T\}. Andrews, Cheng & Guggenberger (2019)

 \[
 \hat{\beta}(h_T) - \beta(\rho_T, h_T) \propto \sum_{t=1}^{T-h_T} \xi_t(\rho_T, h_T)u_t + \sum_{t=1}^{T-h_T} \xi_t(\rho_T, h_T) \left[\hat{u}_t(h_T) - u_t \right] = [\rho_T - \hat{\rho}(h_T)] y_{t-1}
 \]

- 1st term: \(E[\xi_t(\rho_T, h_T)^2 u_t^2] \rightarrow \infty \) if \(\rho_T \rightarrow 1, h_T \rightarrow \infty \).
 - CLT for MDS. Must “reverse time” b/c \(E[\xi_t(\rho, h)u_t | \{u_s\}_{s<t}] \neq 0 \).
 - Explicitly calculate uniform moment bounds.

- 2nd term: Convergence rate of \(\hat{\rho}(h_T) \) depends on whether \(\rho_T \approx 1 \). Mikusheva (2007)
 - Explicit moment calculations when \(\rho_T \ll 1 \).
 - When \(\rho_T \approx 1 - c/T \), appeal to contiguity as’n. Need then only consider familiar case \(\rho = 1 \).
Outline

1. Overview of results: AR(1) case
2. Comparison with alternative methods: theory and simulations
3. Formal uniformity result: AR(1) case
4. General VAR(p) case
5. Empirical illustration
6. Conclusion
VAR(p) model

- VAR(p) model for n-dimensional data vector:
 \[
 y_t = \sum_{\ell=1}^{p} A_{\ell} y_{t-\ell} + u_t, \quad t = 1, \ldots, T, \quad y_0 = \cdots = y_{1-p} = 0.
 \]

- Still impose conditional mean independence: $E(u_t \mid \{u_s\}_{s \neq t}) = 0$.

- Known lag length p.

- Reduced-form impulse responses of $y_{1,t}$ at horizon h: $\beta_1(A, h) \in \mathbb{R}^n$.

- Parameter of interest: $\nu' \beta_1(A, h)$, where $\nu \in \mathbb{R}^n$, $\nu \neq 0$.
 - Simple extension: joint inference on vector $\beta_1(A, h)$.
 - Extensions for future work: structural impulse responses, deterministic dynamics.
Multivariate lag-augmented local projection

- VAR model implies: Jordà (2005); Kilian & Lütkepohl (2017)

\[y_{1,t+h} = \beta_1(A, h)' y_t + \sum_{\ell=1}^{p-1} \delta_{1,\ell}(A, h)' y_{t-j} + \xi_{1,t}(A, h), \quad \xi_{1,t}(A, h) \equiv \sum_{\ell=1}^{h} \beta_1(A, h - \ell)' u_{t+\ell}. \]

- Lag-augmented LP estimator: regression with \(p \) lags as controls.

\[y_{1,t+h} = \hat{\beta}_1(h)' y_t + \sum_{\ell=1}^{p} \hat{\delta}_{1,\ell}(h)' y_{t-j} + \hat{\xi}_{1,t}(A, h). \]

- Confidence interval for \(\nu' \beta_1(A, h) \):

\[\hat{C}_1(h, \nu, \alpha) \equiv \nu' \hat{\beta}_1(h) \pm z_{1-\alpha/2} \hat{s}_1(h, \nu). \]
Uniformly valid multivariate LP inference

- **Proposition:** Impose As’n “Mean independence”. Then the CI \(\hat{C}_1(h, \nu, \alpha) \) is asymptotically uniformly valid over the DGP and horizon \(h \), provided...

1. The VAR(\(p \)) model can be written in the form \(y_t = \Lambda y_{t-1} + \tilde{y}_t \), where: Phillips (1988)
 - \(\tilde{y}_t \) is uniformly stationary VAR(\(p - 1 \)) (geometrically decaying IRFs).
 - \(\Lambda = \text{diag}(\rho_1, \ldots, \rho_n) \) with \(\rho_i \in [-1, 1] \). Mikusheva (2012)

2. Either:
 - i) \(h \leq (1 - a) T \) and \(|\rho_i| \leq 1 - a \), \(i = 1, \ldots, n \), where \(a > 0 \). OR:
 - ii) \(h \leq \bar{h}_T \), where \(\bar{h}_T / T \rightarrow 0 \).

3. Further regularity conditions on \{u_t\} hold.
Uniformly valid multivariate LP inference: discussion

- We are not aware of other uniformity results that allow multiple (near-)unit roots.
- VAR proof follows AR(1) intuition. Main challenge: uniform bounds on IRFs.
- **Corollary**: Can allow for cointegration among control variables $y_{2,t}, \ldots, y_{n,t}$.
- Possibly non-normal limit when $\rho_i \approx 1$ for some i and $h \propto T$.

