Appendix D Coverage of Delta Method AR Inference

Here we compute the under-coverage of delta method AR(1) inference (both lag-augmented and non-augmented) for horizons $h \propto T^{1/2}$. This discussion is merely intended to flesh out the insights of Mikusheva (2012, Section 4.3).

Consider a \sqrt{T}-consistent asymptotically normal estimator $\hat{\rho}$ of the AR(1) parameter ρ:

$$T^{1/2}(\hat{\rho} - \rho) \xrightarrow{d} N(0, \omega^2).$$

For example, for plain AR(1) inference we would have $\omega^2 = 1 - \rho^2$, and for lag-augmented AR inference we would have $\omega^2 = 1$ (see Appendix B.2.1). Suppose we have available a consistent estimator $\hat{\omega} \xrightarrow{p} \omega > 0$. Let $\hat{\beta}_{AR}(h) \equiv \hat{\rho}^h$ be the plug-in AR estimator of the impulse response $\beta(\rho, h) \equiv \rho^h$ at horizon h. The usual delta method standard error for $\hat{\beta}_{AR}(h)$ equals

$$\text{se}_{AR}(h) \equiv T^{-1/2}h|\hat{\rho}|^{h-1}\hat{\omega}.$$

Consider specifically the horizon $h = h_T = \kappa T^{1/2}$, where $\kappa \in (0, \infty)$ is a fixed constant. Let $\Phi(\cdot)$ denote the standard normal CDF, and let Z denote a standard normal random variable. For any $\rho \neq 0$, the coverage probability of the usual $1 - \alpha$ confidence interval equals

$$P_\rho \left(\frac{|\hat{\beta}_{AR}(h_T) - \beta(\rho, h_T)|}{\text{se}_{AR}(h_T)} \leq \Phi^{-1}(1 - \alpha/2) \right).$$
\[\begin{align*}
&= P_\rho \left(\left| \frac{\hat{\rho}}{\omega \kappa} \left(1 - e^{-\kappa T^{1/2} (\log \hat{\rho} - \log \rho)} \right) \right| \leq \Phi^{-1}(1 - \alpha/2) \right) \\
&\rightarrow P \left(\left| \frac{\rho}{\omega \kappa} \left(1 - e^{-\kappa \rho^{-1} \omega Z} \right) \right| \leq \Phi^{-1}(1 - \alpha/2) \right) \\
&= P \left(\left| \frac{\rho}{\omega \kappa} \left(1 - e^{\kappa |\rho|^{-1} \omega Z} \right) \right| \leq \Phi^{-1}(1 - \alpha/2) \right). \\
\end{align*} \]

(S1)

The last two steps use the delta method and symmetry of the normal distribution:

\[T^{1/2} (\log \hat{\rho} - \log \rho) \xrightarrow{d} \frac{1}{\rho} \mathcal{N}(0, \omega^2) \xrightarrow{d} \frac{\omega}{|\rho|} Z. \]

Note that the final expression (S1) for the asymptotic coverage probability is a function only of \(\alpha \) and the quantity \(\zeta \equiv \frac{|\rho|}{\omega \kappa} > 0 \). Denote the asymptotic coverage probability by \(\text{AsyCov}(\alpha, \zeta) \). We can further simplify this as follows:

\[\text{AsyCov}(\alpha, \zeta) \equiv P \left(\left| \zeta \log \left(1 - e^{Z/\zeta} \right) \right| \leq \Phi^{-1}(1 - \alpha/2) \right) \\
= P \left(\zeta \log \left(1 - \frac{\Phi^{-1}(1 - \alpha/2)}{\zeta} \right) \right) \leq Z \leq \zeta \log \left(1 + \frac{\Phi^{-1}(1 - \alpha/2)}{\zeta} \right) \\
= \Phi \left(\zeta \log \left(1 + \frac{\Phi^{-1}(1 - \alpha/2)}{\zeta} \right) \right) - \Phi \left(\zeta \log \left(1 - \frac{\Phi^{-1}(1 - \alpha/2)}{\zeta} \right) \right). \]

Here we use the convention that \(\log(x) = -\infty \) if \(x \leq 0 \). Observe that

\[\lim_{\zeta \downarrow 0} \text{AsyCov}(\alpha, \zeta) = \Phi \left(\lim_{\zeta \downarrow 0} \zeta \log \left(1 + \frac{\Phi^{-1}(1 - \alpha/2)}{\zeta} \right) \right) = \Phi(0) = 1/2, \]

\[\lim_{\zeta \to \infty} \text{AsyCov}(\alpha, \zeta) = \lim_{\zeta \to \infty} \left\{ \Phi \left(\frac{\zeta \Phi^{-1}(1 - \alpha/2)}{\zeta} \right) + \Phi \left(-\zeta \frac{\Phi^{-1}(1 - \alpha/2)}{\zeta} \right) \right\} = 1 - \alpha. \]

Thus, for any significance level \(\alpha < 1/2 \), the AR confidence interval under-covers whenever \(\zeta \) is sufficiently small (i.e., when \(|\rho|/\omega \) is small or \(\kappa = h_T/T^{1/2} \) is large). The coverage is close to the nominal level when \(\zeta \) is large (i.e., \(|\rho|/\omega \) is not too small and \(\kappa \) is small).

Figure S1 plots the coverage shortfall \((1 - \alpha) - \text{AsyCov}(\alpha, \zeta) \) as a function of \(\zeta = \frac{|\rho|}{\omega \kappa} \), for three conventional significance levels \(\alpha \). For \(\alpha = 0.05 \) and \(0.10 \), the AR confidence interval under-covers asymptotically regardless of the value of \(\zeta \). For \(\alpha = 0.32 \), the conventional interval is conservative at intermediate values of \(\zeta \) (but under-covers for small \(\zeta \), of course).
Figure S1: Asymptotic coverage shortfall \((1 - \alpha) - \text{AsyCov}(\alpha, \zeta)\) of conventional AR confidence interval at horizon \(h_T = \kappa T^{1/2}\). Horizontal axis: \(\zeta = \frac{|\rho|}{\omega \kappa}\). The three curves correspond to \(\alpha = 0.05, 0.10, 0.32\).

Appendix E Additional Proofs

E.1 Notation

Geometric series of the form \(\sum_{\ell=0}^{h-1}(\rho_t^*(A, \epsilon))^2\) will show up repeatedly in the proofs below. Observe that, for any \(A \in \mathcal{A}(0, C, \epsilon)\) and \(h \in \mathbb{N}\),

\[
1 \leq \sum_{\ell=0}^{h-1} \rho_t^*(A, \epsilon)^{2\ell} \leq \min \left\{ \frac{1}{1 - \rho_t^*(A, \epsilon)^2}, h \right\} \leq \min \left\{ \frac{1}{1 - \rho_t^*(A, \epsilon)}, h \right\} = g(\rho_t^*(A, \epsilon), h)^2.
\]

Recall also the definition of the lag-augmented LP residuals \(\hat{\xi}_{1,t}(h) = y_{1,t+h} - \hat{\beta}_1(h)'y_t - \hat{\gamma}_1(h)'X_t\). We can write

\[
\hat{\xi}_{1,t}(h) - \xi_{1,t}(\rho, h) = (y_{1,t+h} - \hat{\beta}_1(h)'y_t - \hat{\gamma}_1(h)'X_t) - (y_{1,t+h} - \beta_1(A, h)'u_t - \eta_1(A, h)'X_t)
\]
\[\frac{\sum_{t=1}^{T-hT} \hat{\xi}_{1,t}(hT)^2(\hat{\nu}(hT)'\hat{u}_t(hT)) \leq \sum_{t=1}^{T-hT} \xi_{1,t}(hT)^2(\hat{\nu}'u_t)^2}{(T-hT)v(A_T, h_T, \hat{\nu})^2} \mathcal{P}_A \xrightarrow{p} 0, \]

where we have defined \(\hat{\nu} \equiv \Sigma^{-1}\nu \). Algebra shows that

\[\left[\frac{\sum_{t=1}^{T-hT} \hat{\xi}_{1,t}(hT)^2(\hat{\nu}(hT)'\hat{u}_t(hT)) - \xi_{1,t}(A_T, h_T)^2(\hat{\nu}'u_t)^2}{(T-hT)v(A_T, h_T, \hat{\nu})^2} \right] \]

\[\leq \frac{1}{(T-hT)v(A_T, h_T, \hat{\nu})^2} \sum_{t=1}^{T-hT} \left| \hat{\xi}_{1,t}(hT)(\hat{\nu}(hT)'\hat{u}_t(hT)) \right| - \xi_{1,t}(A_T, h_T)(\hat{\nu}'u_t) \]

\[\times \left[\hat{\xi}_{1,t}(hT)(\hat{\nu}(hT)'\hat{u}_t(hT)) \right] - \xi_{1,t}(A_T, h_T)(\hat{\nu}'u_t) + 2\xi_{1,t}(A_T, h_T)(\hat{\nu}'u_t) \]

(as \((a + b)(a - b) = a^2 - b^2 \))

\[\leq \left(\frac{\sum_{t=1}^{T-hT} \hat{\xi}_{1,t}(hT)(\hat{\nu}(hT)'\hat{u}_t(hT)) - \xi_{1,t}(A_T, h_T)(\hat{\nu}'u_t)^2}{(T-hT)v(A_T, h_T, \hat{\nu})^2} \right)^{1/2} \]

\[\times \left(\frac{\sum_{t=1}^{T-hT} \hat{\xi}_{1,t}(hT)(\hat{\nu}(hT)'\hat{u}_t(hT)) - \xi_{1,t}(A_T, h_T)(\hat{\nu}'u_t) + 2\xi_{1,t}(A_T, h_T)(\hat{\nu}'u_t)^2}{(T-hT)v(A_T, h_T, \hat{\nu})^2} \right)^{1/2} \]

