A competitive document representation with provable properties

Modern NLP pipelines combine low-dimensional distributed representations of text with deep learning models like LSTMs. Our goal is to reason formally about these systems using compressed sensing tools.

The Text Classification Pipeline

- **Bag-of-n-Grams (BonGs)**: Simple to implement, strong baseline, high-dimensional word-order, moderate performance, often ignored word-order, slow, can be beaten by BonGs.
- **LSTM Hidden States**: Simple to implement, low dimensional, long range dependencies, strong performance.
- **Past Linear Schemes**: e.g., sum of embeddings, SIF [10], simple to implement, localized word-order, moderate performance.
- **Skip-Thought Vectors**: Can be expressed as a linear combination of BonGs. Since A preserves their inner products and the loss is Lipschitz, the loss of $A\hat{w}_{BonG}$ is thus bounded in terms of that of \hat{w}_{BonG}.

How well does our representation do on linear text classification?

Case 1: Random Word Embeddings: Using i.i.d. Random word embeddings as input our representations are provably as powerful as Bag-of-n-Grams for linear text classification. This yields a new theoretical result about LSTMs (below).

Case 2: Pretrained Word Embeddings: Using GloVe word embeddings our representations achieve state-of-the-art results on several text classification tasks:

Theorem: LSTMs beat BonGs

If ℓ is a convex Lipschitz loss and D is a distribution on documents of length at most T with optimal linear BonG classifier w_{BonG} then for $\delta, \Omega = \Omega(\log T)$ one can initialize an $O(d)\text{-memory}$ LSTM such that with probability $1 - \delta$ the linear classifier \hat{w}_{LSTM} trained over m documents represented by the LSTM’s last hidden state satisfies

$$
\ell(\hat{w}_{LSTM}) \leq \ell_1(w_{BonG}) + O\left(\frac{\|w_{BonG}\|_1}{m} \log \frac{1}{\delta}\right)
$$

Proof Sketch: Using results from compressed sensing we can write $\hat{v}_{document} = A\hat{v}_{BonG}$, where the matrix A preserves inner products of T-sparse vectors up to distortion ε and v_{BonG} is the document’s BonG vector. As v_{BonG} can be computed by a low-memory LSTM, it suffices to show that learning is possible under compression [2].

1. The loss of learned classifier \hat{w}_{BonG} is bounded in terms of that of the optimal classifier w_{BonG}.
2. w_{BonG} can be expressed as a linear combination of BonGs. Since A preserves their inner products and the loss is Lipschitz, the loss of $A\hat{w}_{BonG}$ is thus bounded in terms of that of \hat{w}_{BonG}.
3. The loss of learned classifier \hat{w}_{LSTM} is bounded in terms of that of $A\hat{w}_{BonG}$.

What information does our representation encode?

Case 1: Random Word Embeddings: Guaranteed polynomial-time recovery of the Bag-of-n-Grams vector from our representation using ℓ_1-minimization. Follows from the compressed sensing properties of random matrices.

Case 2: Pretrained Word Embeddings: Standard compressed sensing theory does not apply to GloVe/word2vec. Surprisingly, they encode Bag-of-Words vectors more efficiently than random embeddings, requiring fewer dimensions for recovery.

Empirical Observation

As a result of being trained on a large text corpus, word embeddings satisfy a weak compressed sensing condition that only holds for natural language documents. This leads to highly-efficient BoW recovery.

References