Outline

1. Overview of results: AR(1) case
2. Comparison with alternative methods: theory and simulations
3. Formal uniformity result: AR(1) case
4. General VAR(p) case
5. Empirical illustration
6. Conclusion
Response of Excess Bond Premium to 25 bp monetary shock

Outline

1. Overview of results: AR(1) case
2. Comparison with alternative methods: theory and simulations
3. Formal uniformity result: AR(1) case
4. General VAR(p) case
5. Empirical illustration
6. Conclusion
Conclusion

• We show that lag-augmented LP inference on impulse responses is robust to:
 1. Persistence of data.
 2. Length of impulse response horizon.

• Efficiency loss for stationary DGPs at short horizons, but modest in absolute terms.

• Lag augmentation obviates need for HAR s.e. Simple!

• Only known VAR-based methods with comparable robustness are either computationally demanding or can yield very long CIs. Mikusheva (2012); Inoue & Kilian (2020)
Conclusion

- We show that lag-augmented LP inference on impulse responses is robust to:
 1. Persistence of data.
 2. Length of impulse response horizon.

- Efficiency loss for stationary DGPs at short horizons, but modest in absolute terms.

- Lag augmentation obviates need for HAR s.e. Simple!

- Only known VAR-based methods with comparable robustness are either computationally demanding or can yield very long CIs. Mikusheva (2012); Inoue & Kilian (2020)

Thank you!
Heteroskedastic innovations

- Assume $u_t = \tau_t \epsilon_t$, where $\tau_t \geq 0$.
- Assume ϵ_t is i.i.d., $E(\epsilon_t) = 0$.
- Then $E(u_t \mid \{u_s\}_{s \neq t}) = 0$ if either...
 - $\{\tau_t\} \perp \perp \{\epsilon_t\}$ (SV).
 - $\tau_t = f(\epsilon_{t-1}^2, \epsilon_{t-2}^2, \ldots)$ and distribution of ϵ_t is symmetric (GARCH).
Lag-augmented local projection: simple standard errors

- Heteroskedasticity-robust (Eicker-Huber-White) s.e. suffice:

\[
\hat{s}(h) \equiv \frac{(\sum_{t=1}^{T-h} \hat{\xi}_t(h)^2 \hat{u}_t(h)^2)^{1/2}}{\sum_{t=1}^{T-h} \hat{u}_t(h)^2},
\]

where

\[
\hat{\xi}_t(h) \equiv y_{t+h} - \hat{\beta}(h)y_t - \hat{\gamma}(h)y_{t-1},
\]

\[
\hat{u}_t(h) \equiv y_t - \hat{\rho}(h)y_{t-1},
\]

\[
\hat{\rho}(h) \equiv (\sum_{t=1}^{T-h} y_t y_{t-1})/(\sum_{t=1}^{T-h} y_{t-1}^2).
\]

- Readily computed by standard statistical software.

- No tuning parameters.
AR inference: medium-long horizons

- Suppose $\rho > 0$ and we use some asymptotic normal estimator $\hat{\rho}$:

 $$\sqrt{T}(\hat{\rho} - \rho) \xrightarrow{d} N(0, \tau^2).$$

- Delta method s.e.:

 $$\text{se}(\hat{\rho}) \equiv h|\hat{\rho}^{h^{-1}\hat{\tau}}| \sqrt{T}, \quad \hat{\tau} \overset{p}{\to} \tau.$$

- Then at horizon $h = h_T = \sqrt{T}$,

 $$\frac{\hat{\rho}^{h_T}}{\rho^{h_T}} = e^{\sqrt{T}(\log \hat{\rho} - \log \rho)} \xrightarrow{d} e^{N(0, \tau^2/\rho^2)},$$

 $$\left| \frac{\sqrt{T}(\hat{\rho}^{h_T} - \rho^{h_T})}{h_T \hat{\rho}^{h_T-1\hat{\tau}}} \right| = \left| \hat{\rho}^{h_T} \left(1 - \frac{\hat{\rho}^{h_T}}{\rho^{h_T}} \right) \right| \xrightarrow{d} \frac{\rho}{\tau} \left(1 - N(0, \tau^2/\rho^2) \right).$$
Trade-off LP_{LA} vs. AR_{LA}:

- Non-linear transformation ρ^h.

Trade-off LP_{LA} vs. LP_{NA}:

- Effective regressor u_t vs. y_t.
- Serial correl’n of $\xi_t(\rho, h)y_t$.
Proof sketch: reversing time

\[\xi_t(\rho, h) \equiv \sum_{\ell=1}^{h} \rho^{h-\ell} u_{t+\ell} \]

- Run sum “backwards in time”:
 \[\sum_{t=1}^{T-h_T} \xi_t(\rho_T, h_T) u_t = \sum_{t=1}^{T-h_T} \chi_{T,t}, \quad \chi_{T,t} \equiv \xi_{T-h-T+1}(\rho_T, h_T)u_{T-h-T+1}. \]

- Define filtration

 \[\mathcal{F}_{T,t} \equiv \sigma(u_{T-h_T-t+1}, u_{T-h_T-t+2}, \ldots). \]

 Then \(\chi_{T,t} \in \mathcal{F}_{T,t} \) and \(\mathcal{F}_{T,t} \subset \mathcal{F}_{T,t+1} \) for all \(t \).