Consider the expression in the last line above. By Loève’s inequality (Davidson, 1994, Thm. 9.28), this expression is bounded above by

\[\left(\frac{\sum_{t=1}^{T-hT} \hat{\xi}_{1,t}(hT)(\hat{\nu}(hT)'\hat{u}_t(hT)) - \xi_{1,t}(A_T, h_T)(\hat{\nu}'u_t)^2}{(T-hT)v(A_T, h_T, \hat{\nu})^2} + 8\sum_{t=1}^{T-hT} \xi_{1,t}(A_T, h_T)^2(\hat{\nu}'u_t)^2 \right)^{1/2} \]
The last fraction above is bounded in probability by Lemma A.6. Thus, it is sufficient to show that
\[
\sum_{t=1}^{T-h_T} \left[\hat{\xi}_{1,t}(h_T)(\hat{\nu}(h_T)\hat{u}_t(h_T)) - \xi_{1,t}(A_T, h_T)(\hat{\nu}'u_t) \right]^2
\]
\[
\frac{(T - h_T)v(A_T, h_T, \hat{\nu})^2}
\]
converges in probability to zero. To that end, decompose
\[
\hat{\xi}_{1,t}(h_T)(\hat{\nu}(h_T)\hat{u}_t(h_T)) - \xi_{1,t}(A_T, h_T)(\hat{\nu}'u_t)
\]
\[
= (\hat{\xi}_{1,t}(h_T) - \xi_{1,t}(A_T, h_T))(\hat{\nu}'u_t) + (\hat{\nu}(h_T)\hat{u}_t(h_T) - \hat{\nu}'u_T)\xi_{1,t}(A_T, h_T)
\]
\[
+ (\hat{\xi}_{1,t}(h_T) - \xi_{1,t}(A_T, h_T))(\hat{\nu}(h_T)\hat{u}_t(h_T) - \hat{\nu}'u_T).
\]
Hence, by another application of Loève’s inequality,
\[
\sum_{t=1}^{T-h_T} \left[\hat{\xi}_{1,t}(h_T)(\hat{\nu}(h_T)\hat{u}_t(h_T)) - \xi_{1,t}(A_T, h_T)(\hat{\nu}'u_t) \right]^2
\]
\[
\frac{(T - h_T)v(A_T, h_T, \hat{\nu})^2}
\]
\[
\leq 3 \sum_{t=1}^{T-h_T} \left[\hat{\xi}_{1,t}(h_T) - \xi_{1,t}(A_T, h_T) \right]^2(\hat{\nu}'u_t)^2
\]
\[
\frac{(T - h_T)v(A_T, h_T, \hat{\nu})^2}
\]
\[
+ 3 \sum_{t=1}^{T-h_T} \left[\hat{\nu}(h_T)\hat{u}_t(h_T) - \hat{\nu}'u_T \right]^2\xi_{1,t}(A_T, h_T)^2
\]
\[
\frac{(T - h_T)v(A_T, h_T, \hat{\nu})^2}
\]
\[
+ 3 \sum_{t=1}^{T-h_T} \left[\hat{\xi}_{1,t}(h_T) - \xi_{1,t}(A_T, h_T) \right]^2\hat{\nu}(h_T)\hat{u}_t(h_T) - \hat{\nu}'u_T)^2
\]
\[
\frac{(T - h_T)v(A_T, h_T, \hat{\nu})^2}
\]
\[
\leq 3 \left(\frac{\sum_{t=1}^{T-h_T} \left[\hat{\xi}_{1,t}(h_T) - \xi_{1,t}(A_T, h_T) \right]^4}{(T - h_T)v(A_T, h_T, \hat{\nu})^4} \right)^{1/2} \times \left(\left\| \hat{\nu} \right\|^4 \sum_{t=1}^{T-h_T} \| u_t \|^4 \right)^{1/2}
\]
\[
+ 3 \left(\frac{\sum_{t=1}^{T-h_T} \left[\hat{\nu}(h_T)\hat{u}_t(h_T) - \hat{\nu}'u_T \right]^4}{(T - h_T)v(A_T, h_T, \hat{\nu})^4} \right)^{1/2} \times \left(\frac{\sum_{t=1}^{T-h_T} \xi_{1,t}(A_T, h_T)^4}{(T - h_T)v(A_T, h_T, \hat{\nu})^4} \right)^{1/2}
\]
\[
+ 3 \left(\frac{\sum_{t=1}^{T-h_T} \left[\hat{\xi}_{1,t}(h_T) - \xi_{1,t}(A_T, h_T) \right]^4}{(T - h_T)v(A_T, h_T, \hat{\nu})^4} \right)^{1/2} \times \left(\frac{\sum_{t=1}^{T-h_T} \left[\hat{\nu}(h_T)\hat{u}_t(h_T) - \hat{\nu}'u_T \right]^4}{(T - h_T)v(A_T, h_T, \hat{\nu})^4} \right)^{1/2}
\]
\[
\equiv 3 \left[(\hat{R}_1)^{1/2} \times (\hat{R}_2)^{1/2} \right] + 3 \left[(\hat{R}_3)^{1/2} \times (\hat{R}_4)^{1/2} \right] + 3 \left[(\hat{R}_1)^{1/2} \times (\hat{R}_3)^{1/2} \right].
\]
It follows from Lemma E.1 below that \(\hat{R}_1 \) tends to zero in probability. \(\hat{R}_2 \) is bounded in probability by Assumption 2(i) and a standard application of Markov’s inequality. We show below that \(\hat{R}_3 \) tends to zero in probability. Another standard application of Markov’s inequality combined with Lemma A.7 implies that \(\hat{R}_4 \) is also uniformly bounded in probability. Hence, the entire expression tends to zero in probability, as needed.
To finish the proof, we prove the claim that \(\hat{R}_3 \) tends to zero in probability. Note that
\[
\hat{R}_3 \leq \|\hat{\nu}(h_T)\|^4 \sum_{t=1}^{T-h_T} \frac{\|\hat{\nu}_t(h_T) - u_t\|^4}{T - h_T} + \|\hat{\nu}(h_T) - \tilde{\nu}\|^4 \sum_{t=1}^{T-h_T} \|u_t\|^4 / (T - h_T).
\]
Since \(\|\hat{\nu}(h_T) - \tilde{\nu}\| \leq \|\hat{\Sigma}(h_T)^{-1} - \Sigma^{-1}\| \times \|\nu\| \), it follows from Lemma A.5(ii), Lemma E.2 below, Assumption 2(i), and an application of Markov’s inequality that the above display tends to zero in probability.

Lemma E.1 (Negligibility of estimation error in \(\hat{\xi}_{1,t}(h) \)). Let the conditions of Lemma A.2 hold. Let \(w \in \mathbb{R}^n \setminus \{0\} \). Then
\[
\sum_{t=1}^{T-h_T} [\hat{\xi}_{1,t}(h_T) - \xi_{1,t}(A_T, h_T)]^4 \frac{(T-h_T)v(A_T, h_T, w)^4}{P_{A_T}} \rightarrow 0.
\]

Proof. Recall equation (S2):
\[
\hat{\xi}_{1,t}(h) - \xi_{1,t}(A, h) = [\beta_1(A, h) - \hat{\beta}_1(h)]'u_t + [\eta_1(A, h) - \hat{\eta}_1(A, h)]'X_t.
\]
By Loève’s inequality (Davidson, 1994, Thm. 9.28),
\[
\sum_{t=1}^{T-h_T} [\hat{\xi}_{1,t}(h) - \xi_{1,t}(\rho, h)]^4 \frac{(T-h_T)v(A_T, h_T, w)^4}{P_{A_T}} \leq 8 \|\hat{\beta}_1(h) - \beta_1(A, h)\|^4 \sum_{t=1}^{T-h_T} \|u_t\|^4 / (T-h_T)
\]
\[
+ 8 \|G(A_T, T - h_T, \epsilon)\| \|\hat{\eta}_1(A, h_T) - \eta_1(A, h_T)\|^4 \sum_{t=1}^{T-h_T} \|G(A_T, T - h_T, \epsilon)^{-1}X_t\|^4 / (T-h_T).
\]
By Assumption 2(i) and Markov’s inequality, we have \((T-h_T)^{-1} \sum_{t=1}^{T-h_T} \|u_t\|^4 = O_{P_{A_T}}(1)\). Lemma A.3(i) then implies that the first term on the right-hand side in the above display tends to zero in probability. Similarly, the second term on the right-hand side of the above display tends to zero in probability by Lemma E.3 below, Lemma A.3(ii), and Markov’s inequality.

Lemma E.2 (Negligibility of estimation error in \(\hat{u}_t(h) \)). Let the conditions of Lemma A.2 hold. Then
\[
\sum_{t=1}^{T-h_T} \|\hat{u}_t(h_T) - u_t\|^4 \frac{P_{A_T}}{(T-h_T)} \rightarrow 0.
\]
Proof. Since \(\hat{u}_t(h_T) - u_t = [A - \hat{A}(h_T)]X_t \), we have
\[
\frac{\sum_{t=1}^{T-h_T} \| \hat{u}_t(h_T) - u_t \|^4}{T - h_T} \leq \|G(A_T, T - h_T, \epsilon)(\hat{A}(h_T) - A_T)\|^4 \frac{\sum_{t=1}^{T-h_T} \|G(A_T, T - h_T, \epsilon)^{-1}X_t\|^4}{T - h_T}.
\]

Lemma A.3(iii) shows that the first factor after the inequality is \(o_{P_{A_T}}(1) \). Lemma E.3 below and Markov’s inequality show that the second factor is \(O_{P_{A_T}}(1) \).