- \(\{\chi_{T,t}, \mathcal{F}_{T,t}\} \) is a martingale difference array:

 \[
 E(\chi_{T,t} \mid \mathcal{F}_{T,t-1}) = \xi_{T-h_T-t+1}(\rho_T, h_T) E(u_{T-h_T-t+1} \mid \{u_{T-h_T-t+s}\}_{s>1}) = 0 \text{ by As'n "Mean independence"}
 \]
Simulation results: delta method procedures

<table>
<thead>
<tr>
<th>h</th>
<th>Coverage</th>
<th>Median length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AR_d</td>
<td>AR^*_d</td>
</tr>
<tr>
<td></td>
<td>$\rho = 0.50$</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.897</td>
<td>0.902</td>
</tr>
<tr>
<td>6</td>
<td>0.829</td>
<td>0.857</td>
</tr>
<tr>
<td>12</td>
<td>0.758</td>
<td>0.792</td>
</tr>
<tr>
<td>36</td>
<td>0.628</td>
<td>0.667</td>
</tr>
<tr>
<td>60</td>
<td>0.581</td>
<td>0.625</td>
</tr>
<tr>
<td></td>
<td>$\rho = 0.95$</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.848</td>
<td>0.899</td>
</tr>
<tr>
<td>6</td>
<td>0.808</td>
<td>0.880</td>
</tr>
<tr>
<td>12</td>
<td>0.765</td>
<td>0.841</td>
</tr>
<tr>
<td>36</td>
<td>0.655</td>
<td>0.732</td>
</tr>
<tr>
<td>60</td>
<td>0.585</td>
<td>0.684</td>
</tr>
<tr>
<td></td>
<td>$\rho = 1.00$</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.532</td>
<td>0.890</td>
</tr>
<tr>
<td>6</td>
<td>0.494</td>
<td>0.854</td>
</tr>
<tr>
<td>12</td>
<td>0.454</td>
<td>0.813</td>
</tr>
<tr>
<td>36</td>
<td>0.348</td>
<td>0.693</td>
</tr>
<tr>
<td>60</td>
<td>0.288</td>
<td>0.633</td>
</tr>
</tbody>
</table>
Simulation results: ARCH innovations ($\alpha_1 = 0.7$)

<table>
<thead>
<tr>
<th>h</th>
<th>Coverage</th>
<th>Median length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AR_d</td>
<td>AR^*_b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\rho = 0.50$

1	0.870	0.833	0.907	0.887	0.292	0.335	0.332	0.385
6	0.758	0.833	0.906	0.905	0.046	0.085	0.273	0.245
12	0.678	0.833	0.904	0.902	0.001	0.007	0.264	0.239
36	0.554	0.833	0.896	0.898	0.000	0.000	0.279	0.255
60	0.520	0.833	0.901	0.908	0.000	0.000	0.301	0.274

$\rho = 0.95$

1	0.848	0.830	0.818	0.894	0.087	0.338	0.084	0.396
6	0.797	0.830	0.835	0.895	0.354	1.744	0.383	0.627
12	0.750	0.830	0.836	0.872	0.468	3.915	0.603	0.724
36	0.632	0.830	0.856	0.867	0.291	64.157	0.806	0.716
60	0.571	0.830	0.887	0.892	0.095	1028.366	0.880	0.708

$\rho = 1.00$

1	0.566	0.838	0.839	0.894	0.041	0.331	0.040	0.385
6	0.521	0.838	0.858	0.879	0.224	2.089	0.240	0.689
12	0.472	0.838	0.842	0.853	0.391	5.683	0.469	0.914
36	0.363	0.838	0.756	0.740	0.676	194.037	1.175	1.386
60	0.304	0.838	0.711	0.653	0.733	6503.801	1.670	1.496
VAR parameter space

- Let there be given constants $a \in [0, 1)$, $C > 0$, and $\epsilon \in (0, 1)$.

- $A(a, C, \epsilon) \equiv$ space of autoregressive coefficients $A = (A_1, \ldots, A_p)$ such that the associated lag polynomial $A(L) = I_n - \sum_{\ell=1}^p A_\ell L^\ell$ admits the factorization

 $$A(L) = B(L)(I_n - \text{diag}(\rho_1, \ldots, \rho_n)L).$$

- $\rho_i \in [a - 1, 1 - a]$ for all $i = 1, \ldots, n$.

- $B(L)$ is a lag polynomial of order $p - 1$ with companion matrix \bf{B} satisfying $\|B^\ell\| \leq C(1 - \epsilon)^\ell$ for all $\ell = 1, 2, \ldots$.