Lemma E.3 (Moment bound for \(y_{i,t}^4 \)). Let Assumption 1 and Assumption 2(i) hold. Then, for all \(T \in \mathbb{N}, A \in A(0, C, \epsilon) \), and \(i = 1, \ldots, n \),
\[
\max_{1 \leq t \leq T} E(y_{i,t}^4) \leq \frac{6C_1(E(\|u_t\|^4))^3}{\delta^2 \lambda_{\text{min}}(\Sigma)^2} \times g(\rho_1^*(A, \epsilon), T)^4
\]

where the expectations are taken with respect to the measure \(P_A \), and \(C_1 \) is the constant defined in Lemma E.4 below.

Proof. We have defined
\[
\xi_{i,t}(A, h) \equiv \sum_{\ell=1}^{h+1} \beta_i(A, \ell)'u_{t+\ell}.
\]

Since we have set the initial conditions \(y_0 = \ldots = y_{-p+1} = 0 \), we have
\[
y_{i,t} = \sum_{\ell=1}^{t} \beta_i(A, \ell)'u_{t} = \xi_{i,0}(A, t).
\]

Consider any \(w \in \mathbb{R}^n \) such that \(\|w\| = 1 \). Then Lemma A.7 gives
\[
\max_{1 \leq t \leq T} E(y_{i,t}^4) = \max_{1 \leq t \leq T} E[\xi_{i,0}(A, t)^4] \leq \frac{6E(\|u_0\|^4)}{\delta^2 \lambda_{\text{min}}(\Sigma)^2} \times \max_{1 \leq t \leq T} v(A, t, w)^4.
\]

Lemmas E.4 and E.5 below then imply that
\[
\max_{1 \leq t \leq T} E(y_{i,t}^4) \leq \frac{6E(\|u_0\|^4)}{\delta^2 \lambda_{\text{min}}(\Sigma)^2} \times (E(\|u_0\|^4))^2 \|w\|^4 \times \max_{1 \leq t \leq T} \left(\sum_{\ell=0}^{t-1} \|\beta_i(A, \ell)\|^2 \right)^2
\]
\[
= \frac{6(E(\|u_0\|^4))^3}{\delta^2 \lambda_{\text{min}}(\Sigma)^2} \times \left(\sum_{\ell=0}^{T-1} \|\beta_i(A, \ell)\|^2 \right)^2
\]
\[
\leq \frac{6(E(\|u_0\|^4))^3}{\delta^2 \lambda_{\text{min}}(\Sigma)^2} \times \left(\sum_{\ell=0}^{T-1} C_1 \rho_i^*(A, \epsilon)^{2\ell} \right)^2
\]
\[
\frac{6C_1^2(E(\|u_0\|^4))^3}{\delta^2\lambda_{\min}(\Sigma)^2} \times g(\rho_1^*(A, \epsilon), T)^4.
\]

\[\square\]

Lemma E.4. Let \(A(L)\) be a lag polynomial such that \(A = (A_1, \ldots, A_p) \in \mathcal{A}(0, C, \epsilon)\) for constants \(C > 0\) and \(0 < \epsilon < 1\). Then, for any \(i = 1, \ldots, n\), the following statements hold.

\begin{enumerate}
\item \(\|\beta_i(A, h)\| \leq C_1 \rho_i^*(A, \epsilon)^h\), where \(C_1 \equiv 1 + 2C \times \frac{1-\epsilon}{\epsilon}\).
\item \(\|\beta_i(A, h + m)\| \leq \rho_i^*(A, \epsilon)^m \times C_2 \sum_{b=0}^{p-1} \|\beta_i(A, h - b)\|\), where \(C_2 \equiv 1 + 4\tilde{C} \left(\frac{1-\epsilon}{\epsilon}\right)\), and \(\tilde{C} \equiv C (1 + C(p - 1))\).
\end{enumerate}

Proof. Since \(A\) is in the parameter space \(\mathcal{A}(0, C, \epsilon)\) in Definition 1,

\[\beta_i(A, h) = \rho_i \beta_i(A, h - 1) + \beta_i(B, h).\] (S3)

Thus, applying the equation above recursively,

\[\beta_i(A, h + m) = \rho_i^m \beta_i(A, h) + \sum_{\ell=1}^{m} \rho_i^{m-\ell} \beta_i(B, h + \ell).\]

We now use the above equation to prove each of the two statements of the lemma.

Part (i). We have

\[
\|\beta_i(A, h)\| \leq |\rho_i|^h \|\beta_i(A, 0)\| + \sum_{\ell=1}^{h} |\rho_i|^{h-\ell} \|\beta_i(B, \ell)\|
\]

\[
\leq |\rho_i|^h + \sum_{\ell=1}^{h} |\rho_i|^{h-\ell} C(1 - \epsilon)^\ell
\]

(where we have used Lemma E.7 below and \(\beta(A, 0) = I_n\))

\[
\leq \max\{|\rho_i|, 1 - \epsilon/2\}^h + \sum_{\ell=1}^{h} \max\{|\rho_i|, 1 - \epsilon/2\}^{h-\ell} C(1 - \epsilon)^\ell
\]

\[
= \rho_i^*(A, \epsilon)^h \left(1 + C \sum_{\ell=1}^{h} \left(\frac{1 - \epsilon}{\max\{|\rho_i|, 1 - \epsilon/2\}}\right)^\ell\right)
\]

\[
\leq \rho_i^*(A, \epsilon)^h \left(1 + C \sum_{\ell=1}^{\infty} \left(\frac{1 - \epsilon}{1 - \epsilon/2}\right)^\ell\right)
\]

\[
= \rho_i^*(A, \epsilon)^h \left(1 + C \left(\frac{1 - \epsilon}{\epsilon/2}\right)\right).
\]
Part (ii). To establish the remaining inequality, note that
\[
\|\beta_i(A, h + m)\|
\leq |\rho|^m \|\beta_i(A, h)\| + \sum_{\ell=1}^{m} |\rho|^{|m-\ell|} \|\beta_i(B, h + \ell)\|
\leq |\rho|^m \|\beta_i(A, h)\| + \sum_{\ell=1}^{m} |\rho|^{|m-\ell|} \left(\tilde{C} (1 - \epsilon)^{\ell} \sum_{b=0}^{p-2} \|\beta_i(B, h - b)\| \right)
\]
(by Lemma E.7(ii) below)
\[
\leq \max\{|\rho|, 1 - \epsilon/2\}^m \times \left(\|\beta_i(A, h)\| + \tilde{C} \left(\sum_{\ell=1}^{m} \left(\frac{1 - \epsilon}{\max\{|\rho|, 1 - \epsilon/2\}} \right)^{\ell} \right) \left(\sum_{b=0}^{p-2} \|\beta_i(B, h - b)\| \right) \right)
\leq \rho^* \epsilon^m \times \left(\|\beta_i(A, h)\| + 2\tilde{C} \left(\frac{1 - \epsilon}{\epsilon} \right) \left(\sum_{b=0}^{p-2} \|\beta_i(A, h - b)\| + \|\beta_i(A, h - b - 1)\| \right) \right)
\]
where we have used equation (S3))
\[
\leq \rho^* \epsilon^m \times \left(1 + 4\tilde{C} \left(\frac{1 - \epsilon}{\epsilon} \right) \right) \sum_{b=0}^{p-1} \|\beta_i(A, h - b)\|.
\]

Lemma E.5 (Bounds on \(v(A, h, w)\)). Let Assumption 1 and Assumption 2(i) hold. Then for any \(i = 1, \ldots, n\) and for any matrix of autoregressive parameters \(A\), and any \(h \in \mathbb{N}\)
\[
\delta \times \lambda_{\min}(\Sigma) \leq \frac{1}{\|a\|^2 \sum_{h=0}^{l} \|\beta_i(A, \ell)\|^2} \leq E \left(\|u_t\|^4 \right),
\]
where \(v_i(A, h, w) \equiv E[\xi_{i,t}(A, h)^2(w'u_t)^2]\)

Proof. Algebra shows
\[
v(A, h, w)^2 = E[\xi_{i,t}(A, h)^2(w'u_t)^2]
= E \left[(\beta_i(A, h - 1)'u_{t+1} + \ldots + \beta_i(A, 0)'u_{t+h}^2)u_t^2 \right]
= E \left[\left(\sum_{\ell=1}^{h} \sum_{m=1}^{h} \left(\beta_i(A, h - \ell)'u_{t+\ell}u_{t+m}'\beta_i(A, h - m) \right) \right) (w'u_t)^2 \right]
\]

Assumption 1 implies that the last expression above equals
\[
\sum_{\ell=1}^{h} E \left((\beta_i(A, h - \ell)'u_{t+\ell}^2) (w'u_t)^2 \right). \quad \text{(S4)}
\]
An application of Cauchy-Schwarz gives the upper bound

\[v(A, h, w)^2 \leq \sum_{\ell=1}^{h} E \left(((\beta_i(A, h - \ell)'u_{t+\ell})^4 \right)^{1/2} E \left((w'u_t)^4 \right)^{1/2}. \]

\[\leq \sum_{\ell=1}^{h} \|\beta_i(A, h - \ell)\|^2 E \left(\|u_{t+\ell}\|^4 \right)^{1/2} \|w\|^2 E \left(\|u_t\|^4 \right)^{1/2} \]

\[= E \left(\|u_t\|^4 \right) \|w\|^2 \left(\sum_{\ell=0}^{h-1} \|\beta_i(A, \ell)\|^2 \right), \]

where the last line follows from stationarity.

For the lower bound, re-write expression (S4) as

\[\|w\|^2 \sum_{\ell=1}^{h} \|\beta_i(A, h - \ell)\|^2 E \left((\omega_1'u_{t+\ell})^2 (\omega_2'u_t)^2 \right). \]

where \(\omega_1, \omega_2\) are vectors of unit norm.

By Assumption 2(i),

\[E \left((\omega_1'u_{t+\ell})^2 (\omega_2'u_t)^2 \right) = E \left[E \left((\omega_1'u_{t+\ell})^2 \left| \{u_s\}_{s<t+\ell} \right) (\omega_2'u_t)^2 \right) \right] \]

\[\geq \delta E[(\omega_1'u_t)^2] \]

\[= \delta \omega_2'E[u_t u_t]' \omega_2 \]

\[\geq \delta \lambda_{\min}(\Sigma). \]

This gives the lower bound

\[v(A, h, w)^2 \geq \|w\|^2 \delta \lambda_{\min}(\Sigma) \sum_{\ell=0}^{h-1} \|\beta_i(A, \ell)\|^2, \]

which concludes the proof.

Lemma E.6. Partition the identity matrix \(I_{np}\) of dimension \(np \times np\) into \(p\) column blocks of size \(n\):

\[I_{np} = (J'_1, \ldots, J'_p). \]

Let \(A(L)\) be a lag polynomial of order \(p\) with autoregressive coefficients \(A = (A_1, \ldots, A_p)\). Then, for any \(h, m = 0, 1, \ldots,\)

\[\beta_i(A, h + m)' = \beta_i(A, h)' (J'_1 A^m J'_1) \]
\[
+ \sum_{j=2}^{p} \left(\sum_{k=0}^{p-j} \beta_i(A, h - 1 - k') A_{j+k} \right) \left(J_{j-1} A^{m-1} J_1' \right),
\]

where we define \(\beta_i(A, \ell) = 0 \) for \(\ell < 0 \).

Proof. Define \(\beta(A, \ell) \equiv (\beta_1(A, \ell), \ldots, \beta_n(A, \ell))' \). Then

\[
\beta(A, h + m) \equiv J_1 A^{h+m} J_1' = J_1 A^h A^m J_1' = J_1 A^h I_{np} I_{np} A^m J_1' = \left(\begin{array}{c} J_1 \\ J_2 \\ \vdots \\ J_p \end{array} \right) A^m J_1' = \left(J_1 A^h J_1' \right) \left(J_1 A^m J_1' \right) + \sum_{j=2}^{p} J_1 A^h J_j' A^m J_1' = \beta(A, h) \beta(A, m) + \sum_{j=2}^{p} J_1 A^h J_j' A^m J_1'.
\]

The definition of the companion matrix implies

\[
J_j A = J_{j-1}, \quad j = 2, \ldots, p,
\]

and

\[
A J_j' = J_1' A_j + J_{j+1}', \quad j = 1, \ldots, p - 1, \quad A J_p' = J_1' A_p.
\]

Therefore, for \(j \leq p \),

\[
J_1 A^h J_j' = \sum_{k=0}^{p-j} \beta(A, h - 1 - k) A_{j+k}.
\]

Thus, we have shown that

\[
\beta(A, h + m) = \beta(A, h) \beta(A, m) + \sum_{j=2}^{p} \left(\sum_{k=0}^{p-j} \beta(A, h - 1 - k) A_{j+k} \right) \left(J_{j-1} A^{m-1} J_1' \right).
\]

The lemma follows by selecting the \(i \)-th equation of the above system of equations. \(\square \)
Lemma E.7. Let $B(L)$ be a lag polynomial of order $p - 1$ satisfying $\|B^\ell\| \leq C(1 - \epsilon)^\ell$ for every $\ell = 1, 2, \ldots$. Then the following two statements hold.

i) Define the $n \times n$ matrix $\beta(B, \ell) \equiv (\beta_1(B, \ell), \ldots, \beta_n(B, \ell))'$. Then $\|\beta(B, \ell)\| \leq C(1 - \epsilon)^\ell$ for all $\ell \geq 0$.

ii) $\|\beta_i(B, h + m)\| \leq \tilde{C} \times (1 - \epsilon)^m \times \sum_{\ell=0}^{p-2} \|\beta_i(B, h - \ell)\|$ for all $h, m \geq 0$, where $\tilde{C} \equiv C (1 + C(p - 1))$.

Proof. Let the selector matrix J_j be defined as in Lemma E.6. Part (i) follows immediately from the fact

$$\beta(B, \ell) = J_j B^m J_j'$$

and the assumed bound on $\|B^m\|$.

We now turn to part (ii). Lemma E.6 implies

$$\|\beta_i(B, h + m)\| \leq \|\beta_i(B, h)\| \times \|J_j B^m J_j'\|$$

$$+ \sum_{j=2}^{p-1} \left(\left(\sum_{k=0}^{p-1-j} \|\beta_i(B, h - 1 - k)\| \times \|B_{j+k}\|\right) \|J_{j-1} B^{m-1} J_1'\|\right)$$

$$\leq \|\beta_i(B, h)\| C(1 - \epsilon)^m$$

$$+ \sum_{j=2}^{p-1} \left(\left(\sum_{k=0}^{p-1-j} \|\beta_i(B, h - 1 - k)\| \times \|B_{j+k}\|\right) C(1 - \epsilon)^{m-1}\right)$$

(since $\|J_1 B^m J_1'\| \leq C(1 - \epsilon)^m$ and $\|J_{j-1} B^{m-1} J_1'\| \leq C(1 - \epsilon)^{m-1}$)

$$\leq C(1 - \epsilon)^m \left(\|\beta_i(B, h)\| + \sum_{j=2}^{p-1} \left(\left(\sum_{k=0}^{p-1-j} \|\beta_i(B, h - 1 - k)\| \times C\right)\right)\right)$$

(since $\|B_{j+k}\| = \|J_1 B^m J_{j+k}\| \leq \|B\|$)

$$\leq C(1 - \epsilon)^m \left(\|\beta_i(B, h)\| + C(p - 2) \left(\sum_{k=0}^{p-3} \|\beta_i(B, h - 1 - k)\|\right)\right)$$

$$\leq (1 - \epsilon)^m C (1 + C(p - 2)) \left(\sum_{\ell=0}^{p-2} \|\beta_i(B, h - \ell)\|\right),$$

$$\leq (1 - \epsilon)^m C (1 + C(p - 1)) \left(\sum_{\ell=0}^{p-2} \|\beta_i(B, h - \ell)\|\right).$$

The last step merely ensures that the constant is positive for all $p \geq 1$. Note that, in the case $p = 1$, the sum in the last expression is zero. □
E.3 Proof of Lemma A.3

We first prove the statements (i)–(ii), and then turn to statement (iii). For brevity, denote $G_T \equiv G(A_T, T - h_T, \epsilon)$.

Parts (i)–(ii). Recall the definition $\hat{\eta}(A, h) \equiv A' \hat{\beta}_1(h) + \hat{\gamma}_1(h)$ in equation (S5). Since the OLS coefficients $(\hat{\beta}_1(h)', \hat{\gamma}_1(h)')'$ are a non-singular linear transformation of the OLS coefficients $(\beta_1(h)', \gamma_1(h)')'$, the former vector equals the OLS coefficients in a regression of $y_{1,t+h}$ on $(u_t', X_t')'$, due to the relationship $u_t = y_t - AX_t$. By the representation

$$y_{1,t+h} = \beta_1(A, h)'u_t + \eta_1(A, h)'X_t + \xi_{1,t}(A, h)$$

in equation (19), we can therefore write

$$G_T[\hat{\eta}(A, h) - \eta(A, h)] = \left(\begin{array}{c} \frac{1}{v(A_T, h_T, w)} \left[\hat{\beta}_1(h_T) - \beta_1(A_T, h_T) \right] \\ \frac{1}{v(A_T, h_T, w)} \sum_{t=1}^{T-h_T} G_T^{-1} u_t X_t' \end{array} \right) \left(\begin{array}{c} \frac{1}{T-h_T} \sum_{t=1}^{T-h_T} G_T^{-1} X_t u_t' \\ \frac{1}{T-h_T} \sum_{t=1}^{T-h_T} G_T^{-1} X_t' G_T^{-1} \end{array} \right)^{-1} \times \left(\begin{array}{c} \frac{1}{T-h_T} \sum_{t=1}^{T-h_T} G_T^{-1} X_t \xi_{1,t}(A_T, h_T) \\ \frac{1}{T-h_T} \sum_{t=1}^{T-h_T} G_T^{-1} \xi_{1,t}(A_T, h_T) \\
\end{array} \right)$$

(S5)

We must prove that the above display tends to zero in probability. \hat{m}_1 tends to zero in probability by Lemma A.1 and the fact that Lemma E.5 implies that $v(A_T, h_T, w)/v(A_T, h_T, \tilde{w})$ is uniformly bounded from below and from above for any $\tilde{w} \in \mathbb{R}^n \setminus \{0\}$. \hat{m}_2 also tends to zero in probability by Lemma A.4. Hence, it just remains to show that the $n(p + 1) \times n(p + 1)$ symmetric positive semidefinite matrix \hat{M}^{-1} is bounded in probability. It suffices to show that $1/\lambda_{\min}(\hat{M})$ is uniformly asymptotically tight. Consider the 2×2 block partition of \hat{M} in (S5). The off-diagonal blocks of \hat{M} tend to zero in probability by Lemma E.8 below. Moreover, the upper left block of \hat{M} tends in probability to the positive definite matrix Σ by Lemma A.5(i) and Assumption 2. Thus, the tightness of $1/\lambda_{\min}(\hat{M})$ follows from Assumption 3, which pertains to the lower right block of \hat{M}. This concludes the proof of the first two statements.
Part (iii). Write
\[(T - h_T)^{1/2}[\hat{A}(h_T) - A_T]G(A_T, T - h_T, \epsilon)\]
\[= \left(\frac{1}{(T - h_T)^{1/2}} \sum_{t=1}^{T-h_T} u_tX'_tG^{-1}_T \right) \times \left(\frac{1}{T - h_T} \sum_{t=1}^{T-h_T} G^{-1}_tX_tX'_tG^{-1}_T \right)^{-1}.\]

The first factor on the right-hand side above is $O_{P_A}(1)$ by Lemma E.8 below, while the second factor is also $O_{P_A}(1)$ by the same argument as in parts (i)–(ii) above.

Lemma E.8 (OLS denominator). Let Assumption 1 and Assumption 2(i) hold. Let there be given a sequence $\{A_T\}$ in $A(0, C, \epsilon)$ and a sequence $\{h_T\}$ of nonnegative integers satisfying $T - h_T \to \infty$. Then for any $i, j = 1, \ldots, n$ and $r = 1, \ldots, p$,
\[\frac{\sum_{t=1}^{T-h_T} u_{i,t}y_{j,t-r}}{(T - h_T)^{1/2}g(j^*_T(A, \epsilon), T - h_T)} = O_{P_A}(1).\]

Proof. Write $g_{j,T} \equiv g(\rho^*_j(A, \epsilon), T - h_T)$ for brevity. Note that $\{u_{i,t}y_{j,t-r}\}$ is a martingale difference array with respect to the natural filtration $\tilde{F}_t = \sigma(u_t, u_{t-1}, \ldots)$ under Assumption 1. Thus, the sequence is serially uncorrelated, implying that
\[E \left[\left(\frac{\sum_{t=1}^{T-h_T} u_{i,t}y_{j,t-r}}{(T - h_T)^{1/2}g_{j,T}} \right)^2 \right] = \frac{1}{(T - h_T)g_{j,T}^2} \sum_{t=1}^{T-h_T} E[u_{i,t}^2y_{j,t-r}^2] \leq \frac{1}{g_{j,T}^2} \times [E(u_{i,t}^4)]^{1/2} \times \max_{1 \leq t \leq T-h_T} E(y_{j,t-1}^4)^{1/2} \leq \sqrt{6}C_1(E(||u_t||^4))^2 \leq \frac{\delta\lambda_{\min}(\Sigma)}{\lambda_{\min}(\Sigma)}.
\]

where the last inequality uses Lemma E.3. The lemma follows from Markov’s inequality.

E.4 Proof of Lemma A.4

We will show that
\[E \left[\left(\frac{\sum_{t=1}^{T-h_T} \xi_{t,t}(A_T, h_T)y_{j,t-r}}{(T - h_T)v(A_T, h_T, w)g(\rho^*_j(A_T, \epsilon), T - h_T)} \right)^2 \right] \to 0.
\]
To that end, observe that if \(t \geq s + h_T \), then

\[
E[\xi_{i,t}(A_T, h_T)y_{j,t-r}\xi_{i,s}(A_T, h_T)y_{j,s-r}]
= E[E(\xi_{i,t}(A_T, h_T) \mid u_t, u_{t-1}, \ldots) y_{j,t-r}\xi_{i,s}(A_T, h_T)y_{j,s-r}]
= 0,
\]

by Assumption 1. By symmetry, the far left-hand side above equals 0 also if \(s \geq t + h_T \). Thus,

\[
E \left[\frac{\sum_{t=1}^{T-h_T} \xi_{i,t}(A_T, h_T)y_{j,t-r}}{(T - h_T)v(A_T, h_T, w)g(\rho'_T(A_T, \epsilon), T - h_T)} \right]^2
\leq \sum_{t=1}^{T-h_T} \sum_{s=1}^{T-h_T} \mathbb{1}(|s - t| < h_T) \frac{|E[\xi_{i,t}(A_T, h_T)y_{j,t-r}\xi_{i,s}(A_T, h_T)y_{j,s-r}]|}{(T - h_T)^2v(A_T, h_T, w)g(\rho'_T(A_T, \epsilon), T - h_T)^2}.
\]

(S6)

We now bound the summands on the right-hand side above. Consider first the case \(s \in (t - h_T, t] \) (we will handle the case \(t \in (s - h_T, s] \) by symmetry). Since the initial conditions for the VAR are zero, we have

\[
y_{j,t-r} = \xi_{j,0}(A_T, t - r).
\]

Thus,

\[
E[\xi_{i,t}(A_T, h_T)y_{j,t-r}\xi_{i,s}(A_T, h_T)y_{j,s-r}]
= E[\xi_{i,t}(A_T, h_T)\xi_{j,0}(A_T, t - r)\xi_{i,s}(A_T, h_T)\xi_{0,j}(A_T, t - r)]
= \sum_{\ell_1=1}^{h_T} \sum_{\ell_2=1}^{h_T} \sum_{m_1=r}^{t-1} \sum_{m_2=r}^{t-1} E \left[(\beta_i(A_T, h_T - \ell_1) \epsilon_{t+\ell_1}) (\beta_j(A_T, m_1 - r) \epsilon_{t-m_1}) \right.
\times (\beta_i(A_T, h_T - \ell_2) \epsilon_{s+\ell_2}) (\beta_j(A_T, m_2 - r) \epsilon_{s-m_2})]
\]

Consider any summand above defined by its indices \((\ell_1, \ell_2, m_1, m_2) \). Since \(t + \ell_1 > \max\{t - m_1, s - m_2\} \), Assumption 1 implies that the summand can only be nonzero if \(s + \ell_2 = t + \ell_1 \), which requires \(\ell_1 \leq h_T + s - t \). Moreover, when \(s + \ell_2 = t + \ell_1 \), we also need \(t - m_1 = s - m_2 \) for the summand to be nonzero, which in turn requires \(m_1 \geq t - s + 1 \). Thus,

\[
|E[\xi_{i,t}(A_T, h_T)y_{j,t-r}\xi_{i,s}(A_T, h_T)y_{j,s-r}]|
\]
\[
\begin{align*}
&\leq \sum_{\ell_1=1}^{h_T+s-t} \sum_{m_1=t-s+r}^{t-r} E \left[\sum_{\ell_1=1}^{h_T+s-t} \sum_{m_1=t-s+r}^{t-r} \beta_i(A_T, h_T - \ell_1) (\beta_i(A_T, h_T - \ell_1 - (t-s)) u_{t+\ell_1}) \times (\beta_j(A_T, m_1 - r) u_{m_1-r}) \right] \\
&\quad \times (\beta_j(A_T, m_1 - r) u_{m_1-r}) (\beta_j(A_T, m_1 - r - (t-s)) u_{m_1-r})] \\
&= \sum_{\ell_1=1}^{h_T+s-t} \sum_{m_1=t-s+r}^{t-r} \|\beta_i(A_T, h_T - \ell_1)\| \times \|\beta_i(A_T, h_T - \ell_1 - (t-s))\| \times \|\beta_j(A_T, m_1 - r)\| \\
&\quad \times \|\beta_j(A_T, m_1 - r - (t-s))\| \times E \left[\|u_{t+\ell_1}\|^2 \times \|u_{m_1-r}\|^2 \right] \\
&\quad \text{(by Cauchy-Schwarz)} \\
&\leq C_1^2 E(\|u_0\|^4) \sum_{\ell_1=1}^{h_T+s-t} \sum_{m_1=t-s+r}^{t-r} \|\beta_i(A_T, h_T - \ell_1)\| \times \|\beta_i(A_T, h_T - \ell_1 - (t-s))\| \\
&\quad \times \left(\sum_{m_1=t-s+r}^{t-r} \rho_j^*(A, \epsilon)^{2(m_1-r-(t-s))} \right) \\
&\leq E(\|u_0\|^4) \times \rho_j^*(A, \epsilon)^{(t-s)} \left(\sum_{\ell_1=1}^{h_T+s-t} \|\beta_i(A_T, h_T - \ell_1)\| \times \|\beta_i(A_T, h_T - \ell_1 - (t-s))\| \right) \\
&\quad \times \left(\sum_{m_1=t-s+r}^{t-r} \rho_j^*(A, \epsilon)^{2(m_1-r-(t-s))} \right) \\
&\quad \text{(using Lemma E.4 and the definition of } B_i^p(A_T, h_T - \ell_1 - (t-s)) \text{ in Lemma E.9 below)} \\
&= E(\|u_0\|^4) \times \rho_j^*(A, \epsilon)^{(t-s)} \left(\sum_{\ell_0=0}^{h_T-1-(t-s)} B_i^p(A_T, \ell) \right) \left(\sum_{m_0=0}^{s-2r} \rho_j^*(A, \epsilon)^{2m} \right) \\
&\leq E(\|u_0\|^4) \times \rho_j^*(A, \epsilon)^{(t-s)} \left(\sum_{\ell_0=0}^{h_T-1-(t-s)} B_i^p(A_T, \ell) \right) \left(\sum_{m_0=0}^{s-2r} \rho_j^*(A, \epsilon)^{2m} \right) \\
&\leq E(\|u_0\|^4) \times \rho_j^*(A, \epsilon)^{(t-s)} \rho_i^*(A, \epsilon)^{(t-s)} \left(\sum_{\ell_0=0}^{h_T-1-(t-s)} B_i^p(A_T, \ell) \right) g(\rho_j^*(A, \epsilon), T - h_T)^2 \\
&\leq E(\|u_0\|^4) \times \rho_j^*(A, \epsilon)^{(t-s)} \rho_i^*(A, \epsilon)^{(t-s)} \left(\sum_{\ell_0=0}^{h_T-1-(t-s)} B_i^p(A_T, \ell) \right) g(\rho_j^*(A, \epsilon), T - h_T)^2 \\
&\quad \times C_2 p \left(\sum_{\ell_0=0}^{h_T-1} \|\beta_i(A_T, \ell)\|^2 \right) g(\rho_j^*(A, \epsilon), T - h_T)^2 \\
&\quad \text{(by Lemma E.9 below).}
\end{align*}
\]
We have derived the bound in the above display under the assumption $s \in (t - h_T, t]$, but by symmetry, it also applies when $t \in (s - h_T, s]$ if we replace $(t - s)$ with $|t - s|$. Inserting into (S6), we get

$$
E \left[\left(\sum_{t=1}^{T-h_T} \xi_{i,t}(A_T, h_T) y_{j,t-r} \overline{(T - h_T) v(A_T, h_T, w)} g(\rho_j^*(A_T, \epsilon), T - h_T) \right)^2 \right]
$$

\[
\leq C_{2p} \times \frac{E(||u_0||^4)}{(T - h_T)^2} \times \frac{\sum_{l=0}^{h_T-1} \beta_l(A_T, \ell)^2}{\sum_{l=0}^{h_T-1} \beta_l(A_T, \ell)^2} \times \sum_{t=1}^{T-h_T} \sum_{s=1}^{T-h_T} \mathbb{1}(|s - t| < h_T) \left(\rho_j^*(A_T, \epsilon) \rho_i^*(A_T, \epsilon) \right)^{|t-s|}
\]

(\text{where we have used the lower bound of Lemma E.5})

\[
= \frac{C_{2p}}{||w||^2 \times \delta \times \lambda_{\min}(\Sigma)} \times \frac{E(||u_0||^4)}{(T - h_T)^2} \times \sum_{|m| < h_T} \left(1 - \frac{|m|}{T - h_T} \right) \left(\rho_j^*(A_T, \epsilon) \rho_i^*(A_T, \epsilon) \right)^{|m|}
\]

\[
\leq \frac{C_{2p}}{||w||^2 \times \delta \times \lambda_{\min}(\Sigma)} \times \frac{E(||u_0||^4)}{(T - h_T)^2} \times \sum_{m=0}^{h_T-1} \left(\rho_j^*(A_T, \epsilon) \rho_i^*(A_T, \epsilon) \right)^m
\]

\[
\leq \frac{C_{2p}}{||w||^2 \times \delta \times \lambda_{\min}(\Sigma)} \times \frac{E(||u_0||^4)}{(T - h_T)^2} \times \left(\sum_{m=0}^{h_T-1} \rho_j^*(A_T, \epsilon)^{2m} \right)^{1/2} \left(\sum_{m=0}^{h_T-1} \rho_i^*(A_T, \epsilon)^{2m} \right)^{1/2}
\]

(by Cauchy-Schwarz)

\[
\leq \frac{C_{2p} \times E(||u_0||^4)}{||w||^2 \times \delta \times \lambda_{\min}(\Sigma)} \times \left(\frac{g(\rho_j^*(A_T, \epsilon), T - h_T)}{T - h_T} \right)^{1/2} \left(\frac{g(\rho_i^*(A_T, \epsilon), T - h_T)}{T - h_T} \right)^{1/2}
\]

\[
\to 0.
\]

\[\square\]

Lemma E.9. Consider any lag polynomial $A(L)$ of order p with autoregressive coefficients $A = (A_1, \ldots, A_p)$. Then for any $h = 1, 2, \ldots,$

$$
\frac{\sum_{\ell=0}^{h-1} B^p_t(A, \ell)}{\sum_{\ell=0}^{h-1} ||\beta_t(A, \ell)||^2} \leq C_{2p},
$$

where

$$
B^p_t(A, \ell) \equiv C_2 \sum_{b=0}^{p-1} (||\beta_t(A, \ell)|| \times ||\beta_t(A, \ell - b)||),
$$

and we define $\beta_t(A, \ell) = 0$ whenever $\ell < 0$. Here C_2 is the constant defined in Lemma E.4.
Proof. Changing the order of summation, we have
\[
\sum_{\ell=0}^{h-1} \left(\sum_{b=0}^{p-1} \| \beta_i(A, \ell) \| \times \| \beta_i(A, \ell - b) \| \right)
= \sum_{b=0}^{p-1} \left(\sum_{\ell=0}^{h-1} \| \beta_i(A, \ell) \| \times \| \beta_i(A, \ell - b) \| \right)
\leq \sum_{b=0}^{p-1} \left(\sum_{\ell=0}^{h-1} \| \beta_i(A, \ell) \|^2 \right)^{1/2} \times \left(\sum_{\ell=0}^{h-1} \| \beta_i(A, \ell - b) \|^2 \right)^{1/2}
\leq \sum_{b=0}^{p-1} \left(\sum_{\ell=0}^{h-1} \| \beta_i(A, \ell) \|^2 \right)
\quad \text{(since } \| \beta_i(A, \ell - b) \| = 0 \text{ for } \ell - b < 0)
= p \left(\sum_{\ell=0}^{h-1} \| \beta_i(A, \ell) \|^2 \right).
\]

Therefore,
\[
\sum_{\ell=0}^{h-1} B_1(A, \ell) \leq C_2 p \left(\sum_{\ell=0}^{h-1} \| \beta_i(A, \ell) \|^2 \right). \tag*{\square}
\]

E.5 Proof of Lemma A.5

We consider each statement separately.

Part (i). Since \(E(u_t u_t') = \Sigma \) by definition, this statement follows from a standard application of Chebyshev’s inequality, exploiting the summability of the autocovariances of \(\{u_t \otimes u_t\} \), cf. Assumption 2(ii). See for example Davidson (1994, Thm. 19.2).

Part (ii). Using \(\hat{u}_t(h) - u_t = (A - \hat{A}(h))X_t \), we get
\[
\left\| \hat{\Sigma}(h_T) - \frac{1}{T - h_T} \sum_{t=1}^{T-h_T} u_t u_t' \right\|
\leq \frac{1}{T - h_T} \sum_{t=1}^{T-h_T} \| \hat{u}_t(h_T) \hat{u}_t(h_T)' - u_t u_t' \|
\leq \frac{1}{T - h_T} \sum_{t=1}^{T-h_T} \| \hat{u}_t(h_T) - u_t \|^2 + \frac{2}{T - h_T} \sum_{t=1}^{T-h_T} \| (\hat{u}_t(h_T) - u_t) u_t' \|
\leq \| G(A_T, T - h_T, \epsilon)(\hat{A}(h_T) - A_T) \|^2 \times \frac{1}{T - h_T} \sum_{t=1}^{T-h_T} \| G(A_T, T - h_T, \epsilon)^{-1} X_t \|^2
\]
Lemma E.3, Lemma A.3(iii), Lemma E.8, and an application of Markov’s inequality imply that the last expression above is

\[\frac{o_{P_{\mathcal{A}T}}(1) \times O_{P_{\mathcal{A}T}}(1) + 2 \times o_{P_{\mathcal{A}T}}(1) \times o_{P_{\mathcal{A}T}}(1)}{o_{P_{\mathcal{A}T}}(1)}. \]

E.6 Proof of Lemma A.6

We would like to show \(\hat{\varsigma} \xrightarrow{P} 1 \), where

\[\hat{\varsigma} \equiv \frac{1}{T - h_T} \sum_{t=1}^{T-h_T} \frac{\xi_{i,t}(A_T, h_T)^2(w'u_t)^2}{v(A_T, h_T, w)^2}. \]

Note that the summands could be serially correlated under our assumptions. We establish the desired convergence in probability by showing that the variance of \(\hat{\varsigma} \) tends to 0 (since its mean is 1). Observe that

\[
\text{Var}(\hat{\varsigma}) = \frac{1}{(T - h_T)^2 v(A_T, h_T, w)^4} \sum_{t=1}^{T-h_T} \sum_{s=1}^{T-h_T} \text{Cov} \left(\xi_{i,t}(A_T, h_T)^2(w'u_t)^2, \xi_{i,s}(A_T, h_T)^2(w'u_s)^2 \right) \\
= \frac{1}{(T - h_T)^2 v(A_T, h_T, w)^4} \times \sum_{|m|<T-h_T} \left(1 - \frac{|m|}{T - h_T} \right) \text{Cov} \left(\xi_{i,0}(A_T, h_T)^2(w'u_0)^2, \xi_{i,m}(A_T, h_T)^2(w'u_m)^2 \right) \\
\leq \frac{2}{(T - h_T)^2 v(A_T, h_T, w)^4} \sum_{m=0}^{T-h_T} |\Gamma_T(m)|, \quad (S7)
\]

where we define

\[\Gamma_T(m) \equiv \text{Cov} \left(\xi_{i,0}(A_T, h_T)^2(w'u_{i,0})^2, \xi_{i,m}(A_T, h_T)^2(w'u_m)^2 \right), \quad m = 0, 1, 2, \ldots \]

By expanding the squares \(\xi_0(\rho, h)^2 \) and \(\xi_m(\rho, h)^2 \), we obtain

\[\Gamma_T(m) = \sum_{\ell_1=1}^{h_T} \sum_{\ell_2=1}^{h_T} \sum_{\ell_3=1}^{h_T} \sum_{\ell_4=1}^{h_T} \text{Cov} \left(\beta_1(A_T, h_T - \ell_1)'u_{\ell_1} \beta_1(A_T, h_T - \ell_2)'u_{\ell_2}(w'u_0)^2, \right. \\
\left. (\beta_1(A_T, h_T - \ell_3)'u_{m+\ell_3} \beta_1(A_T, h_T - \ell_4)'u_{m+\ell_4}(w'u_m)^2 \right). \]
Consider any summand on the right-hand side above defined by indices \((\ell_1, \ell_2, \ell_3, \ell_4)\). If \(\ell_1 = \ell_2\), then Assumption 1 implies that the covariance in the summand equals zero whenever \(\ell_3 \neq \ell_4\), since in this case at most one of the subscripts \(m + \ell_3\) or \(m + \ell_4\) can equal \(\ell_1\) (= \(\ell_2\)). Thus, if \(\ell_1 = \ell_2\), then the summand can only be nonzero when \(\ell_3 = \ell_4\). If instead \(\ell_1 \neq \ell_2\), then Assumption 1 implies that the summand can only be nonzero when \(\ell_1, \ell_2\} = \{m + \ell_3, m + \ell_4\}\), which in turn requires that \(m < h_T\). Putting these facts together, we obtain

\[
|\Gamma_T(m)| \\
\leq \sum_{\ell_1=1}^{h_T} \sum_{\ell_3=1}^{h_T} \left| \text{Cov} \left((\beta_i(A_T, h_T - \ell_1)'u_{m+\ell_1}, (\beta_i(A_T, h_T - \ell_3)'u_{\ell_3})^2(w'u_m)^2, (\beta_i(A_T, h_T - \ell_3)'u_{\ell_3})^2(w'u_0)^2 \right) \right| \quad \text{(S8)}
\]

\[
+ \mathbb{1}(m < h_T/2) \sum_{\ell_1=1}^{h_T} \sum_{\ell_3 \neq \ell_1}^{h_T} \left| \text{Cov} \left((\beta_i(A_T, h_T - \ell_1)'u_{\ell_1}, (\beta_i(A_T, h_T - \ell_2)'u_{\ell_2})^2(w'u_m)^2, (\beta_i(A_T, h_T - (\ell_1 - m))'u_{\ell_1}, (\beta_i(A_T, h_T - (\ell_2 - m))'u_{\ell_2})^2(w'u_0)^2 \right) \right| . \quad \text{(S9)}
\]

Let \(\Gamma_1, T(m)\) and \(\Gamma_2, T(m)\) denote expressions (S8) and (S9), respectively. We will now bound \(\sum_{m=0}^{T-h_T} \Gamma_1, T(m)\) and \(\sum_{m=0}^{T-h_T} \Gamma_2, T(m)\), so that we can ultimately insert these bounds into (S7).

Bound on \(\sum_{m=0}^{T-h_T} \Gamma_1, T(m)\). We first bound the term in expression (S8). To do this, we define the unit-norm vectors

\[
\omega_{A_T, h_T, \ell} \equiv \beta_i(A_T, h_T - \ell)/\|\beta_i(A_T, h_T - \ell)\|, \quad \omega_w \equiv w/\|w\|.
\]

By Lemma E.4, the term

\[
\left| \text{Cov} \left((\beta_i(A_T, h_T - \ell_1)'u_{m+\ell_1})^2(w'u_m)^2, (\beta_i(A_T, h_T - \ell_3)'u_{\ell_3})^2(w'u_0)^2 \right) \right|
\]

is bounded above by

\[
\|w\|^4 C_1^4 \rho_i^*(A_T, \epsilon)^2(h_T - \ell_1) + 2(h_T - \ell_3) |\text{Cov} \left((\omega_{A_T, h_T, \ell_1} u_{m+\ell_1})^2(w'_m u_m)^2, (\omega_{A_T, h_T, \ell_3} u_{\ell_3})^2(w'_u u_0)^2 \right) | .
\]

Since \(A_T \in \mathcal{A}(0, \epsilon, C)\), we have \(\rho_i^*(A_T, \epsilon) \leq 1\), so

\[
\sum_{m=0}^{T-h_T} \Gamma_1, T(m) \leq \|w\|^4 C_1^4 \sum_{m=0}^{T-h_T} \sum_{\ell_1=1}^{h_T} \sum_{\ell_3=1}^{h_T} \rho_i^*(A_T, \epsilon)^2(h_T - \ell_3)
\]
\[
\begin{aligned}
&\times \left| \text{Cov} \left((\omega'_{A_T, h_T, \ell_1} u_{m+\ell_1})^2 (\omega'_w u_m)^2, (\omega'_{A_T, h_T, \ell_3} u_{\ell_3})^2 (\omega'_w u_0)^2 \right) \right| \\
\leq &\|w\|^4 C^4_1 \sum_{b_1=1}^{h_T} \rho^*_1(A_T, \epsilon)^{2(h_T-b_1)} \\
&\times \left(\sum_{b_2=-\infty}^{\infty} \sum_{b_3=-\infty}^{\infty} \sup_{\|\omega_j\|=1} \left| \text{Cov} \left((\omega'_1 u_{b_1})^2 (\omega'_2 u_0)^2, (\omega'_3 u_{b_3+b_2})^2 (\omega'_4 u_{b_3})^2 \right) \right| \right). \quad (S10)
\end{aligned}
\]

Consider the double sum in large parentheses above. If we expand the various squares of the form \((\omega'_i u_t)^2\), then the double sum can be bounded above by at most \(4n^2\) terms of the form
\[
\sum_{b_2=-\infty}^{\infty} \sum_{b_3=-\infty}^{\infty} |\text{Cov} \left(\bar{u}_{j_1, b_1}, \bar{u}_{j_2, b_0}, \bar{u}_{j_3, b_1+b_2}, \bar{u}_{j_4, b_3} \right)|, \quad (S11)
\]

where \(\bar{u}_t = (\bar{u}_{1,t}, \ldots, \bar{u}_{n,t})' \equiv u_t \otimes u_t\), and \(j_1, j_2, j_3, j_4 \in \{1, 2, \ldots, n^2\}\) are summation indices.

By Assumption 2(ii), the process \(\{\bar{u}_t\}\) has absolutely summable cumulants up to order four. We can therefore show there exists a constant \(K \in (0, \infty)\) such that the large parenthesis (S10) is bounded above by \(K\).\(^1\) Consequently,
\[
\sum_{m=0}^{T-h_T} \hat{\Gamma}_{1,T}(m) \leq \|w\|^4 C^4_1 K \sum_{b_1=1}^{h_T} \rho^*_1(A_T, \epsilon)^{2(h_T-b_1)} = \|w\|^4 C^4_1 K \sum_{\ell=0}^{h_T-1} \rho^*_1(A_T, \epsilon)^{2\ell}.
\]

\(^1\)According to Brillinger (2001, Thm. 2.3.2),
\[
\text{Cov} \left(\bar{u}_{j_1, b_1}, \bar{u}_{j_2, b_0}, \bar{u}_{j_3, b_1+b_2}, \bar{u}_{j_4, b_3} \right) = \text{Cov} \left(\bar{u}_{j_2, b_0}, \bar{u}_{j_3, b_2} \right) \text{Cov} \left(\bar{u}_{j_1, b_1}, \bar{u}_{j_4, b_3} \right) + \text{Cov} \left(\bar{u}_{j_2, b_0}, \bar{u}_{j_4, b_3} \right) \text{Cov} \left(\bar{u}_{j_1, b_1}, \bar{u}_{j_3, b_2} \right) + \text{Cum} \left(\bar{u}_{j_2, b_0}, \bar{u}_{j_1, b_1}, \bar{u}_{j_3, b_2}, \bar{u}_{j_4, b_3} \right),
\]

where “Cum” denotes the joint fourth-order cumulant. Thus, the expression (S11) is bounded above by
\[
\left(\sum_{b_2=-\infty}^{\infty} |\text{Cov} \left(\bar{u}_{j_2, b_0}, \bar{u}_{j_3, b_2} \right)| \right) \left(\sum_{b_3=-\infty}^{\infty} |\text{Cov} \left(\bar{u}_{j_1, b_1}, \bar{u}_{j_4, b_3} \right)| \right)
+ \left(\sum_{b_2=-\infty}^{\infty} |\text{Cov} \left(\bar{u}_{j_2, b_0}, \bar{u}_{j_3, b_2} \right)| \right) \left(\sum_{b_3=-\infty}^{\infty} |\text{Cov} \left(\bar{u}_{j_2, b_0}, \bar{u}_{j_4, b_3} \right)| \right)
+ \sum_{b_1=-\infty}^{\infty} \sum_{b_2=-\infty}^{\infty} \sum_{b_3=-\infty}^{\infty} |\text{Cum} \left(\bar{u}_{j_2, b_0}, \bar{u}_{j_1, b_1}, \bar{u}_{j_3, b_2}, \bar{u}_{j_4, b_3} \right)|.
\]

The third term above is finite by Assumption 2(ii), since \(\bar{u}_t \equiv u_t \otimes u_t\) has absolutely summable cumulants up to order 4. Consider the first term above (the second term is handled similarly). The stationarity of \(\bar{u}_t\) implies that this term equals \(\left(\sum_{b_2=-\infty}^{\infty} |\text{Cov} \left(\bar{u}_{j_2, b_0}, \bar{u}_{j_3, b_2} \right)| \right) \left(\sum_{b_3=-\infty}^{\infty} |\text{Cov} \left(\bar{u}_{j_1, b_1}, \bar{u}_{j_4, b_3} \right)| \right)\). By Assumption 2(ii), the autocovariances of \(\{\bar{u}_t\}\) are absolutely summable. This implies the above display is bounded. Thus, we have shown that there exists a constant \(K(J_1, J_2, J_3, J_4)\) (which only depends on the fixed data generating process for \(\{u_t\}\)) that bounds the expression (S11). Picking the largest constant over all summation indices gives the desired result.
Bound on $\sum_{m=0}^{T-h_T} \tilde{\Gamma}_{2,T}(m)$. Expression (S9) can be bounded above by

$$\mathbb{1}(m < h_T) \sum_{\ell_1=1}^{h_T} \sum_{\ell_2 \neq \ell_1} E \left[|\beta_i(A_T, h_T - \ell_1)'u_{\ell_1}| \times |\beta_i(A_T, h_T - \ell_2)'u_{\ell_2}| \times (w'u_m)^2 \right].$$

Applying Cauchy-Schwarz, we get the upper bound

$$\mathbb{1}(m < h_T) 2 \sum_{\ell_1=1}^{h_T} \sum_{\ell_2 \neq \ell_1} \left(\|w\|^4 \times \|\beta_i(A_T, h_T - \ell_1)\| \times \|\beta_i(A_T, h_T - \ell_2)\| \right. \times \|\beta_i(A_T, h_T - (\ell_1 - m))\| \times \|\beta_i(A_T, h_T - (\ell_2 - m))\| \times E \left[\|u_{\ell_1}\|^2 \times \|u_{\ell_2}\|^2 \times \|u_m\|^2 \times \|u_0\|^2 \right].$$

Another application of the Cauchy-Schwarz inequality gives

$$E \left[\|u_{\ell_1}\|^2 \times \|u_{\ell_2}\|^2 \times \|u_m\|^2 \times \|u_0\|^2 \right] \leq E[\|u_i^8\|].$$

Thus,

$$\sum_{m=0}^{T-h_T} \tilde{\Gamma}_{2,T}(m) \leq 2 \times E[\|u_i^8\|] \times \|w\|^4 \times \sum_{m=0}^{h_T-1} \sum_{\ell_1=1}^{h_T} \sum_{\ell_2=1}^{h_T} \left(\|\beta_i(A_T, h_T - \ell_1)\| \times \|\beta_i(A_T, h_T - \ell_2)\| \times \|\beta_i(A_T, h_T - (\ell_1 - m))\| \times \|\beta_i(A_T, h_T - (\ell_2 - m))\| \right).$$

The bound in Lemma E.4 implies that

$$\|\beta_i(A_T, h_T - \ell_1)\| \times \|\beta_i(A_T, h_T - (\ell_1 - m))\|$$

is less than or equal to

$$C_2 \sum_{b=0}^{p-1} \|\beta_i(A_T, h_T - \ell_1)\| \times \|\beta_i(A_T, h_T - \ell_1 - b)\| \times \rho_i^*(A_T, \epsilon)^m, \quad (S12)$$

$$\equiv \beta_i^p(A_T, h_T - \ell_1)$$
for a positive constant C_2 that depends on p and ϵ. Thus,

$$
\sum_{m=0}^{T-h_T} \hat{\Gamma}_{2,T}(m)
\leq 2 \times E[\|u^8_i\|] \times \|w\|^4 \times \sum_{m=0}^{h_T-1} \sum_{\ell_1=1}^{h_T} \sum_{\ell_2=1}^{h_T} \left(B^p_i(A_T, h_T - \ell_1) \times B^p_i(A_T, h_T - \ell_2) \times \rho_i^*(A_T, \epsilon)^{2m} \right)
= 2 \times E[\|u^8_i\|] \times \|w\|^4 \left(\sum_{\ell=0}^{h_T-1} \rho_i^*(A_T, \epsilon)^{2\ell} \right) \left(\sum_{\ell=0}^{h_T-1} B^p_i(A_T, \ell) \right)^2. \quad \text{(S13)}
$$

Conclusion of Proof. Putting together (S7), (S8), (S9), and (S13), we get

$$
\text{Var}(\xi) \leq \frac{2\|w\|^4}{(T-h_T)v(A_T, h_T, w)^4} \left\{ C^4_1 K \sum_{\ell=0}^{h_T-1} \rho_i^*(A_T, \epsilon)^{2\ell} \right. \\
+ 2 \times E[\|u^8_i\|] \times \left(\sum_{\ell=0}^{h_T-1} \rho_i^*(A_T, \epsilon)^{2\ell} \right) \left(\sum_{\ell=0}^{h_T-1} B^p_i(A_T, \ell) \right)^2 \left\}
\leq \frac{2C^4_1 K \times \sum_{\ell=0}^{h_T-1} \rho_i^*(A_T, \epsilon)^{2\ell}}{(T-h_T) \left(\sum_{\ell=0}^{h_T-1} \|\beta_i(A, \ell)\|^2 \right)^2 \delta^2 \lambda_{\min}(\Sigma)^2} \\
+ \frac{2 \times E[\|u^8_i\|] \times \sum_{\ell=0}^{h_T-1} \rho_i^*(A_T, \epsilon)^{2\ell}}{(T-h_T)\delta^2 \lambda_{\min}(\Sigma)^2} \times \frac{\left(\sum_{\ell=0}^{h_T-1} B^p_i(A_T, \ell) \right)^2}{\left(\sum_{\ell=0}^{h_T-1} \|\beta_i(A, \ell)\|^2 \right)^2}
$$

(by the lower bound for $v(A_T, h_T, w)^2$ derived in Lemma E.5)

$$
\leq \frac{2 \left\{ \left(C^4_1 K \times \sum_{\ell=0}^{h_T-1} \rho_i^*(A_T, \epsilon)^{2\ell} \right) + \left(2 \times E[\|u^8_i\|] \times C_2p \times \sum_{\ell=0}^{h_T-1} \rho_i^*(A_T, \epsilon)^{2\ell} \right) \right\}}{(T-h_T)\delta^2 \lambda_{\min}(\Sigma)^2} \\
$$

(where we have used $\sum_{\ell=0}^{\ell_T-1} \|\beta_i(A, \ell)\|^2 \geq \|\beta_i(A, 0)\|^2 = 1$ and Lemma E.9)

$$
= \frac{(2 \times C^4_1 K) + (4 \times E[\|u^8_i\|] \times C_2p)}{\delta^2 \lambda_{\min}(\Sigma)^2} \times \frac{\sum_{\ell=0}^{h_T-1} \rho_i^*(A_T, \epsilon)^{2\ell}}{T-h_T}.
$$

The final expression above tends to zero as $T \to \infty$, since

$$
\frac{\sum_{\ell=0}^{h_T-1} \rho_i^*(A_T, \epsilon)^{2\ell}}{T-h_T} \leq \frac{g(\rho_i^*(A_T, \epsilon), h_T)^2}{T-h_T} \to 0.
$$

Thus, $\text{Var}(\xi) \to 0.$
E.7 Proof of Lemma A.7

We prove only the first statement of the lemma, as the proof is completely analogous for the second part. Define the unit-norm vectors

\[\omega_{A,h,\ell} \equiv \beta_i(A, h - \ell)/\|\beta_i(A, h - \ell)\|, \quad \omega_w \equiv w/\|w\|. \]

In a slight abuse notation, throughout the proof of this lemma we will sometimes write \(\beta_i(h - \ell) \) instead of \(\beta_i(A, h - \ell) \). Expanding the four-fold product \(\xi_{i, \ell}(A, h)^4 \), we obtain

\[
E[\xi_{i, \ell}(A, h)^4(a'u_t)^4] \\
= \sum_{\ell_1=1}^{h} \sum_{\ell_2=1}^{h} \sum_{\ell_3=1}^{h} \sum_{\ell_4=1}^{h} \|\beta_i(h - \ell_1)\| \times \|\beta_i(h - \ell_2)\| \times \|\beta_i(h - \ell_3)\| \times \|\beta_i(h - \ell_4)\| \\
\times E \left[(\omega_{A,h,\ell_1}^{\prime} u_{t+\ell_1}) \times (\omega_{A,h,\ell_2}^{\prime} u_{t+\ell_2}) \times (\omega_{A,h,\ell_3}^{\prime} u_{t+\ell_3}) \times (\omega_{A,h,\ell_4}^{\prime} u_{t+\ell_4}) \times (w' u_t)^4 \right]. \quad (S14)
\]

By Assumption 1, the summands above equal zero if one of the indices \(\ell_j \) is different from the three other indices. Hence, the only possibly nonzero summands are those for which the four indices appear in two pairs, e.g., \(\ell_1 = \ell_3 \) and \(\ell_2 = \ell_4 \). The typical nonzero summand can thus be written in the form

\[
\|\beta_i(h - \ell)\| \|\beta_i(h - m)\|^2 E \left[(\omega_{A,h,\ell}^{\prime} u_{t+\ell})^2 \times (\omega_{A,h,m}^{\prime} u_{t+m})^2 \times (w' u_t)^4 \right]
\]

where \(\ell, m \in \{1, \ldots, h\} \). For given \(\ell \) and \(m \), this specific type of summand is obtained precisely when either (i) \(\ell_1 = \ell_2 = \ell \) and \(\ell_3 = \ell_4 = m \), or (ii) \(\ell_1 = \ell_3 = \ell \) and \(\ell_2 = \ell_4 = m \), or (iii) \(\ell_1 = \ell_4 = \ell \) and \(\ell_2 = \ell_3 = m \), or (iv) \(\ell_1 = \ell_2 = m \) and \(\ell_3 = \ell_4 = \ell \), or (v) \(\ell_1 = \ell_3 = m \) and \(\ell_2 = \ell_4 = \ell \), or (vi) \(\ell_1 = \ell_4 = m \) and \(\ell_2 = \ell_3 = \ell \). That is, there are six summands in (S14) of this form. Thus,

\[
E[\xi_{i, \ell}(A, h)^4(w'u_t)^4] = 6 \sum_{\ell=1}^{h} \sum_{m=1}^{h} \left(\|\beta_i(h - \ell)\|^2 \|\beta_i(h - m)\|^2 \times E \left[(\omega_{A,h,\ell}^{\prime} u_{t+\ell})^2 \times (\omega_{A,h,m}^{\prime} u_{t+m})^2 \times (w' u_t)^4 \right] \right)
\leq 6 \|w\|^4 E(\|u_t\|^8) \sum_{\ell=1}^{h} \sum_{m=1}^{h} \|\beta_i(h - \ell)\|^2 \|\beta_i(h - m)\|^2 \\
(\text{by applying Cauchy-Schwarz twice})
\]
\[= 6\|w\|^4 E(\|u_t\|^8) \left(\sum_{\ell=0}^{\ell=h-1} \|\beta_i(A, h - \ell)\|^2 \right)^2. \]

It follows from Lemma E.5 that

\[E \left[\left(v(A, h, w)^{-1} \xi_t(A, h) u_t \right)^4 \right] \leq \frac{6 E(\|u_t\|^8)}{\delta^2 \lambda_{\min}(\Sigma)^2}. \]

References

